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Abstract 
 

In this paper, a  class of convergent implicit Rational Runge-Kutta schemes 
using Taylor and binomial series expansion, are developed, analysed and 
computerized to solve ODEs. 

Numerical results arising from the new schemes compare favourably with the 
existing Euler’s method. Furthermore, the results show that the schemes are 
effective and efficient. 

 
Keywords: Implicit,  Rational, Runge-Kutta,  effective, efficient and convergent. 

 
1.0  Introduction: 
In the field of Science, Technology and Engineering, the rate of change of one variable in relation to another is called a 
derivative.  Any equation  which connects the derivatives of a differentiable function  of one independent  variable with 
respect to itself is called  ordinary differential equations (ODEs). 
 The most general form of an ODE is 

  oyf ==′ )y(x  y),(x,y o                                                     (1)  

              where y is the dependent variable. 
In an attempting to solve this, it  will be assumed that  f(x, y), satisfies the following conditions 

(i) f(x, y) is  a real vector function. 
(ii)  f(x, y) is defined and continuous in the  region 

D = { }∞<<∞≤≤ y- b, x  ay/  x,      (2) 

(iii)   There exist a real constant L such that for any [ ]b a,  x ∈  and numbers y1 and y2     in D. 

   212 y yL  )y f(x, - y) f(x,      −≤       (3) 

where L is the Lipschitz constant of order 1. 
Research in techniques for solvingODEs have generated a lot of interest because of the difficult nature of the solution 
process of ODEs.Popular methods include conventional R – K schemes such as implicit, semi-implicit and explicit 
schemes. 
In 1982 Hong Yuanfu introduced a Rationalized Runge-Kutta scheme of the general form 
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              where ,     K1 = hf(xn, yn) 
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In his development, aij = bij = 0 for j ≥ i.   He developed families of methods of orders two and three of these schemes.   
During analysis, he discovered that the schemes are A-stable. Perhaps, this A-stability property and simplicity of 
programming of explicit Rational R – K scheme stimulated [6] in extending the schemes to family of order four. 
 However, experience with the conventional R-K schemes have shown that  implicit R – K scheme have better 
resolution properties (than explicit ones).  This expectation is the chief motivation of the present consideration. 
2.  0.  Derivation of the Scheme 
    Recall from (4) that an R-stage implicit Rational R – K scheme is   
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 The parameters Vi, Wi, Ci, di, aij and bij are to be determined from the system of non-linear equation generated 
by adopting the following steps; 

(i) obtained the Taylor series expansion of Ki’s and Hi’s about point (xnyn) for i=1(1)R. 
(ii)  Insert the series expansion into  (6). 
(iii)  Compare the final expansion with Taylor series expansion of yn+1 about 

(xn, yn) in the power of h.  
      The numbers of parameters normally exceeds the number of equations, but in the spirit of [2, 3, 5] these 
parameters are chosen to ensure that one or more of the following conditions are satisfied.  

1. Minimum bound of local truncation error exists.  
2. Adequate order of accuracy of the scheme is achieved. 
3. The method has maximum interval of absolute stability . 
4. Minimum computer storage facilities are utilized. 

By equation (6), the general one-stage implicit Rational R-K scheme of order two is of the form 
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Adopting binomial expansion theorem on the right hand side of equation (10) and ignoring  terms of order higher than 
one , we get 

  m)orderr ter(higher  V y Wy 11
2
n111n +−+=+ HKyn    (13) 

The Taylor series expansion of yn+1 about yn gives 
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Substituting (15) into (14)  gives 
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Similarly expanding  K1 about (xn, yn) we have,  
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In a similar manner, expansion of H1 about (xn, zn) yields 
  H1 = hN1 + h2M1 + h

3R1 + 0h4      (20) 
where, 
  N1 = gn      ,       M1 = d1Dgn, 
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Expressing g and its partial derivatives in terms of f to facilitate the comparison of coefficients leads to 
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Substituting (22) into (21) , to get 
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Adopting  (18) and (20) in (13)  gives  
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Taking the coefficient of h and h2 into consideration we obtained the following system of equation for family of one-
stage scheme of order two. 
  W1+V1 = 1 
  W1c1 + V1d1 =  ½        (25) 
With the constraints 
  a11 = c1 
  b11 = d1         (26) 
We can now obtain the following results 

(i) with  W1 = 0, V1 = 1, c1 = d1 = ½ ,  a11 = b11 = ½  
 equation (10) yields 
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where, 
  H1 = hg(xn +  ½ h,  zn + ½ H1)      (28) 

