On The Left Tail-End Probabilities and the Probability Generating Function

J. N. Igabari ${ }^{1}$ and E. C. Nduka ${ }^{2}$
${ }^{1}$ Dept of Mathematics and Computer Science, Delta State University, Abraka, Nigeria.
${ }^{2}$ Department of Mathematics and Statistics, University of Port Harcourt, Nigeria.

Abstract

In this paper, another tail-end probability function is proposed using the left tail-end probabilities, $p(x \leq i)=\pi_{i}$. The resulting function, $\Pi_{x}(t)$, is continuous and converges uniformly within the unit circle, $|t|<1$. A clear functional link is established between $\Pi_{x}(t)$ and two other well known versions of the probability generating function. When known, $\Pi_{x}(t)$ uniquely generates the components of the probability mass function of the discrete random variable, and indirectly generates moments.

Keywords: Probability Generating Function, Tail - end Probabilities, Convergence, Moments.

Introduction:

We recall that for a non-negative integer-valued random variable X with probability mass function,

$$
\begin{equation*}
\mathrm{P}(\mathrm{X}=\mathrm{i})=\mathrm{p}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

The probability generating function is defined as

$$
\begin{equation*}
\mathrm{P}_{\mathrm{x}}(\mathrm{t})=\mathrm{p}_{0}+\mathrm{p}_{1} \mathrm{t}+\mathrm{p}_{2} \mathrm{t}^{2}+\mathrm{p}_{3} \mathrm{t}^{3}+\ldots \quad=\sum_{i=1}^{\infty} p_{i} t^{i} \tag{2}
\end{equation*}
$$

which is equivalent to $\quad P_{x}(t)=E\left(t^{x}\right]$, for $X=0,1,2, \ldots$
The basic properties of this function as presented in $[3,7,8]$ are as follows:
i) $\quad P_{x}(t)$ converges absolutely and uniformly within and on the unit circle, $|t|<1$
ii) $\quad P_{x}(t)$ is analytic, regular and infinitely differentiable for $|t|<1$
iii) For every discrete probability distribution $\left\{p_{i}\right\}$, there is a unique probability generating function, $P_{x}(t)$; and conversely, every probability generating function, $\mathrm{P}_{\mathrm{x}}(\mathrm{t})$ corresponding to $\left\{\mathrm{p}_{\mathrm{i}}\right\}$ (where $\mathrm{p}_{\mathrm{i}} \geq 0$ and $\sum_{i} p_{i}=1$) determines a unique probability mass function $\left\{p_{i}\right\}$.
iv) The nth component of $\left\{\mathrm{p}_{\mathrm{i}}\right\}$ can be obtained from $\mathrm{P}_{\mathrm{x}}(\mathrm{t})$ by the relation

$$
\begin{equation*}
\mathrm{p}_{\mathrm{n}}=\frac{P_{x}^{(n)}(0)}{n!} \tag{3}
\end{equation*}
$$

which means that $P_{x}(t)$ is a transform of the probability mass function.
v) Moments of the random variable X may be computed from $P_{x}(t)$ provided the appropriate derivatives exist at $t=$ 1[5]. In particular

$$
\begin{align*}
& P_{x}^{\prime}(1)=\sum_{i=1}^{\infty} i p_{i}=E(X) \tag{4}\\
& P_{x}^{\prime \prime}(1)=\sum i(i-1) p_{i}=E[X(X-1)]=E\left[X_{(1)}\right] \tag{5}\\
& P_{x}^{(k+1)}(1)=E[X(X-1)(X-2) \ldots(X-k)]=E\left[X_{(k)}\right] \tag{6}
\end{align*}
$$

where $\mathrm{E}\left[\mathrm{X}_{(\mathrm{k})}\right]$ is the k^{th} factorial moment of the random variable X .[6]

Corresponding authors: J. N. Igabari: E-mail: jn_igabari@yahoo.com Tel: +2347087834745
Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011), 345-348

Tail-end Probabilities and the Probability Generating Function

The well known tail-end probability generating function is defined in [1, 2, 3] as

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{x}}(\mathrm{t})=\sum_{i=0}^{\infty} q_{i} t^{i} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{i}=P(X>i), i=0,1,2, \ldots \tag{8}
\end{equation*}
$$

We shall refer to this as the right tail-end probability, and to $\mathrm{Q}_{\mathrm{x}}(\mathrm{t})$ as the associated right tail probability function. That is,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}+1}+\mathrm{p}_{\mathrm{i}+2}+\mathrm{p}_{\mathrm{i}+3}+\ldots \tag{9}
\end{equation*}
$$

