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Abstract 

 
A formal direct conversion of a general Padé Approximant into its 

corresponding general rational integrator is made through the use of a real 
operator and its power series. The research work proved that the derived integrators 
are consistent and convergent. Experiments carried out reveal that the polynomial 
degree of the numerator and denominator can be chosen freely. Results of our 
experiments also indicate good performance of the integrators on the selected 
problems. 
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1. Introduction: 
 
The object is to solve the initial valued problem (ivp) 

( ) ( ) ( ) bxayx ≤≤== ,0,, 0
1 yyfy

                          (1.1) 
The choice being made is Padé Approximant as the underlying interpolant for the numerical integrator. The desire for 

Padé comes from the unwieldy nature and analytic difficulties associated with non-Padé rational integrators (see [13]) as 
compared with the encouraging works of Padé Types found in [1], [14], [17], [18], [6], [7] , [8]. 

 Essentially, this research work is designed to serve as a formal direct explicit definition, converting the Padé 
Approximant through a real operator and power series definition to Padé Integrator. In section three of the paper we highlight 
well known occurrences by formally postulating them and proving the postulations under theorems and a lemma. This has 
become necessary because practitioners who are aware of them need their formal proofs. New comers would by virtue of this 
work be placed in better position to know what they are in for. The research work is completed with applications. 

 
2. Preliminaries: 
 
Consider the Padé operator 

RR →:U  defined by the identity 

( ) ( ) ( )xPxQxU LM ≡         (2.1) 
where  QM(x), PL(x) are real polynomials defined by, 

QM(x)  = 1 + 

( ) 10, 0
1

≡=∑
=

qQxq M

M

r

r
r

,      (2.2) 

PL(x)   = 
∑

=

L

r

r
r xp

0        (2.3) 
The Padé Approximant of the function y(x) to be functionally approximated is given by, 
 
 
 
 
Corresponding authors:  E-mail: usuaashi@yahoo.co.uk, Tel. +2348036836920 

 
 

Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011), 249 – 260   



250 

 

Padé – Type Integrators For Initial Value Problems.       U.S.U. Aashikpelokhai         J of NAMP          
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∑
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          (2.4) 

The Approximant UL,M(x) is expressible by the truncated real power series, 

 UL,M(m) = 
∑
+

=

ML

r

r
r xC

0 ,     (2.5) 
from its parent operator power series, 

 U(x) = 
∑

∞

=0r

r
r xC

      (2.6) 
To evaluate the L + M + 1 unknown parameters 

 
[ ] [ ]ML qqqqpppp ,...,,,,,...,,, 210210  

the operator U is taken to be the function y whose approximant 
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 is sought. As a result of the 
number, L + M + 1 unknown parameters, the real power series (2.6) is needed up to the first L + M + 1 terms only. 
Consequently we write, 

∑∑∑
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,      (2.7) 

giving rise to 
∑

=
−=

r

rr qCp
0

,
α

αα
  r = 0, 1, 2,  .  .  .        (2.8) 

The range of the parameter pr, qr then ensures that, 
pr = 0 whenever  r = L + 1, L + 2, L + 3, L + 4,   .   .   .  .  . 
qr-α = 0  whenever  r - α = M + 1, M + 2, M + 3,   .   .   . 
Observe that the range L + 1 ≤ r ≤ L + M is an M-system of simultaneous linear algebraic equations which we represented by 
the matrix equation,   
A q = b                     (2.9) 
where, 

A  = [aij] with  aij  =  






≤
≥

−++

−++

MLr       wheneve

M  Lr       wheneve

1

1

*Dji

Dji

C

C

  (2.10) 
q   = [qM, qM-1, qM-2  .  .  .  q2, q1]

