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Abstract 

 
Temperature distributions on the soil surface strongly depend on the state of the processes 

of mass and energy exchanges (radiation and convection, evaporation and water 
condensation, supply of water through precipitation and gaseous exchange). It was assumed 
that soil medium is homogeneous and parameters describing this medium are changeless in 
the whole of its volume except that they depend on soil temperature and humidity. This work 
examines the effect of Ambient Temperature and Relative Humidity on Soil Surface 
Temperature during Dry Season. The data obtained from the experiment were used to 
generate a model which can be used to predict the soil surface temperature during the dry 
season in Abeokuta, South – Western Nigeria once the ambient temperature and the relative 
humidity are known. The chi-square test showed that there was no significant difference 
(p>0.05) between the expected and observed data. The coefficient of determination (r2) showed 
that 92.89% of the experimental data were predicted by the model. The model developed in this 
work enabled us to use simulation prediction as the basis for temperature determination, 
which otherwise would be difficult or impossible to perform. 
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1.0 Introduction: 
The environment in which mines are placed is extremely variable in terms of climate, vegetation, soil type, depth of 

ground water table, and topography. For example, the three countries that have the largest average number of mines deployed 
per square mile are Bosnia-Herzagovina in a temperate zone, Cambodia in the humid tropics, and Egypt in an arid desert. 
Variations in environmental conditions influence sensor performance because in general, landmine sensors exploit soil and 
environmental conditions to discern between mines and other objects. Little effort has been made on evaluating the 
environmental conditions that affect sensor performance. The performance of sensors based on radar and infrared imaging is 
expected to vary with soil and environmental conditions [1]. Surface evaporation depends on relative humidity, temperature 
and wind speed. Evaporation may change surface temperature gradient [6]. 

Temperature distributions on the soil surface strongly depend on the state of the processes of mass and energy exchanges 
(radiation and convection, evaporation and water condensation, supply of water through precipitation and gaseous exchange). 
It was assumed that soil medium is homogeneous and parameters describing this medium are changeless in the whole of its 
volume except that they depend on soil temperature and humidity [4]. 
 
2.0 Empirical Models 
 
        An empirical model is one which is derived from and based entirely on data. In such a model, relationships between 
variables are derived by looking at the available data on the variables and selecting a mathematical form which is a 
compromise between accuracy of fit and simplicity of mathematics. It will always be possible to arrange a perfect fit, if 
necessary, by using a sufficiently complicated mathematical formular, but this is hardly a sensible approach. What is usually 
required is the simplest formular which will give an adequate fit. The important distinction is that empirical models are not 
derived from assumptions concerning the relationships between variables, and they are not based on physical laws or 
principles. Quite often, empirical models are used as ‘submodels’ or parts of a more complicated model. When we have no 
principles to guide us and no obvious assumptions suggest themselves, we may (with justification) turn to the data to find 
how some of our variables are related. Therefore the models derived in this work are empirical models. 
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2.1 Least Square Approximation 
 
The basic idea of Least Square Approximation is to fit a polynomial function P(x) to a set of data (x,y) having a theoretical 
solution  

y = f(x).                                                                   (1) 
Many problems arise in Engineering and Science where the dependent variable is a function of two or more independent 
variables, for example,  

z = f(x,y)                                                                                                     (2) 
is a two-variable, or bivariate function. Least squares multivariate approximation is used to solve this type of problem. 
 
