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Abstract 

 
A nonlinear model on HIV epidemic under contact tracing is studied, where 

we assume that the rate of recruitment of HIV positives is proportional to the 
population. We determine the criteria for stability of the epidemic free equilibrium 
and the endemic equilibrium.. 
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1.    Introduction: 
   Contact tracing has been used as a method of controlling contagious diseases [1,2]. While there is still a debate about 
contact tracing for the HIV infection [3,4] the resurgence of infectious tuberculosis and outbreaks of drug resistance 
tuberculosis secondary to HIV induced immunodepression is forcing many public health departments to re-examine this 
policy[5,6]. 
 
2 Mathematical Formulation 

 
We shall consider the differential system that describes the model which is proposed by Arazazo et al [7]. 

The model [7] is 
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Where  

N-the population of sexually active person or susceptible 
X-the number of HIV positives that do not know they are infected. 
Y- the number of HIV positives that do know they are infected. 
Z-the number of AIDS cases 
k- the rate at which the HIV positives are detected. 
β- the rate at which the HIV positive develops AIDS. 
µ-the death rate of the sexually active population. 
µ’-the death rate due to AIDS. 
δ-the recruitment into the class of the susceptible. 
 υ-the immigration of unknown HIV positives. 
ρ-the immigration of AIDS cases. 
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In this paper we assume that the rate of recruitment of HIV positive is proportional to the population.  
The model becomes 
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After transformation (2) becomes 
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Descartes’ rules of sign 
The number of positive zeros of polynomial with real coefficients is either equals to the number of variations in sign of the 
polynomial or less than this by an even number [4]. 
 

3 Results 
 

(a) Stability of the Epidemic free equilibrium 
 
Theorem 1: If R0 < 1, then the zero solution of the epidemic free equilibrium of (3) is asymptotically stable. 
 
Proof: The Jacobian matrix of epidemic free equilibrium is 
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The eigenvalues are    λ� � � � µ            (4) 
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The zero solution epidemic free equilibrium of (3) is asymptotically stable if (4) is less than zero (i.e ,01 <λ if 0<− µδ

then µδ < , 1<
µ
δ

, )10 <R  
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Theorem 2: If 10 >R , then the zero solution of the epidemic free equilibrium of (3) is unstable 

Proof: The Jacobian matrix of epidemic free equilibrium is  
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The eigenvalues are 
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Recall that  R0= µ
δ

, R0 µ = � 
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It is sufficient to show that at least one eigenvalue is positive. Now  
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has one variation in sign when  

( ) 0>++ βµk , .10 0 >> Randµ  Hence by Descartes’ rule of sign, (8) has a positive  

root and then the critical point is unstable. 
This completes the proof. 
 
(b) Stability of the epidemic equilibrium 
 
Theorem 3: If r3>, r2>,r1>0 and r0>0, the endemic equilibrium is asymptotically stable. 
Proof: The Jacobian matrix of epidemic equilibrium (3) is  
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The eigenvalues of the epidemic equilibrium is obtained by solving 
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   r1= ( )( )( ) ( ) ( )
( )v

k
vk

++−
+++′−++′−++

δµ
βµβµµβµµµδβµ  

r0= ( )( ) ( )βµµµδβµ +′−++k  

(10) has zero variation is signs. Hence by Descartes’ rule of signs λ’s are all negative or two negative roots and two complex 
numbers. It they are all negative, and then the critical point is asymptotically stable. Suppose  
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We claim that 0<α . The number of complex roots will be 2 or 0. If there are two negative roots then    
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Since “a” and “b” can be small as “a”� 0, “b” � 0       r1>0  ⇒     α<0 
Hence the equilibrium point is asymptotically stable. 
This completes the proof. 
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then the endemic equilibrium is asymptotically stable. 
 

Proof: The Jacobian matrix of epidemic equilibrium (3) is 
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We want to show that r3>0,r2>0,r1>0 and r0>0 
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Note that  

 ( ) ( )
( )

( )( ) ( )
( )v

kvv

v

k
v

++−
++−++−++′

=
++−

++−++′
δµ

βµδµβµµ
δµ

βµβµµ  

 
( )

( )v

kvvvv

++−
++−++′+++′+−−′−=

δµ
βµβµµβδµδδµµβµµµ 2

 

 ( ) 0
2

>
++−

−′+++′+−−′−
v

vkv

δµ
µβδµδδµµβµµµ

 

since ( ) ( ) ( ) vkv +++′>+++′ βµµµβµδδµ  

this implies that r3 >0. 

Clearly      r2 >0   if  ( ) ( )( ) ( ) ( )
( ) 0>

++−
++++′−−++++′

v

k
vk

δµ
βµβµµµδβµβµµ  

 
( )( ) ( )( )( ) ( )( )

( ) 0>
++−

++++′−++−−+++++−+′
v

kvvkv

δµ
βµβµµδµµδβµδµβµµ

 

 

( )( ) ( )( )
( ) ( )( )( ) ( )( ) 02

22

>++++′−−++++′
−++′+++++

βµβµµδβµβµµµ
δβµµδδµβµ

kvvk

vvk

 

 

( )( ) ( )( )
( ) ( )( )( ) ( )( )βµβµµδβµβµµµ

δβµµδδµβµ
++++′++++++′

>++′+++++
kvvk

vvk

2

22

  

This implies that r2 >0   
Here we want to show that r1 >0  
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And lastly, we want to show that r0>0 

  r0= ( )( ) ( )βµµµδβµ +′−++k  

                             µδ >> ,00rfor  

   1>R thatimplies 0  

Hence r0>0 
By theorem (3) endemic equilibrium is locally and asymptotically stable. This completes the proof 
 
4. Discussion of Result 
From the result obtained in (4) and (8),the basic reproduction number Ro is less than 1, then the epidemic free equilibrium is 
globally asymptotically stable but otherwise, the epidemic free equilibrium is unstable i.e if Ro>1. From the result obtained in 
(10), the epidemic equilibrium is asymptotically stable if Ro>1. From what we had in (4) and (10), both the epidemic free 
equilibrium and endemic equilibrium are stable and their stability depends on the basic reproduction number Ro. Therefore 
contact tracing could be used as a method of controlling the spread of the virus. 
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