T 

b   = [bi]  with    bi  = 



≤
≥

+−

++

MLr       wheneve

M  Lr       wheneve

iDM

iDM

C

C

  (2.11) 
with  i, j   = 1, 2, 3,  .  .  . , M 
 D = L – M       (2.12) 
 D* = M – L       (2.13) 
Combining the two distinct sets (2.10) and (2.11) with the understanding that, 
D = L– M  = –  (M – L) = - D*  we obtain irrespective of L ≥ M or M ≥ L 

ija
 = Cγ  where γ  = i + j + D – 1    (2.14) 

ib
 =   – Cβ where β = L + i     (2.15) 

with  D = L – M 
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3. Construction of the Rational Integrators 
To use the operator U in carrying out the solution process to our initial value problems, we note that the definition that 

makes U(x) = y(x) in the interpolant design is not enough to serve our needs for the required solutions to the initial value 
problem (ivp). We therefore subject the Padé operator to the additional constraints which are, for each  non – negative 
integer, n. 
U(xn+i)  = yn+i,  i = 0, 1. 
In this case the yn+i are the computed values of the theoretical solutions y(x) at the mesh points x = xn+i. Consequently, we 
have the operator integration constraints defined by, 

U(xn+i)  = 



=
=

+

+

  1 0,   ifor            ,

only  0   ifor        ),(

in

in

y

xy

               (3.1) 
Observe that the real series (2.6) implies that, 

U(xn+i)  = 
∑

∞

=
+

0
1

r

r
nr xC

with  xn+1 = (n+1)h               (3.2) 
Hence we obtain, 

∑
∞

=
+

0
1

r

r
nr xC

 =  U(xn+1)  ≡  yn+1  = 
∑

∞

=0 !r

r
n

r

r

yh

                (3.3) 
implying, 

 Cr  =  
( )

1!

r r
n
r
n

h y

r x +

, r = 0, 1, 2, 3, .   .   .               (3.4) 

Consequently, rp  =  

( )

0 1!
n

r

n

h y

x

α α

α
α α= +
∑  qr-α,  r = 0, 1, 2,  .  . ., L                       (3.5) 

The needed Padé-Type integration formula is therefore given by, 

 yn+1  =  

1

1 1
0 1

1
M L

r r
r n r n

r r

p x q x
−

+ +
= =

   +   
   
∑ ∑               (3.6) 

The qM, qM-1,  .   .   ., q2, q1 are obtained from the M-system of simultaneous linear algebraic equations Aq = b  where  A,b  
are henceforth specified by, 

ija  = 

( )

1!
n

n

h y

x

γ γ

γγ +

, γ  = i + j + D – 1            (3.7) 

ib  = - 
( )

1!
n

n

h y

x

β β

ββ +

, β  = L + i             (3.8) 

D = L –M                 (3.9) 
 
Remarks:  
1. The application of the Padé Approximant to obtain the integrator makes this researcher to use the name Padé-Type 
Integrator. 
2. The state L ≤ M gives rise to the matrix A having zeros in some of its entries aij. These are well known occurrences 
to approximant practitioners. They are caused by the natural form of the denominator polynomial coefficients in the 
underlying approximant. In the next few postulations a formal study and report are made of the locations and the number of 
zero entries.  
Armed with the results given by the theorems, users would find work on A more convenient to carry out.  
 
Theorem 1(Existence of Zero Entry) 
Let the integrator (3.6) – (3.9) be given. From the set of all L < M, one can find a pair [L, M] resulting in the M x M matrix A 
having exactly one of its entries aij being identically zero. 
Proof 
By considering  D = L – M, take the case  D = -2. Thus we have the pair [L, L + 2] satisfying the requisite condition L < M.  
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For this pair [L, L + 2] the finite polynomials coefficients are the parameters, 
p0, p1,  .   .   .,  pl for the numerator while q1, q2,  .  .  ., qL, qL+1, qL+2 are the parameter for the denominator. 
By  (3.2) we have, 

 pL = 
( )

0 1!

L
n

n

h y

x

α α

α
α α= +
∑ qr-α,   

As a consequence, the next set of  L + 2 equations that are used to compute the denominator coefficient, {qr, r = 1, 2,  .  .  ., L 
+ 2} are given by, 

( )

0 1!

L i
n

n

h y

x

α α

α
α α

+

= +
∑ qL+i-α,  =  

( )

1

,
( )!