Given N data points, (xi, yi, zi), fit the best linear bivariate polynomial through the set of data. Consider the linear polynomial: 
 

z = a + bx + cy                                                     (3) 
The sum of the squares of the deviations is given by  

S(a, b, c) = Σ(ei)
2 = Σ(Zi – a – bxi – cyi)

2              (4) 
The function S(a, b, c) is a minimum when 
 

( )( )2 1 0i i i

S
Z a bx cy

a

δ
δ

= Σ − − − − =       (5a) 

 

( )( )2 0i i i i

S
Z a bx cy x

b

δ
δ

= Σ − − − − =      (5b) 

 

( )( )2 0i i i i

S
Z a bx cy y

c

δ
δ

= Σ − − − − =      (5c) 

Dividing equations (5) by 2 and rearranging yields the normal equations: 
 

i i ia N b x c y Z+ + =∑ ∑ ∑        (6a) 
2

i i i i i ia x b x c x y x Z+ + =∑ ∑ ∑ ∑       (6b) 
2

i i i i i ia y b x y c y y Z+ + =∑ ∑ ∑ ∑       (6c) 

 
Equations (6) can be solved for a, b, and c by Gauss elimination. 
 
A linear fit to a set of bivariate data may be inadequate. Consider the quadratic bivariate polynomial: 
 

2 2z a bx cy dx ey fxy= + + + + +       (7) 

 
The sum of the squares of the deviations is given by  
 

2 2 2( , , , , , ) ( )i i i i i i iS a b c d e f Z a bx cy dx ey fx y= − − − − − −∑ (8) 

 
The function S(a, b, …, f) is a minimum when 

( )2 22( ) 1 0i i i i i i i

S
Z a bx cy dx ey fx y

a

δ
δ

= − − − − − − − =∑       (9a) 

( )2 22( ) 0i i i i i i i i

S
Z a bx cy dx ey fx y x
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δ
δ

= − − − − − − − =∑                             (9b) 

( )2 22( ) 0i i i i i i i i

S
Z a bx cy dx ey fx y y

c

δ
δ

= − − − − − − − =∑                               (9c) 

( )2 2 22( ) 0i i i i i i i i

S
Z a bx cy dx ey fx y x

d

δ
δ
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e

δ
δ

= − − − − − − − =∑                              (9e) 
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( )2 22( ) 0i i i i i i i i i

S
Z a bx cy dx ey fx y x y

f

δ
δ

= − − − − − − − =∑   (9f) 

Dividing equations (9) by 2 and rearranging yields the normal equations: 

  2 2
i i i i i i ia N b x c y d x e y f x y Z+ + + + + =∑ ∑ ∑ ∑ ∑ ∑    (10a) 

2 3 2 2
i i i i i i i i i i ia x b x c x y d x e x y f x y x Z+ + + + + =∑ ∑ ∑ ∑ ∑ ∑ ∑  (10b) 

2 2 3 2
i i i i i i i i i i ia y b x y c y d x y e y f x y y Z+ + + + + =∑ ∑ ∑ ∑ ∑ ∑ ∑  (10c) 
2 3 2 4 2 2 3 2
i i i i i i i i i i ia x b x c x y d x e x y f x y x Z+ + + + + =∑ ∑ ∑ ∑ ∑ ∑ ∑  (10d) 
2 2 2 2 2 4 3 2
i i i i i i i i i i ia y b x y c y d x y e y f x y y Z+ + + + + =∑ ∑ ∑ ∑ ∑ ∑ ∑  (10e) 

2 2 3 3 2 2
i i i i i i i i i i i i i i ia x y b x y c x y d x y e x y f x y x y Z+ + + + + =∑ ∑ ∑ ∑ ∑ ∑ ∑ (10f) 

 
Equations (10) can be written as the matrix equation 

bAc =          (11) 
Where A is the 6 x 6 matrix, c is the 6 x 1 column vector of polynomial coefficients (i.e., a to f), and b is the 6 x 1 column 
vector of nonhomogeneous terms. The solution to equation (11) is 

bAc 1−=           (12) 
Where A-1 is the inverse of A. [2]. 
 