Between $P_{x}(t)$ and $Q_{x}(t)$, there exists the following fundamental relationship

$$
\begin{equation*}
1-P_{x}(t)=(1-t) Q_{x}(t), \text { for }|t|<1 \tag{10}
\end{equation*}
$$

Therefore, just like $P_{x}(t), Q_{x}(t)$ generates both probabilities and moments of a discrete random variable [4]. Specifically, the following expressions hold:

$$
\begin{array}{ll}
& \mathrm{E}[\mathrm{X}]=P_{x}^{\prime}(1)=\mathrm{Q}_{\mathrm{x}}(1) \\
& \operatorname{Var}[\mathrm{X}]=\mathrm{P}^{\prime}(1)+\mathrm{P}^{\prime}(1)-\left[\mathrm{P}^{\prime}(1)\right]^{2} \\
& \left.=2 Q_{x}^{\prime}(1)\right)+\mathrm{Q}_{\mathrm{x}}(1)-\left[\mathrm{Q}_{\mathrm{x}}(1)\right]^{2} \\
\text { i.e. } & \mathrm{E}\left[\mathrm{X}_{(\mathrm{r})}\right]=P_{x}^{(r+1)}(1)=(\mathrm{r}+1) Q_{x}^{(r)}(1) \tag{13}
\end{array}
$$

The tail-end probabilities are obtained using

$$
\begin{equation*}
\mathrm{q}_{\mathrm{n}}=\frac{1}{n!} Q_{x}^{(n)}(0), \mathrm{n}=0,1,2, \ldots \tag{14}
\end{equation*}
$$

By substitution, the probability mass function is generated using

$$
\begin{equation*}
\mathrm{P}_{\mathrm{n}}=\mathrm{q}_{\mathrm{n}-1}-\mathrm{q}_{\mathrm{n}}, \mathrm{n}=1,2,3, \ldots \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad \mathrm{p}_{0}=1-\mathrm{q}_{0} \tag{16}
\end{equation*}
$$

Definition: (The Left Tail-end Probability Function)

$$
\begin{equation*}
\text { Let } \pi_{\mathrm{i}}=\mathrm{P}(\mathrm{X} \leq \mathrm{i}), \mathrm{i}=0,1,2, \ldots, \mathrm{n} \tag{17}
\end{equation*}
$$

be the left tail-end probabilities of the discrete random variable X .
Suppose $\mathrm{P}(\mathrm{X}=\mathrm{n}) \neq 0$ and $\sum_{i=0}^{n} p_{i}=1$,
then the power series

$$
\begin{equation*}
\Pi_{x}(t)=\sum_{i=1}^{n} \pi_{i} t^{i} \tag{18}
\end{equation*}
$$

is the left tail-end probability generating function of the discrete random variable X
Theorem :
Within the unit circle $|t|<1, \Pi_{x}(t)$ generates probabilities as well as moments and satisfies the following relations:
i) $\quad P_{x}(t)=(1-t) \Pi_{x}(t)$
ii) $\quad \Pi_{\mathrm{x}}(\mathrm{t})+\mathrm{Q}_{\mathrm{x}}(\mathrm{t})=\frac{1-t^{n}}{1-t}$

Proof
Now from (19) $\Pi_{x}(t)=\pi_{0}+\pi_{1} t+\pi_{2} t^{2}+\pi_{3} t^{3}+\ldots+\pi_{n} t^{n}$
Observe that $0 \leq \pi_{i} \leq 1$ for all i , hence $\left\{\pi_{i}\right\}$ is bounded. Therefore, within the unit circle $|\mathrm{t}|<1$, (19) will converge absolutely and uniformly.
Furthermore, (19) is continuous and differentiable within the same region. Hence

$$
\begin{align*}
& \pi_{0}=\Pi_{\mathrm{x}}(0)=\mathrm{p}_{0} \tag{20}\\
\text { and } \quad \pi_{\mathrm{r}} & =\frac{1}{r!} \Pi_{x}^{(r)}(0) \mathrm{r}=1,2,3, \ldots, \mathrm{n} \tag{21}
\end{align*}
$$

Furthermore, observe that

$$
\begin{equation*}
\mathrm{p}_{\mathrm{r}}=\pi_{\mathrm{r}}-\pi_{\mathrm{r}-1}=\mathrm{P}(\mathrm{X} \leq \mathrm{r})-\mathrm{P}(\mathrm{X} \leq \mathrm{r}-1), \mathrm{r}=1,2,3, \ldots \tag{22}
\end{equation*}
$$