L i L i
n

L i
n

h y

L i x

+ +

+
++

 (qL+i-α  =  0  for  i-α > 2)             (3.10) 

where  row  i = 1, 2,  .   .   .,  L + 2 
The first row of the L + 2 by L + 2 matrix A becomes, 

( )

0 1!

L i
n

n

h y

x

α α

α
α α

+

= +
∑ qL+i-α,  =  

( )

1( )!

L i L i
n

L i
n

h y

L i x

+ +

+
++

              (3.11) 

Observe that the coefficient of qL+2 along this first row of A is zero. But then the coefficient of qL+2 in row 1 is the entry a11. 
Hence we have established the existence of a matrix A with an entry a11 that is identically zero. The 
remaining L + 1 equations, 

( )

0 1!

L i
n

n

h y

x

α α

α
α α

+

= +
∑ qL+i-α,  =  

( )

1

,
( )!

L i L i
n

L i
n

h y

L i x

+ +

+
++

 qL+i-α = 0  for i-α > 2          (3.12) 

where Rows  i = 2, 3,  .  .  .,  L + 2, have no coefficients that are identically zero. Hence, we have established a case where A 
has exactly one entry identically zero. 

Lemma 1 

Given the integrator (3.6) – (3.9), we have yn
(r) ≡  0 whenever r < 0 and 0r

ny ≠ whenever 0r ≥ . 

Proof 
By the definition of the operator power series (2.6), we have no member of the set {Cr, r = 0, 1, 2,  .  .  .} that is identically 
zero. The definition also meant that Cr ≡  0 whenever r < 0. Consequently the integration relation deduced in (3.4) yields 

( )

!

r r
n

n r

h y

r x r+

=  Cr ≡  0 for r < 0. But then for every real r, h ≠ 0, xn+1 ≠ 0 we have hr ≠ 0, xr
n+1 ≠ 0 and r ≥ 0 gives r ≥ 1 > 0. 

Hence 
( ) 0r
ny ≡/  whenever r ≥  0. Hence the lemma ie ( ) 0 0

0 0
r

n

for r
y

for r

≡ <
≡ ≥/

           (3.13) 

 
Remarks 
1. The above simple Lemma serves mainly as a basis upon which the next theorem (theorem 2) is established. 
2. Arising from theorem 2 below would be the issue of the possibility of varying D(= L-M) while either L or M is fixed 
under the structured condition in which the matrix A exists. The answers to the possibility are expressed in theorem 3. 
 
Theorem 2 (Zero entries of A) 
Let the integrator (3.6) – (3.9) be given. 
then, (i). {aij ≠ 0, i, j = 1,2, .  .  ., M whenever L ≥ M -1} 
(ii). {a ij ≡ 0 for i = 1,2,  .  .  ., (M – L – j), j = 1,2,  .  .  .  , (M – L – i) if L ≤ M – 2} 

(iii). The number of zero entries equals to 
1

2

L M L M − − −   

Proof 
(i). The set of all L ≥ M – 1 is the same as the set {L – M ≥ - 1}. By the definition D = L-M. This part (i) would have 
being proven if we established that, 
 {aij ≠ 0, i, j = 1, 2,   .   .   ., M whenever D ≥ - 1} 
 
Consider the set ∧ = {-1, 0, 1, 2,  .   .   . } which is bounded below by -1. Set D = -1 then relation (3.7) gives γ  = i + j + D – 
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1 = i + j – 2 ≥ 0 for all i, j = 1, 2,  .   .   ., M. This in turn implies that for all D in ∧, 0γ ≥  for every i, j = 1, 2,   .   .   ., M. 