3.0 Materials and Methods 

The equipment used in this work included a Hoboware data logger and sensors (temperature and relative humidity) 
manufactured in the United States of America by Onset Corporation. The experiment was carried out on a field in Lafenwa 
area of Abeokuta (latitude 7o 3´ N and longitude 3o 3´ E), Ogun State Nigeria.  
This work aimed at examining the effect of Ambient Temperature and Relative Humidity on the Soil Surface Temperature in 
Abeokuta, South – West, Nigeria. The experiment was carried during the dry season in the area. One temperature sensor was 
laid on the soil surface to read the soil surface temperature while the two other sensors (ambient temperature and relative 
humidity) were hanged up to read the ambient temperature and the relative humidity respectively. The sampling interval is 
one second with logging interval of one hour. 
 
4.0 Results and Discussion  

The data from the experiment is presented in Table 1. A 6 x 6 matrix was generated from the data using equations 
(10) and the matrix solved using Microsoft Student Encarta.  

Let the variables x, y, and z in equations (10) correspond to Ta (ambient temperature) P (relative humidity), and surfaceT  (soil 

surface temperature) respectively. The matrix is presented in equation (13).   

24 728 1735 22548 133097 50805

728 22548 50805 713772 3787274 1518832

1735 50805 133097 1518832 10682848 3787274

22548 713772 1518832 23061809 109695879 46392887

133097 3787274 10682848 109695879 885414545 297251112

50805 1518832 37

1
825

25993

55787
(13)

836010

4053051

87274 46392887 297251112 10965879 1691589

a

b

c

d

e

f

−
     
     
     
     

=     
     
     
          
       

Solving the matrix equation (13) gives the values of a to f as, 

6420389548543.0,8830010628278.0,3740931357360.0

,0630734156978.1,1651152828101.2,0172952355549.21

−=−==
=−==

fed

cba

 
Substituting the values of a to f above into equation (7) yields 

2 2

( , ) 21.2952355549017 2.1152828101165 1.0734156978063

0.0931357360374 0.0010628278883 0.0389548543642 (14)

surface a a

a a

T P T T P

T P T P

= − + +

− −      
Where surfaceT is the Soil Surface Temperature (in degree centigrade), Ta is Ambient Temperature (in degree centigrade) and 

P is the Relative Humidity (in percentage). 
Evaluating equation (14) using the experimental data gives Table 2. 
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Table 1: Table of observed values of soil surface temperature as a function of ambient temperature and relative humidity 
 

Time Ambient Temp, °C 
Relative 
Humidity, % 

Surface Temp., 
°C 

0 25.016 93.3 25.404 
1 26.061 93.0 26.109 

2 30.217 84.6 29.54 

3 33.209 74.3 33.131 
4 37.48 63.0 38.365 
5 36.905 50.9 48.504 
6 36.389 51.8 49.309 
7 36.905 48.3 53.553 
8 36.227 44.5 56.898 
9 35.797 43.5 50.059 
10 34.783 45.8 41.123 
11 33.678 48.2 37.178 
12 30.773 62.9 33.287 
13 29.34 70.8 30.722 
14 28.543 75.1 29.414 
15 28.023 78.1 28.891 
16 27.284 81.0 28.122 
17 26.426 84.8 27.21 
18 25.963 87.8 26.573 
19 25.744 89.2 26.475 
20 25.939 90.8 26.402 
21 25.574 90.3 26.598 
22 25.671 91.6 26.134 
23 25.744 91.0 26.475 

 
 
Table 2: Table of expected values of soil surface temperature as a function of ambient temperature and relative humidity 
 

),( asurface TPT
(oC) 

Expected Value (oC) Observed Value 
(oC) 

)016.25,3.93(surfaceT
 27.160 25.404 

)061.26,0.93(surfaceT
 26.130 26.109 

)217.30,6.84(surfaceT
 26.532 29.540 

)209.33,3.74(surfaceT
 32.047 33.131 

)48.37,0.63(surfaceT
 44.795 38.365 

)905.36,9.50(surfaceT
 49.29 48.504 

)389.36,8.51(surfaceT
 47.457 49.309 

)905.36,3.48(surfaceT
 50.511 53.553 

)227.36,5.44(surfaceT
 50.222 56.898 

)797.35,5.43(surfaceT
 49.405 50.059 

)783.34,8.45(surfaceT
 45.789 41.123 

)678.233.48(surfaceT
 42.208 37.178 



229 

 

