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Abstract 
 

This study is devoted to the problem of the effect of radiation absorption on 
the onset of thermosolutal convection in a horizontal fluid layer taking into 
consideration viscous effects when the fluid is heated from below in a 
horizontal porous layer. The radiative heat transfer is heated using the 
differential approximation for optically thin case in the energy equation. The 
linear stability analysis is used to show how radiation absorption affects the 
condition leading to onset of instability even in the present of viscosity. In the 
momentum equation for free-free boundaries it was seen that a positive 
increment in the radiation absorption parameter delayed the onset of instability. 

 
 

1.0 Introduction: 
 
Double-diffusive convective can occur when the fluid contains two (or more) components having different molecular 

diffusivities and the component make opposite contributions to the density gradient. The process which occurs in oceans is 
called thermosolutal. This situation can be observed of in wide range of oceanography, astrophysics, chemical engineering, 
spreading of pollutants, non- nuclear waste, solute intrusion in sediments in coastal environment, an in enhanced oil recovery 
system.  [11] ,[4] and [10].There have been investigations on chemical stability of a horizontal fluid layer heated from below 
was carried out by [15] and [1]. There has been very recent research on double- diffusive by D’Hernoncouit et al and Hills 
[5]. This paper is aimed at the study of the onset of thermosolutal instability in the presence of viscosity in the momentum 
equation using linear stability theory and normal mode analysis. For free boundaries, it is seen that positive increment in the 
radiation absorption parameter delayed the onset of instability.     

 
MATHEMATICAL FORMULATION 
We consider a binary fluid layer of heightd > 0, which are bounded between two horizontal parallel plates located at 

2

d
z = ±)

 in a porous medium taking into consideration viscous effects. Temperature1 2T and T ,Solutal mass concentration

1 2C and C , are imposed both at bottom and top respectively. 

We assume the density to be linearly dependent on the temperature T  and concentration C  as in [8], [9], [5] and  [6].  

0 0 0[1 ( ) ( )]T CT T C Cρ ρ β β′ ′= − − + − ,                                                             (1)     

where 0ρ  is the density of the fluid mixture at 0T T=  and 0C C= .  0T  and 0C  are initial temperature and concentration 

inside the fluid layer  respectively . Tβ  and Cβ  are the thermal expansions for temperature and solutal concentration 

respectively. The horizontal coordinates is x
)

 and z
)

 for the vertical component which increases vertically upward. The usual 
Boussinesq approximation equation of flow, energy and solute transport is used taking into consideration the effect of 
radiation absorption with viscosity. ( [12], [7] and  [6])                                                         

  ′ ∇ ⋅
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′ V = 0                                                                                                                       (2) 
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                                                                            (5) 

Respectively and 
Radiative heat flux 

2 2 33 16 0r rq q T Tα σα′ ′ ′ ′∇ − − ∇ =                                                                  (6) 

0V′ ′∇ ⋅ =
v

                                                                                                                          (7) 
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                                                                        (10) 

Subject to the boundary condition 

1 1

2 2

0, , / 2,

0, , / 2.

w T T C C at z d

w T T C C at z d

′ ′ ′ ′= = = = − 
′ ′ ′ ′= = = = 

                                                        (11) 

where   
v 

′ V  is the Darcy velocity; ′ T  is temperature; g  is acceleration due to gravity; 0ρ  is density; PC  is specific heat 

capacity; rq  is radiative heat flux; k  is permeability of the porous medium; κ  is thermal conductivity; ′ P  is pressure; mD  

is mass diffusitivity of species through the fluid saturated medium; α  is absorbing coefficient or penetration depth, and σ  is 
Stefan-Boltzmann constant.  
The governing equation for radiative heat transfer (6) is generally nonlinear. From equation different limits may be 
considered depending on the absorption coefficient, α . 
The governing non-dimensional equations for (7) to (10) together with the boundary condition of (11) are given by  

  ∇ ⋅
v 

V = 0                                                                                                                  (12) 
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∂ = −∇ + ∇ − + −
∂

v

                                         (13) 
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M t
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                                                                     (14) 
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t Le