Applying the above Lemma on relation (3.7) namely for every i, j = 1, 2, . . ., M we conclude 

  
( )

0
!

n
ij

n r

h y
a

x

γ γ

γγ +

= ≠     

Hence {aij ≠ 0, i, j = 1, 2,  .  .  ., M whenever D ≥ - 1}  
This completes part (i) of the Theorem. 
(ii) Let D represent the usual absolute value of D as a real number. The set {L ≤ M – 2} is the same as the set {D ≤ - 

2, where D = L – M}. Consequently to establish part (ii) of the theorem we must prove that, {aij ≡ 0 for i = 1, 2,   .   .   ., (|D|-
j), j = 1, 2,   .   .   . (|D|-i) whenever D ≤ - 2} and on a similar note to prove part (iii) of the theorem we must prove that the 

number of zero entries equals, ( )1

2

D D−
 

By relation (3.7), for all i, j = 1, 2, .   .   ., M     

aij  =  
( )

!
n

n r

h y

x

γ γ

γγ +

   γ   =  i + j + D – 1 

Employing the above Lemma we obtain,  

0 0

0 0ij

whenever
a

whenever

γ
γ

≡ <
≡ ≥/

             (3.14) 

Let us note trivially that under this condition wherein D ≤ -2 

 
0 1

1
0 1

whenever i j D
i j D

whenever i j D
γ

< + < − +
= + + − ≥ + ≥ − +

           (3.15) 

Hence, for every i,j = 1,2,  .   .   ., M, the inequalities on  γ  in (3.15), whenever D ≤ -2 become, 

 
0 2

1
0 1

whenever i j D
i j D

whenever i j D
γ

< ≤ + ≤= + + − ≥ + ≥ +
                   (3.16) 

We are concerned with γ  < 0 part of (3.16) in order to prove our stand. 
 
For clarity, the set {i + j :    2 ≤ i + j ≤ |D|} is expressed as array as shown hereunder.   
 

1 : 1, 2 , 3, 4 , 5, ... 3, 2 , 1

2 : 1, 2 , 3, 4 , 5, ... 3, 2

3 : 1, 2 , 3, 4 , 5, ... 3

. . . . . . . . . .

3 : 1, 2 , 3

2 : 1, 2

1 : 1

i j D D D

i j D D

i j D

i D j

i D j

i D j

= = − − −
 = = − − 
 = = −
 
 
 = − =
 

= − = 
 = − = 

          (3.17) 

which may be re – expressed as 
 {i = 1, 2,  .   .   ., (|D|-j), j = 1, 2,  .   .   ., (|D|-i}            (3.18) 
Consequently, we have the < 0 part of (3.14) written as 
{aij  ≡ 0 for i = 1, 2,  .   .   ., (|D|-j), j = 1, 2,  .   .   ., (|D|-i) whenever D ≤ 2} which is what we are required to prove as part (ii) 
of the theorem. 
(iii). By direct counting from row 1 to row |D|-1 or from column 1 to column |D| - 1 as given in array (3.17) above the 
number of entries that are identically zero 

 = ( )1 1

1 1

1
( ) ( )

2

D D

i j

D D
D i D j

− −

= =

−
− = = −∑ ∑             (3.19) 

The proof of theorem 2 is complete. 
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Theorem 3 
Let the integrator (3.6) – (3.9) be given. If D is allowed to vary while: 
i. M is fixed then – M ≤ D ≤ – 2  whenever L ≤ M -2 
ii. L is fixed, then -1 ≤ D ≤ L  whenever L ≥ M -1 
Proof 
By definition of D, L = M + D 
i. If M is fixed, the definition of the polynomial degree L makes L ≥ 0 and so M + D ≥ 0 meaning that – M ≥ 

D.                 (3.20) 
If in addition we have L ≤ M – 2 then D = L – M ≤ 2           (3.21) 
Combine (3.20) and (3.21) and we are at home i.e. for a fixed M while D varies, we have –M ≤ D ≤ - 2  whenever  L ≤ M – 2. 
ii. Similarly, if we fix L while varying D, then we must write M = L – D. 
The polynomial degree M ≥ 0  then gives L – D ≥ 0 implying  
D ≤ L                            (3.22) 
The additional constraint L ≥ M – 1 yields   
D ≥ – 1.                (3.23) 
By (3.22) and (3.23) part (ii) of this theorem is established. We are done. 
 