)773.30,9.62(surfaceT
 32.812 33.287 

)34.29,8.70(surfaceT
 29.673 30.722 

)543.28,1.75(surfaceT
 28.441 29.414 

)023.28,1.78(surfaceT
 27.725 28.891 

)284.27,0.81(surfaceT
 27.258 28.122 

)426.26,8.84(surfaceT
 26.993 27.210 

)963.25,8.87(surfaceT
 26.903 26.573 

)744.25,2.89(surfaceT
 26.926 26.475 

)939.25,8.90(surfaceT
 26.562 26.402 

)574.25,3.90(surfaceT
 26.913 26.598 

)671.25,6.91(surfaceT
 26.677 26.134 

)744.25,0.91(surfaceT
 26.717 26.475 

 
 
5.0 Chi – Square Test 

Chi – Square distribution is one of the most widely used theoretical probability distributions in inferential statistics, 
e.g., in statistical significant tests. The best – known situations in which the chi – square distribution is used are the common 
chi – square tests for goodness of fit of an observed distribution to a theoretical one, and of the independence of two criteria 
of classification of qualitative data [7, 8]. 

According to [5], chi – square test is used to test if a sample of data came from a population with a specific 
distribution. Chi – Square is a family of distributions commonly used for significance testing. Pearson’s chi – square is by far 
the most common type of chi – square significance test [3].  

In this work, the Observed Values and Expected Values were compared and subjected to statistical analysis using 
Chi Square to test if their were significant difference between the observed data and the data from the theoretical models.  
 
The chi – square was computed for the model in equation (14) using the formula below: 
 

2
2 ( )Observed data Expected data

Expected data
χ −=∑ ~

2
0.05, 1nχ −                                           (15) 

Where n = 24 (number of data points), and 
2
0.05, 1nχ − is the 2χ  tabulated which gives 35.507. 

 
The chi – square calculated for the model was computed using equation (15) which gives 3.838151. 

Comparing the 2χ Calculated and the 2χ tabulated, there was no significant difference between the expected and observed 

values. 
 
6.0 Coefficient of Determination 
Coefficient of Determination is the proportion of variability in a data set that is accounted for by the statistical model. It 
provides a measure of how well future outcomes are likely to be predicted by the model. It is used in the contest of statistical 
models whose main purpose is the prediction of future outcomes on the basis of other related information. [7, 8]. The values 
vary from 0 to 1. 
The coefficient of determination was computed for the model. This was aimed at determining the percentage of the 
experimental data that was explained by the model. The formula used to calculate the coefficient of determination is 

 ( ) ( )

( ) ( )

2
2 22 2

2

2 22 2

min ( )
n x x n y y

Coeeficient of Deter ation R
n x x n y y

    Σ − Σ Σ − Σ    =  
    Σ − Σ Σ − Σ
    

                    (16) 
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Where expx is the observed value while y is the ected value  

 
         The Coefficient of Determination for the model was computed and a value of 0.928913 was obtained, meaning that 
92.89% of the observed data were explained by the model. 
 
 
7.0 Conclusion 
        Surface evaporation depends on relative humidity, temperature and wind speed. Evaporation may change surface 
temperature gradient. This work examines the effect of Ambient Temperature and Relative Humidity on Soil Surface 
Temperature during Dry Season. The experimental data obtained from the experiment were used to generate a model which 
can be used to predict the soil surface temperature during the dry season in Abeokuta, South – Western Nigeria once the 
ambient temperature and the relative humidity are known. 
The chi-square test showed that there was no significant difference (p>0.05) between the expected and observed data. The 
coefficient of determination (r2) showed that 92.89% of the experimental data were predicted by the model. The model 
developed in this work enabled us to use simulation prediction as the basis for temperature determination, which otherwise 
would be difficult or impossible to perform. 
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