∂ε
∂

+ ⋅ ∇ = ∇
v

                                                                                (15) 

With the corresponding boundary conditions: 

0, 1/ 2, 1/ 2w T C= = ± = ± at 1/ 2z = m .                                                          (16)                             

Where  3
1 2( )a TR g d T Tβ= − , thermal Rayleigh number; 3

1 2( )S CR g d C Cβ= − , solutal Rayleigh number; 

2a

k
D

d
= , Hartmann number; 

3
2 016

3

T
F

σ
α

=
Κ

, radiation absorption parameter; Mε φ= , normalized porosity, and 

m

Le
D

α= , Lewis number, r
m

P
Ca

γ
α

= , Prandtl number. This is a measure of the ratio of momentum boundary layer to 

thermal boundary layer of the fluid  r
m

P
Ca

γ
α

=   Pr for most gases is of order unity and  for liquids Pr may vary between 

0.1 and 0.001 (Haghis and Brighton (1991)).  
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Linearization 
We study the stability of the motionless solutions to the system (12)-(15) together with boundary conditions of (11) as given 
by equation (16). 

2

2

2

2

0
dz

Cd

dz

Td SS ==
 

2, , 1/ 2 ( ), 0s s s s aT z C z P z R R V= − = − = − =
v

                                                       (17) 

Accesing the stability of the steady state solutions (17), we define perturbation of the form by [2] and [3]: 

0 , , ,s s sV u T T C C S P P pθ= + = + = + = +
v

                                                            (18)  

Where , .S ST Cθ ϕ<< <<  

Substituting equation (18) into (12) to (15) and boundary condition of (17) and neglecting non-linear terms we have  
∇⋅ u = 0                                                                                                                   (19) 

kRkRu
D

VP
t

u

p sa
ar

vvvv
v

ϕθ
∂
∂ −+−∇+−∇= 11 2

 

21 1
( )a s

r a

u P R R S k
P t D

∂ θ
∂

 
− ∇ + = −∇ + − 

 

v
                                                  (20) 

 
2 21

(1 )w F
M t

∂θ θ
∂

− = + ∇                                                                                           (21) 

21
w

t Le

∂ϕε ϕ
∂
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0, 0w θ ϕ= = = at
1

2
z = ±                                                                                             (23) 

The momentum equation (20) is reduced to a scalar equation by taking the double curl and using continuity equation (19) 
while keeping only the vertical components of the velocity, we obtain 

2 2 21 1
a h S

r a

w R k R k
P t D

∂ θ ϕ
∂

 
− ∇ + ∇ = ∇ + 

 

v v
                                                          (24) 

Where 
2 2

2
2 2h x y

∂ ∂∇ = +
∂ ∂

is the Laplace operator. 

EFFECT OF PERTURBATION AND NORMAL MODE ANALYSIS  
The classical method of Chandrsekhar  [2] for the linear stability analysis was followed. We study the stability of the normal 
mode disturbances by the choice of two dimensional waves in the horizontal plane xy-plane. Following [3] we employ the 
normal mode representation of the form:  

   ( ) ( , ) , ( ) ( , ) , ( ) ( , )t t tw W z f x y e z f x y e S z f x y eθΩ Ω Ω= = Θ = Ψ .                 (25) 

Putting equation (25) into equations (21), (22) and (24), and letting D
z

∂=
∂

  we obtain 

2 2
1( )D a W

M
α αΩ− − Θ = − ,                                                                             (26) 

2 2
1( )D a Le LeWε− − Ω Ψ = − ,                                                                        (27) 

2 2 2 2 2 2
1

1
( ) a s

a r

D a D a W a R a R
D P

 Ω− − − − = Θ − Ψ 
 

                           (28) 

 subject to the condition 

       0,W = Θ = Ψ  at 
1

2
z = ±                                                                                            (29) 

 and   
2 0D W =  on a free-surface                                                                                     (30) 
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 Here a2
 is the wave number arising from the separation of variables (Christopherson), and 

2

1

1 F
α =

+
. 

We study the stability of all possible disturbances for all wave numbers from the system (26)-(30) by eliminating Θ and Ψ
from the system. To achieve this we operate on both sides of (28)  [6]. 