4. Consistency and Convergence 
The Padé-Type integrators studied here are one step method. Consequently their consistency and convergence are being 

looked into by using established results for any one-step methods. Symbolically, one-step methods are 
written in normal form by, 

 ( )1 , ;n n n nh x y h+ = + Φy y                 (4.1) 

where, 

( )hyx nn ;,Φ
 is called the increment function, xn the usual mesh point and h the mesh size. 

Definition (Consistency) [9] 

A one-step method (4.1) is said to be consistent if ( ) ( ), ; ,n n n nx h xΦ =y f y  

Definition (Convergence) [9] 

A one-step method (4.1) is said to be convergent if for every arbitrary initial vector 0y
, an arbitrary point xn∈[a, b], the 

global error. 

( ) nnn x yye −=
                  (4.2) 

satisfies the following relationship, 

 ( )
0

max 0n
h n

Limit e
→

=                  (4.3) 

provided xn is always a mesh point. 
The following result is available in [5]. 
Theorem 4 (Consistency and Convergence) [11] 
A one-step numerical integrator of the form (4.1) is consistent if and only if it is convergent. 
Theorem 5 
The Padé-Type integrators (3.6) – (3.10) are consistent and convergent. 
Proof 
Case (i) L ≤ M 
From (2.2) and (3.6) we write, 

( ) 1
1 1 1 1

1 1

( )
L M

r r
n n r r n n r n n m n

r r L

y y p q y x q y x Q x−
+ + + +

= = +

 − = − − 
 
∑ ∑              (4.4) 

( ), ;n nh x y h= Φ                 (4.5) 

where, 

( ) ( ) 1 1 1
1

1 1

, ; ( 1) ( 1) ( )
L M

r r r r
n n r r n r n m n

r r L

x y h p q y n h q y n h Q x− − −
+

= = +

 Φ = − + − + 
 
∑ ∑             (4.6) 
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Thus, 

( ) ( ) ( ) 1 1 1
1 1 1

2 1

, ; ( 1) ( 1) ( 1) ( )
L M

r r r r
n n n r r n r n m n

r r L

x y h p q y n p q y n h q y n h Q x− − −
+

= = +

 Φ = − + + − + − + 
 
∑ ∑    

                   (4.7) 

So that,  ( ), ;n nx y hΦ =   Limit ( ), ;n nx y hΦ  

  ( )1 1 np q y= −  1nx

h
+                  (4.8) 

By (3.7) ( )
( )

0 1

, 0 1
!

r
n

r r
n

h y
p q r L

x

α α

αα
α α −

= +

= =∑                (4.9) 

We obtain, since q1 = QM(0) ≡ 1 

 
(1)

1 1
1

n
n

n

hy
p y q

x +

= +                 (4.10) 

Combine (4.8) and (4.10) to get the required result, that is, 

 ( ) ( ), ;0 ,n n n nx y f x yΦ =  

Case (ii)  L > M 
By similar arguments or reasoning as we did in case (i) above, we get 

 ( )1 , ;n n n ny y h x y h+ − = Φ  

 where,  ( ) ( ) ( ) ( )1 1
1

1

, ; 1
L

r r
n n r r n M n

r

x y h p q y n h Q x− −
+

=

Φ = − +∑            (4.11) 

and so, 

( ), ;0n nx yΦ =  
0h

Limit
→

 ( ) ( ), ; ,n n n nx y h f x yΦ =  as required. 

Conclusively, for any pair (L, M) the integrators are consistent and hence convergent. 
 
5. Applications 
Throughout, Nf = number of functional evaluations. 
Test Problem 1: Van der Pol’s oscillator problem 

y1=
2
1

0        1      2
,   y(0)    ,   0   x  1,  

01  5(1-y ) 
y

   
= ≤ ≤   −   

 Exact Solution Unknown 

There exists no known theoretical (EXACT) solution for this problem. Hence we compare our results with the best results 
established so far. The solutions are given in tables 1(a) and 1(b) at the point x = 1 using the stepsize h as 
indicated beginning from x = 0.0. From tables 1(a) and 1(b) one concludes that the Padé – Types compare 
favourably with [7], [2], [3] and [16]. 

