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Abstract

In this paper, another tail-end probability function is proposed using the left tail-end
probabilities, p( x < i) = &;. The resulting function, IT,(t), is continuous and converges
uniformly within the unit circle, | t | < 1. A clear functional link is established between
IT(t) and two other well known versions of the probability generating function. When
known, IT,(t) uniquely generates the components of the probability mass function of the
discrete random variable, and indirectly generates moments.
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Introduction:
We recall that for a non-negative integer-valuetiam variable X with probability mass function,

P(X=1i)=n, 1)
The probability generating function is defined as
P)=p+pt+ptf+pti+.. = OZO‘,piti @)
i=1

which is equivalent to J)=E®], forX=0,1,2,...

The basic properties of this function as preseintd8, 7, 8] are as follows:

i) P,(t) converges absolutely and uniformly within amdtbe unit circle, |t <1

ii) P«(t) is analytic, regular and infinitely differenkile for |t| < 1

iii) For every discrete probability distribution §p there is a unique probability generating funatioR(t); and

conversely, every probability generating functid®(t) corresponding to {p (where p > 0 and z p =1)
i

determines a unique probability mass functiog.{p

iv) The nth component of {pcan be obtained from,R) by the relation
(n)
= P (0) 3)
n
which means that,R) is a transform of the probability mass function
V) Moments of the random variable X may be compdtech B(t) provided the appropriate derivatives exist at t

1[5]. In particular

P)=Sin = Ex) @
P/() = Yi(i-1p, =E[X(X -1)]=E[X ] (5)
PI() = E[X (X -1)(X -2) .(X —K)] = E[Xy] (6)

where E[Xy] is the K" factorial moment of the random variable X.[6]
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Tail-end Probabilities and the Probability Generating Function

The well known tail-end probability generating ftioa is defined in [1, 2, 3] as

St
QM= gt (7)
i=0

where g=P(X>1i), i =0,1,2, ... (8)
We shall refer to this as the right tail-end prabigh and to Q(t) as the associated right tail probability funati That is,

A=PputPetpst... (9)
Between R(t) and Q(t), there exists the following fundamental relaship

1-BM)=1-1)Q),for|t]<1 (10)

Therefore, just like #t), Q.(t) generates both probabilities and moments aferete random variable [4]. Specifically, the
following expressions hold:

EX]= B.@) =Q) (11)
var[X] = P"(1) + P’ (1) - [P" (1)f
= 2Q, (1)) + ) - [P (12)
(r)
ie.  EXgl=P"U@) = (r+1) Q' (13)
The tail-end probabilities are obtained using
1
q1:—IQ)((n)(O), n=0,1,2, .. (14)
n
By substitution, the probability mass function engrated using
Ph=0¢1-0, nN=1,23,... (15)
and p=1-q (16)
Definition: (The Left Tail-end Probability Function)
Letm =P(X< i), i= 012, ...,n 17)
be the left tail-end probabilities of the discrededom variable X.
Suppose P(X=ng 0 and}lL,p; = 1, (18)
then the power series
n
n,() => =t (19)
i=1
is the left tail-end probability generating functiof the discrete random variable X

Theorem :

Within the unit circle | t | < II,(t) generates probabilities as well as momentssatidfies the following relations:
) Pd) = (1 - IIL(1)

1

i) LM+ Q) =
Proof
Now from (19) [T (t) = mg + myt + mot® + mat®+ . . .+, t"
Observe that 8 m; <1 for all i, hence {u} is bounded. Therefore, within the unit circle||< 1, (19) will converge
absolutely and uniformly.
Furthermore, (19) is continuous and differentiakiéhin the same region. Hence

= 1x0) = p (20)
1
and nr:—lrl(;)(o) r=1,2,3,....n (21)
r!
Furthermore, observe that
pr=m -m. = PX<r) —P(X<r-1), r=1,2,3,... (22)

Hencell,(t) generates the components of the probabilitysmiasction uniquely
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To prove (i) consider the right hand side.
(1 - HII(1) = I0(t) - tIL(t)
=mo + (- Mt + (- M) + (w3 - W)+ ..+ - o)t
—ptpttptttptt ...+t
=R() i.e. using (20) and (22)
Hence Rt) = (1 - t)IL(t) (23)
To prove (i), consider TL(t) + Q(t) = Z:(ITI +q, )’['
i=1
= Mo+t (Ot + (Rt R+ .+ i+
Nowm + g = P(x<i)+P(x>i)=1 -
Hence using this we obtain

LN +QM)=1+t+t+f+...+F =

1
—— for |t]<1andn large.

"1t
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(24)

(25)
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The transformation in (23) shows tHa{(t) may be used indirectly to generate momentsesimbenevell,(t) is

known, R(t) can be obtained using (20) and (22), from whigiments can then be obtained.

Applications

Consider a random variable X which assumes valyeXXX,, X3 and X, with probability mass function {p =
{0.05, 0.15, 0.4, 0.3, 0.1}. We wish to use thisllastrate the relationships betweedtP Q.(t) andIL,(t).

Now {q} = {0.95, 0.8, 0.4, 0.1, 0}

And {m} = {0.05,0.2,0.6,0.9, 1.0}
P,(t) =0.05 + 0.15t + 0.4¢ 0.3¢ + 0.1f
Q(t) =0.95+ 0.8t + 0.4+ 0.1¢ + of
I,(t) = 0.05 + 0.2t + 0.6t 0.9¢ + t*

Q) +IL () =1+t+f+E+¢
= T: , which confirms theorem (ii)

Again

(1 - DIL(t) =1TI(t) - tIL(Y)

=0.05+ (0.2 - 0.05)t + (0.6 - 0.2} (0.9 - 0.6)t + (1-0.9)t

=0.05 + 0.15t + 0.4t 0.3f + 0.1
= R(t), and this confirms theorem (i)

Consider a discrete random variable X ~ b(4, phwit
II,(t) = 1/256 {1 + 13t + 67t+ 175¢ + 256f}.

It is required to estimate p, E(X) and Var(X)
Solution:

Table 1: Probabilities associated with the values o

function % X1 Xo X3 X4
M 1 13 67 175 1
25€ 25€ 25€ 25€
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o] 255 243 189 81 0

25¢€ 25¢€ 25€ 25¢€
pi 1 12 54 108 81
25€ 25¢€ 25¢€ 25€ 25¢€

From Table 1 and using (21) and (23)

ot 3 _27r 27 81
" o5 ™64 ™ 126 ™ 64 ™7 25¢
E = Q) = 200 -3 orepo =P(1) - 768 _,
25€ X 25€
But E(X) = np hence, p % and q :% )
Thus, Var(X) = npq :%

Conclusion

We have shown that the functidh(t) derived from the left tail-end probabilitiesrgrates probabilities associated with the
points of a discrete random variable on a finitppsut, and generates moments indirectly becauseadisis of uniform
convergence is within (and not on) the unit cir@le. | t | < 1). We have also established a foneti link between the new
function and two other well known versions of theolmability generating function, namely,(B and Q(t). With the
functional links, it is generally possible to reeo\R(t) and Q(t) fromI,(t) and the appropriate moments are thus generated,
albeit, indirectly. A left tail — end generatingnfttion has thus been proposed as a function aiplacity to generate both
probabilities and moments. Furthermore, this fumttias been shown to be analytic, uniformly cogest within the unit
circle and is infinitely differentiable.
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