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Abstract 
 

This work examines both the elliptically contoured Wishart density and the 
resulting density of the total correlation coefficient, and reaffirms the invariance 
property of the squared sampled multiple correlation coefficient. This invariance 
property is then exploited to show that the densities of the multiple correlation 
coefficients for the standard normal model and for the elliptically contoured model 
are identical. The same is shown to also hold for the density of the partial 
correlation coefficients.  
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1.    Introduction: 
Let A be an m x m positive definite matrix, having the elliptically contoured Wishart density [4, 5, 8] given by  

f(A) = kg (tr (PA)) 
( )1 / 2
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where g is an absolutely continuous function, and k the normalizing constant of density functions. For (1) consider the case 
m = 2   

i.e.  A= 11 12
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 where ρ is the total population correlation coefficient, and what is desired here is the density of the total sample correlation 
coefficient, r, defined by  

   ( )1/ 2
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[1, 5] variously found the density of r to be  

   ( )
( )

2

3 / 22 / 2 2

0

2
2

( ) (1 ) (1 )
!

nn

n
r

f r k r
α

αρ α
ρ

α

∞
−

=

 + Γ   
  = − − ∑  (4) 

The squared sample multiple correlation coefficient for (1) is given as mR ...2.1
2
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1.2... 12 2122mR A AA
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and the matrix A is partitioned as 
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 and such that A22 is m-1  by  m-1 

The squared population multiple correlation coefficient  
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Now for the Wishart density,  f(A)  = ( ) ( )/ 2 / 2

1
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P c n m i
− −

=
Π − +Π exp ( ) ( )1 / 21
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tr PA A
− − − 

   

(6) 

with  c(n-m+i) = ( )( ) / 2
2 /

2
n m i n m i− +  − + Π Γ   

  
     (7) 

The density of R21.2…m is known to be [5, 6] 
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  where  Q = 22

1.2... 1.2...

1
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If we use the identity 
2 11 1 1

11 22 11 12 22 111.2...
1 1

m
P P P P P P Pρ −− − −′ ′ ′− = = −      (10) 

then,  (8) can be re-written as 

( ) ( ) ( )( ) ( )( )/ 2 1 / 2 3 / 22 1 1 2 2
1..2... 11 12 22 21 1.2... 1.2...1 1 .

n n m m

m m mF R k P P P P R R Q
− − −− −′ ′= − − •    (11) 

 where  Q =  2 1 1
1 ..2 ... 11 12 22 21

1
, , ;

2 2 2 m

n n m
F R P P P P− −− ′ ′  

    (12) 

It follows from (4) that (11) is invariant under the transformation P Pα→  for any parameter α . We shall now use this 

invariance property [7] of the canonical correlation matrices and of the correlation coefficients to show that the densities of 
the canonical correlation matrices and of the correlation coefficient are independent of any elliptically contoured modeled 
function g. 

 If y has n components, ,y then−∞ ∠ ∠ ∞    ( )( ) expT
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For any absolutely continuous function g we have [2] 
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The Multiple Correlation Coefficient 

 From (6), let , (11)P P and use to getα→   
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 where the region of integration R is defined by 
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First use (13) on (16) and integrate out A21 to get  
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Next using (14) we in integrate out P11 and A22 to get  
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Note that (19) is true for all .n m≥ Hence suppose 

n = 2,   m = 2,  and P  = I, then observe that for any conformable matrix B, 
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which is an identity in α  and hence using (15) with / 2 we haveθ α= −  
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From (21) it follows that if P is given by (2), then (20) becomes  
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and hence, (21) holds, showing that the density of R2
1.2 does not depend on g.  

Finally observe that from (21) and (24)  
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Thus we have shown that the densities of the multiple correlation coefficient (25) for the standard normal model and for the 
elliptically contoured model (1) are identical.  
THE PARTIAL CORRELATION COEFFICIENT 
Let us partition the matrix A as  

  A = 
11 12 12
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and assume that P is also conformably partitioned. The squared partial correlation coefficient is defined by  

  221121...2.1
2 / dddR m =  
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The joint density of D11, A12 and A22 is 
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Integrating out A12 we have 
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Hence the density of D11 is  
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The population squared partial correlation coefficient is  
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This density is invariant under the transformation P Pα→  for any n and 2.m ≥  Moreover, it depends only on p11, p12 

and p22, and hence (28) reduces to 
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∫ +  , which is of the form  
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Conclusion 
Following the non-central density of the sample correlation coefficient for a class of elliptically contoured models derived 
by [5], this work has exploited the scale invariance property of multiple and partial correlation coefficients to show that the 
densities of the scale invariant statistics are identical for the normal model and the elliptically contoured model. 
Furthermore, the density of the total sample correlation coefficient, r, is invariant under the transformation P Pα→  for 

any parameter α . The same applies to the squared sample correlation coefficient. We also used the invariance property of 
the canonical correlation matrices and the correlation coefficients to show that the densities of the canonical correlation 
matrices and of the correlation coefficient are independent of any elliptically contoured modeled function g. 
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