Hence $\Pi_{x}(\mathrm{t})$ generates the components of the probability mass function uniquely

To prove (i) consider the right hand side.

$$
\begin{align*}
& (1-\mathrm{t}) \Pi_{\mathrm{x}}(\mathrm{t}) \quad=\Pi_{\mathrm{x}}(\mathrm{t})-\mathrm{t} \Pi_{\mathrm{x}}(\mathrm{t}) \\
& \quad=\pi_{0}+\left(\pi_{1}-\pi_{0}\right) \mathrm{t}+\left(\pi_{2}-\pi_{1}\right) \mathrm{t}^{2}+\left(\pi_{3}-\pi_{2}\right) \mathrm{t}^{3}+\ldots+\left(\pi_{\mathrm{n}}-\pi_{\mathrm{n}-1}\right) \mathrm{t}^{\mathrm{n}} \\
& = \\
& =\mathrm{p}_{0}+\mathrm{p}_{1} \mathrm{t}+\mathrm{p}_{2} \mathrm{t}^{2}+\mathrm{p}_{3} \mathrm{t}^{2}+\ldots+\mathrm{p}_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \tag{23}\\
& \\
& =\mathrm{P}_{\mathrm{x}}(\mathrm{t}) \quad \text { i.e. } \quad \operatorname{using}(20) \text { and }(22)
\end{align*}
$$

Hence $P_{x}(t)=(1-t) \Pi_{x}(t)$
To prove (ii), consider
$\Pi_{\mathrm{x}}(\mathrm{t})+\mathrm{Q}_{\mathrm{x}}(\mathrm{t})=\sum_{i=1}^{\infty}\left(\pi_{i}+q_{i}\right) t^{i}$
$=\pi_{0}+\mathrm{q}_{0}+\left(\pi_{1}+\mathrm{q}_{1}\right) \mathrm{t}+\left(\pi_{2}+\mathrm{q}_{2}\right) \mathrm{t}^{2}+\ldots+\left(\pi_{\mathrm{n}}+\mathrm{q}_{\mathrm{n}}\right) \mathrm{t}^{\mathrm{n}}$
Now $\pi_{i}+q_{i}=P(x \leq i)+P(x>i)=1$
Hence using this we obtain

$$
\begin{equation*}
\Pi_{\mathrm{x}}(\mathrm{t})+\mathrm{Q}_{\mathrm{x}}(\mathrm{t})=1+\mathrm{t}+\mathrm{t}^{2}+\mathrm{t}^{3}+\ldots+\mathrm{t}^{\mathrm{n}}=\frac{1-t^{n}}{1-t} \tag{24}
\end{equation*}
$$

$=\frac{1}{1-t}$ for $|t|<1$ and n large .
The transformation in (23) shows that $\Pi_{x}(t)$ may be used indirectly to generate moments since whenever $\Pi_{x}(t)$ is known, $\mathrm{P}_{\mathrm{x}}(\mathrm{t})$ can be obtained using (20) and (22), from which moments can then be obtained.

Applications

1 Consider a random variable X which assumes values $X_{0}, X_{1}, X_{2}, X_{3}$ and X_{4} with probability mass function $\left\{p_{i}\right\}=$ $\{0.05,0.15,0.4,0.3,0.1\}$. We wish to use this to illustrate the relationships between $P_{x}(t), Q_{x}(t)$ and $\Pi_{x}(t)$.

$$
\text { Now }\left\{q_{i}\right\}=\{0.95,0.8,0.4,0.1,0\}
$$

And

$$
\begin{aligned}
& \left\{\pi_{i}\right\}=\{0.05,0.2,0.6,0.9,1.0\} \\
& P_{x}(t)=0.05+0.15 t+0.4 t^{2}+0.3 \mathrm{t}^{3}+0.1 \mathrm{t}^{4} \\
& \mathrm{Q}_{\mathrm{x}}(\mathrm{t})=0.95+0.8 \mathrm{t}+0.4 \mathrm{t}^{2}+0.1 \mathrm{t}^{3}+0 \mathrm{t}^{4} \\
& \Pi_{\mathrm{x}}(\mathrm{t})=0.05+0.2 \mathrm{t}+0.6 \mathrm{t}^{2}+0.9 \mathrm{t}^{3}+\mathrm{t}^{4} \\
& \mathrm{Q}_{\mathrm{x}}(\mathrm{t})+\Pi_{\mathrm{x}}(\mathrm{t})=1+\mathrm{t}+\mathrm{t}^{2}+\mathrm{t}^{3}+\mathrm{t}^{4}
\end{aligned}
$$

$$
=\frac{1-t^{4}}{1-t} \quad, \text { which confirms theorem (ii) }
$$

Again

$$
\begin{aligned}
& (1-t) \Pi_{x}(t)=\Pi_{x}(t)-t \Pi_{x}(t) \\
& =0.05+(0.2-0.05) t+(0.6-0.2) t^{2}+(0.9-0.6) t^{3}+(1-0.9) \mathrm{t}^{4} \\
& =0.05+0.15 t+0.4 t^{2}+0.3 t^{3}+0.1 \mathrm{t}^{4} \\
& =P_{x}(t), \text { and this confirms theorem (i) }
\end{aligned}
$$