 
Test Problem 2: 

( ) 50,
0

0
0,

0

1

11

100020001 ≤≤







=








+









−
−

= xyyy
 

 
The theoretical solution is given by 

( )
( )

( )
( )

( )
( )







−
−

+
















−−−
−−−−

=
31

31

30002.1)7(4994.2

40025.5)4(9975.4

2

1

tE

tE
y

λ
λ

 

where: ( ) baba −×=− 10 , 
( )tE iλ

=
( ) 2,1,exp =itiλ

 
The characteristic equation of the Jacobian matrix is given by 

   0100020012 =++ λλ  
With  an initial estimate of: 
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50.0

5.2000

2

1

−=
−=

λ
λ

 
the first step of Newton – Raphson iterative method yields: 

499875.0

500125.2000

2

1

−=
−=

λ
λ

 
With these approximate values of the eigenvalues, the theoretical results were computed. Obviously, increased iterative steps 
using Newton – Raphson method should produce better approximations to the eigenvalues. In effect better results are 
expected depending on the level of accuracy of the eigenvalues. Tables 2(a) and 2(b) show the performance of the Padé – 
Type integrators against [3] and [10]. 
Test Problem 3:  

( ) ( )1 21 , 0 1, 0 1,y y y x= + = ≤ ≤  Exact Solution tan
4

y x
π = + 

 
 

Problem Type: Scalar with Singularity at 4x π= . 

The point of singularity of the solution is 4
π=x

radians. Consequently, table 3(a) shows clearly a fall in the accuracies 
as we approach this point on the table. This fall is more pronounced in the interval (0.75, 0.80) radians. Observe that as we 
move away from the interval, our accuracies increase. In table 3(b) we bring into sharper focus, the performance of selected 
integrators at the point x = 0.75 radians. The point of joy here comes from the good performance of the Padé – Type 
integrators against the selected ones indicated on the table 3(a) and 3(b). 

In table 3(b), the theoretical solution at x = 0.75 is given by ( )4tan 28.23825285014x π+ = . Our table 3(b) 

highlights the errors in the computed solution given by our Padé – Types and the selected ones at this point x = 0.75 
6. Conclusion 
In this paper we presented a general Padé-Type integrator whose numerator and denominator degrees can be selected 

freely. The kinds of matrices where zero entries exist in the governing matrix equations were highlighted by pointing out 
their locations and number of them in existence per such matrices. The Padé-Type integrators were proven theoretically to be 
convergent and consistent. Results arising from our experiments confirm the suitability of the Padé-Type of integrators for 
use, at least on those classes of problems they were tested on practically. 
   
Table 1a. Solutions for the First Component 

 

H 

Padé – Type  

Integrator 

[3] [2] [16] [7] Nf 

0.0125 (3,4): 1.8694389 

(2,3): 1. 8694389 

(1,2): 1. 8694386 

1.8694388 1.8694389 

N = 10:1.8692929 

N =   5:1.8692926 

N =   3:1.8692926 

 

K = 2: 1.86966552 

K = 1: 1.86934576 

80 

0.0250 (3,4): 1.8694388 

(2,3): 1. 8694387 

(1,2): 1. 8694386 

1.8694389 1.8694387 

N = 10:1.8691420 

N =   5:1.8691415 

N =   3:1.8691415 

  

K = 2: 1.87024893 

K = 1: 1.86937097 

40 

0.0500 (3,4): 1.8694384 

(2,3): 1. 8694846 

(1,2): 1. 8694369 

1.8694380 1.8694357 

N = 10:1.8688365 

N =   5:1.8688354 

N =   3:1.8688354 

 

K = 2: 1.87243397 

K = 1: 1.87020864 

20 

0.1000 (3,4): 1.8694344 1.8705973 1.8693953 N = 10:1.8682119  10 
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(2,3): 1. 8695057 