With 
2 2( )D a

M
αΩ− − 2 2( )D a Le ε− − Ω  and obtain  

( ) ( )

2 2 2 2 2 2 2 2
1

2 2 2 2 2 2 2 2 2 2

1
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a r

a S
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D P M

a R D a D a Le a R D D a Le
M M

α ε

α αε ε ε ψ

Ω Ω− − − − − − − − Ω

Ω Ω   = − − − − Ω Θ − − − − − Ω   
   

       

Equation (31) is subject to the conditions: 
2 4

1 1 1 ... 0W D W D W= = = =  at 1/ 2.z = ±                                                           (32)  

Following Chandrasekhar [2], Drazin and Reid [3] for a fluid layer with idealized free-free boundaries in which we seek 
solution of equation (31) in the form  

1 0 sinW W zπ=  (w0 is a constant)                                                                       (33) 

Substituting (33) into (31) yields 
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From which we obtain 
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2 2 2
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S
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D P M M
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    

+ + Ω
  (34).                                                                                             

RESULTS AND DISCUSSION 

The effects of radiation absorption with viscosity on double- diffusive convection in a porous medium, we set 
sa aR R= and 

0Ω = . 
1

Da
χ=  in equation (34) and obtain 

SaR
=  

( ) ( ) ( )
( )

32 2 2 2 2 2 2

2 2 2

Sa a LeR a a

a a

π π χ π

α π

+ + + + +

+
                                (35) 

Following Chardrasekher  [2], the critical value of the wave number Ca a=  is obtain by finding the minimum of ( )
SaR a .   

2

( )
0Sa C

C

R a

a

∂
=

∂
                                                                                                    (36) 

This yields a sixth order polynomial in Ca  given by  
6 2 4 4 22 (3 ) ( ) 0C Ca aπ χ π π χ+ + − + =                                                                      (37) 

0)()3(2 24223 =+−++ χππχπ pp  

Where   
2

0,
2 2
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π πχ = = ⇒ = . 

let
1

0.01
aD

χ = =  in equation (37) 
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Since the wave number Ca is real and positive we take the critical wave number

In the absence of ,F χ   
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This result is in agreement with the results of Israel

In the present of ,F χ  
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The result of the numerical behaviour of viscosity and radiation absorption on the thermosolutal convection the software 
‘‘mathematica’’ is used  [14]. The following numerical results are presented in figure 1
that exists between the thermal Rayleigh number Ra and solutal Rayleigh number Rs and also the relationship between 
thermal Rayleigh number and wave number k.

         

 Figure 1: Dependence of Thermal Rayleigh Number Ra
solutal Rs for various values of Radiation Absorption F.  
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is real and positive we take the critical wave number 2.222
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This result is in agreement with the results of Israel-Cookey et al [6]. 
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The result of the numerical behaviour of viscosity and radiation absorption on the thermosolutal convection the software 
[14]. The following numerical results are presented in figure 1- 3 and it shows a linear relationship 

sts between the thermal Rayleigh number Ra and solutal Rayleigh number Rs and also the relationship between 
thermal Rayleigh number and wave number k. 
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Figure 2: Dependence of Thermal Rayleigh Number Ra
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The result of the numerical behaviour of viscosity and radiation absorption on the thermosolutal convection the software 
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                                      Figure 3: Dependence of Thermal Rayleigh number on wave number k                                                                                                      
                   

CONCLUSIONS 
The effect of radiation absorption on the onset of thermosolutal convection with the effect of viscosity a linear relationship 
was establish with critical thermal Rayleigh number Ra and solutal Rayleigh number Rs for fixed value of Le and χ and of 
various values of F. The increase in radiation absorption parameter delayed the onset of instability in the system.  

For given values of Rs, Ra increases quadratically with wave number (k) for increase values of F.  
The onset of instability is presented in Figures 1 and 2 for various values of radiation absorption in the presence of 

viscosity. The linear relationship that exist between Ra and Rs is also shown in the figures. 
 1) a positive increase in radiation absorption parameter delays the onset of instability 
 2) the effect of viscosity unsettles the system thereby delays the onset of instability          
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