(ii)  With V1 = W1   = ½ ,   c1 = a11 = ¾ , d1 = b11 = ¼ 
 equation (10) yields 
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where   K1 = hf(xn + ¾ h,  yn + ¾ K1) 
  H1 = hg(xn + ¼ h,  zn + ¼ H1)      (30) 
    

( iii)  With W1  = ¼, V1 =  ¾, C1 = d1 = ½  , a11 = b11 = ½ 
equation  (10)  yields 
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3. Error, Convergence, Consistent  and Stability Properties 
3.1. Error Analysis  
Error of numerical approximation techniques for ODEs arises from different causes that can be majorly classified into 
discretization, truncation, and round–off errors respectively. 
Discretization error is the error introduced as a result of transforming a differential equation into difference equation.  
Mathematically the discretization error  en+1 associated with the formular (10) is the difference between the exact 
solution  and numerical  solution  yn+1  generated by (10) at point xn+1.  That is 
  en+1 = yn+1 – y(xn+1)       (33) 
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Truncation error is the error  introduced as a result of ignoring some of the higher terms of the power series (Taylor and 
binomial series )  during the development of the new formular.  Mathematically it can be defined as 
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Round-off error is the error introduced as a results of the computing devices.  Mathematically it can be expressed as 

  11n1 y +++ −= nn PY        (36) 

where yn+1 is the expected solution of the difference equations  while Pn+1 is the computer output at the  (n+1)+h
 iteration. 

The Convergent Property 
 The numerical scheme (10) for solving ODE (1) isl be said to be convergent, if the numerical approximation  
yn+1 that is generated by it tends to the exact solution y(xn+1) of the ODE (1) as the step size tends to zero. 
That is 
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 To analyze  the convergence of the propose scheme, we consider the following standard theorem which we state 
without proof. 

Theorem 1:    Let { },  j  o (1)nje =  be the set of real numbers, If there exist finite constants R and S such that 
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Let en+1 and Tn+1 denote the discretization and truncation errors generated by (10) respectively. 
Adopting binomial expansion and ignoring higher terms in equation (10) and (33), we obtain 
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Similarly (7) yields 

  ( ) ( ) mshigher ter ;,;y , 1n21 +++=+ hyxhhxhyy nnnnn φψ   (43)   

Subtract  equation (40) from (43) and use equation (33) to get  
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By taking the absolute values on both sides of equation (44), we have the inequality 
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where L and K are Lipschitz constant for  h)y;,( and h),y; ,( 21 xx ψφ respectively and   

T =  1nT +Sup         (46) 

      a ≤ x  ≤  b 
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By setting N = L + K 
Inequality (44) becomes 
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From theorem 1, expression (47) becomes 
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Assuming no error in the input data.  That is eo = 0, then in the limit as h → 0. 
we obtain 
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which implies that 
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Consistency 
The one-step method is said to be consistent, if 
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To show the consistency of this scheme 
Recall that 
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Subtract yn from both sides of equation (59) to get 
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Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011), 231 – 240  



237 

 

Class of Convergent Rational Runge-Kutta Schemes for solution of ODEs.    P.O. Babatola         J of NAMP 
 
Substitute (61) into (60) and  divide by h and taking the limit as h → 0, gives 
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Stability Properties 
 To analyze the stability properties. 
Recall that general one stage implicit rational  R – K scheme is 

  11

11
1n V 1

W
y

Hy

Ky

n

n

+
+=+

       (63) 
where 
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Applying (63) to the stability   equation  
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That is yn+1 = µ(P) yn 
For example, the associated stability function for  (27) to ( 32) is 
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It is  A –stable 
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Numerical Computation and Results 
 In order  to demonstrate the accuracy of this scheme some sample problems were considered. 
Problem 1:    Consider initial value problem 

  1  y(o) ,3)(1000 23 =+−−=′ xxyy      (67) 
The theoretical solution is 
  y(x) = x3 + e-1000x        (68) 
The  numerical  results of problem1 which compare the accuracy of the scheme  and Euler’s scheme are shown in Table 
1. 
Problem 2:  Consider the initial value problem 

  1  y(o)    ,2 =+=′ yxy        (69) 
whose theoretical solution is 
  y(x) = -2(x+1) + 3ex 
The numerical results of problem2 which compare the accuracy and convergency of both the scheme and Euler’s scheme 
are  shown in Table 2. 
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Discussion 
 A cursory observation of results in Tables 1 and 2 show that the new convergent implicit rational R-K schemes 
produce more accurate results than those produced by Euler’s scheme of the same stage. 
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