(1,2): 1. 8692889 

N =   5:1.8682097 

N =   3:1.8682097 

K = 2: 1.87757840 

K = 1: 1.87481214 

(L,M) = (Numerator degree, Denominator degree) 
Table 1b. Solutions for the Second Component 

H Padé – Type 

 Integrator 

[3] [2] [16] [7] Nf 

0.0125 (3,4): – 0.14823588 

(2,3): – 0.14823588 

(1,2): – 0.14823591 

-0.14823588 -0.14823587 

N = 10: – 0.1495262 

N =   5: – 0.1495268 

N =   3: – 0.1495268 

 

K = 2: –0.148204777 

K = 1: – 0.1482486 

80 

0.0250 (3,4): – 0.14823588 

(2,3): – 0.14823589 

(1,2): – 0.14823615 

-0.14823587 -0.14823589 

N = 10: – 0.1497297 

N =   5: – 0.1497309 

N =   3: – 0.1497309 

 

K = 2: – 0.1481248 

K = 1: – 0.1482451 

40 

0.0500 (3,4): – 0.14823594 

(2,3): – 0.14822960 

(1,2): – 0.14823825 

-0.14823599 -0.14823631 

N = 10: – 0.1501089 

N =   5: – 0.1501113 

N =   3: – 0.1501112 

 

K = 2: – 0.1478670 

K = 1: – 0.1484301 

20 

0.1000 (3,4): – 0.14823650 

(2,3): – 0.14822671 

(1,2): – 0.14826017 

-0.14610294 -0.14824187 

N = 10: – 0.1507556 

N =   5: – 0.1507630 

N =   3: – 0.1507629 

 

K = 2: – 0.1471289 

K = 1: – 0.1484933 

10 

(L,M) = (Numerator degree, Denominator degree) 
 
Table 2a. Each solution is multiplied by 104.  Solution for the first component at h = 0.01 

 

x 

THEORETICAL 

SOLUTION 

Padé – Type Integrators [3] 

h=0.5 

[10] 

h=0.01 (3,4) (2,3) (1,2) (0,1) 

 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

 

6.1038 

6.9655 

7.6365 

8.1592 

8.5663 

8.8834 

 

6.1038 

6.9655 

7.6365 

8.1592 

8.5663 

8.8834 

 

6.1046 

6.9661 

7.6370 

8.1596 

8.5663 

8.8836 

 

6.1027 

6.9646 

7.6359 

8.1587 

8.5659 

8.8830 

 

6.1079 

6.9686 

7.6390 

8.1611 

8.5678 

8.8845 

 

6.1038 

6.9655 

7.6365 

8.1592 

8.5663 

8.8834 

 

6.0731 

6.9427 

7.6175 

8.1444 

8.5555 

8.8741 
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3.5 

4.0 

4.5 

5.0 

9.1303 

9.3226 

9.4724 

9.5891 

9.1303 

9.3226 

9.4724 

9.5891 

9.1305 

9.3226 

9.4726 

9.5891 

9.1301 

9.3224 

9.4723 

9.5890 

9.1312 

9.3233 

9.4730 

9.5895 

9.1303 

9.3226 

9.4724 

9.5891 

9.1263 

9.3238 

9.4765 

9.5945 

(L,M) = (Numerator degree, Denominator degree) 
Table 2b.  Each solution is multiplied by 104. Solution for the second component at h = 0.01 

 

x 

THEORETICAL 

SOLUTION 

Padé – Type Integrators [3] 

h=0.5 

[10] 

h=0.01 (3,4) (2,3) (1,2) (0,1) 

 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

 

2.2099 

3.9327 

5.2745 

6.3195 

7.1335 

7.7674 

8.2612 

8.6457 

8.9452 

9.1785 

 

2.2099 

3.9327 

5.2745 

6.3195 

7.1335 

7.7674 

8.2612 

8.6457 

8.9452 

9.1785 

 

2.2100 

3.9327 

5.2745 

6.3195 

7.1335 

7.7674 

8.2612 

8.6457 

8.9452 

9.1785 

 