2 Consider a discrete random variable $\mathrm{X} \sim \mathrm{b}(4, \mathrm{p})$ with

$$
\Pi_{x}(t)=1 / 256\left\{1+13 t+67 t^{2}+175 t^{3}+256 t^{4}\right\} .
$$

It is required to estimate $\mathrm{p}, \mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$
Solution:
Table 1: Probabilities associated with the values of X

function	x_{0}	x_{1}	x_{2}	x_{3}	x_{4}
π_{i}	$\frac{1}{256}$	$\frac{13}{256}$	$\frac{67}{256}$	$\frac{175}{256}$	1

q_{i}	$\frac{255}{256}$	$\frac{243}{256}$	$\frac{189}{256}$	$\frac{81}{256}$	0
p_{i}	$\frac{1}{256}$	$\frac{12}{256}$	$\frac{54}{256}$	$\frac{108}{256}$	$\frac{81}{256}$

From Table 1 and using (21) and (23)

$$
\begin{aligned}
& P_{0}=\frac{1}{256} p_{1}=\frac{3}{64} p_{2}=\frac{27}{128} p_{3}=\frac{27}{64} p_{4}=\frac{81}{256} \\
& \mathrm{E}(\mathrm{X})=\mathrm{Q}_{x}(1)=\frac{768}{256}=3,
\end{aligned} \quad \text { or } \mathrm{E}(\mathrm{X})=P_{x}^{\prime}(1)=\frac{768}{256}=3 .
$$

But $\quad E(X)=n p$ hence, $p=3 / 4$ and $q=1 / 4$.
Thus, $\quad \operatorname{Var}(\mathrm{X})=\mathrm{npq}=3 / 4$

Conclusion

We have shown that the function $\Pi_{x}(\mathrm{t})$ derived from the left tail-end probabilities generates probabilities associated with the points of a discrete random variable on a finite support, and generates moments indirectly because its radius of uniform convergence is within (and not on) the unit circle (i.e. $|\mathrm{t}|<1$). We have also established a functional link between the new function and two other well known versions of the probability generating function, namely, $P_{x}(t)$ and $Q_{x}(t)$. With the functional links, it is generally possible to recover $P_{x}(t)$ and $Q_{x}(t)$ from $\Pi_{x}(t)$ and the appropriate moments are thus generated, albeit, indirectly. A left tail - end generating function has thus been proposed as a function with capacity to generate both probabilities and moments. Furthermore, this function has been shown to be analytic, uniformly convergent within the unit circle and is infinitely differentiable.

References.

[1] Athreya, K. B. and Lahiri, S. N. (2006). Probability Theory. TRIM Vol. 41. Hindustan Book Agency. New Delhi.
[2] Bailey, N. T. J. (1963). Stochastic Processes. Wiley \& Sons. New York.
[3] Feller, W. (1968). An Introduction to Probability Theory and its Applications. Vol. $1.3^{\text {rd }}$ Edition. John Wiley. New York.
[4] Igabari, J. N. and Nduka, E. C. (2009). An Exploration of the Relationship Between Tail-end Probability Functions and the pgf. Proc. MAN annual Conf. Ibadan, Nigeria. 292 - 296.
[5] Nagaev, S. V. (1997) "Some Refinement of Probabilistic and Moment Inequalities", SIAM Theory of Probability and its Applications Vol 42 no 4 pp. 707-713.
[6] Stuart, A. and Ord, J.K. (1998). Kendall's Advanced Theory of Statistics. Vol. 1 (Distribution Theory). 6 ${ }^{\text {th }}$ Edition. Oxford University Press. New York.
[7] Weisstein, E.W. (2005). Probability Generating Function. in Mathworld aWolframWebResource.CRC Press. http: // mathworld. wolfram. Com /pgf. html.
[8] Wilf, H. S. (2006). Generatingfunctionology. $4^{\text {th }}$ Edition. A. K. Peters Ltd. New York.