2.2098 

3.9326 

5.2744 

6.3194 

7.1332 

7.7664 

8.2615 

8.6458 

8.9453 

9.1785 

 

2.2108 

3.9330 

5.2747 

6.3196 

7.1335 

7.7675 

8.2612 

8.6457 

8.9452 

9.1784 

 

2.2096 

3.9324 

5.2743 

6.3194 

7.1333 

7.7673 

8.2610 

8.6456 

8.9452 

9.1734 

 

2.1467 

3.8854 

5.2371 

6.2901 

7.1106 

7.7492 

8.2592 

8.6525 

8.9564 

9.1915 

(L,M) = (Numerator degree, Denominator degree) 
Table 3a.  Errors in Numerical Integrators on test problem 3 (Uniform mesh – size h = 0.05) 

X 

Theoretical  

Solution 

PADÉ–TYPE INTEGRATOR, ORDER = L+M  

Nf (5,6) (4,5) (3,4) (2,3) (1,2) (0,1) 

 

0.10 

0.20 

0.30 

0.40 

 

1.22304888 

1.50849765 

1.89576512 

2.46496276 

 

-2.474(-16) 

-5.378(-17) 

-2.671(-16) 

3.701(-16) 

 

-2.537(-17) 

-5.378(-17) 

-4.510(-17) 

-7.394(-17) 

 

9.523(-15) 

1.571(-14) 

2.682(-14) 

5.322(-14) 

 

-1.570(-10) 

-1.673(-10) 

-1.880(-10) 

-2.260(-10) 

 

1.897(-6) 

3.037(-6) 

5.258(-6) 

1.024(-5) 

 

-5.810(-3) 

-6.134(-3) 

-6.831(-3) 

-8.132(-3) 

 

   2 

   4 

   6 

   8 
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(L,M) = (Numerator degree, Denominator degree) 

Table 3b.  Errors in Numerical Integrators  
Integrator (Method) Error at x = 0.75 

[12] 1 ( – 4)  

[13] 1 ( – 1) 

[4] 1 ( – 2) 

[15] 2 ( – 2) 

[8] M1 6.2 ( –7) 

[8] M2 1.9 ( –8) 

[8] M3 1.22 ( –8) 

[8] M4 1.99 ( – 9) 

Padé – Type (5,6) 8.9 ( – 14) 

Padé – Type (4,5) 8.9 ( – 14) 

Padé – Type (3,4) 3.0 ( – 11) 

Padé – Type (2,3) 4.3 ( – 9) 

Padé – Type (1,2) 5.4 ( –3) 

Padé – Type (0,1) 1.4 ( – 1) 

 

0.50 

0.60 

0.65 

0.70 

0.75 

0.80 

0.90 

1.00 

3.40822344 

5.33185522 

7.34043658 

11.6813738 

28.2382520 

-68.4796683 

-8.68762955 

-4.58803782 

-1.242(-16) 

8.587(-16) 

3.625(-15) 

4.130(-15) 

8.947(-14) 

5.922(-13) 

6.055(-15) 

-1.974(-15) 

3.198(-16) 

-2.950(-17) 

2.737(-15) 

4.130(-15) 

8.947(-14) 

5.922(-13) 

6.055(-15) 

-1.974(-15) 

1.260(-13) 

4.219(-13) 

1.002(-12) 

3.402(-12) 

3.054(-11) 

3.906(-10) 

-4.703(-12) 

-4.931(-13) 

-3.000(-10) 

-4.765(-10) 

-6.886(-10) 

-1.233(-9) 

-4.352(-9) 

-9.207(-9) 

3.811(-10) 

2.647(-10) 

2.405(-5) 

7.980(-5) 

1.868(-4) 

6.246(-4) 

5.420(-3) 

6.256(-2) 

-1.105(-3) 

-1.022(-4) 

-1.067(-2) 

-1.664(-2) 

-2.370(-2) 

-4.144(-2) 

-1.386(-1) 

-2.191(-1) 

1.551(-2) 

1.000(-2) 

  10 

  12 

  13 

  14 

  15 

  16 

  18 

  20 
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