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Abstract 
 

In this paper, variable thermal conductivity on heat transfer over a 
circular cylinder is presented. The concept of assuming constant thermal 
conductivity on materials is however not efficient. Hence, the governing partial 
differential equation is reduced using non-dimensionless variables into a system 
of coupled non-linear ordinary differential equation, which is solved 
numerically. While the analysis on the stability and existence and uniqueness 
for different cases of variable thermal conductivity are shown, and as the 
temperature increases, the points of separation at surface temperature, 
decreases to an asymptotic value. 
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1.0 Introduction: 
 
Thermal conductivities of materials vary dramatically both in magnitude and temperature from one material to another 

due to differences in sample sizes. Though, literature has shown that successful studies had been carried out, but with a 
limitation of assuming constant thermal conductivity on the effect of heat transfer on forced convection boundary layer flow 
past a circular cylinder in a viscous compressible fluid, several authors have studied the effect of heat transfer on 
compressible boundary layer flow of various kinds of dynamic systems. Brown [1] studied the effect of heat transfer on the 
growth of the boundary layer in the impulsive motion of a cylinder in a viscous compressible fluid. Whereas in [4] Hossain et 
al investigated the effect of heat transfer on compressible boundary layer flow over a circular cylinder, where they showed 
that heat transfer parameters has effect in moving the boundary layer upstream, Milena et al [6] examined the thermal 
conductivity and specific heat capacity of several types of granular agricultural products, namely of spring oat and soybean 
and were measured in dependence on moisture content from the dry state to the water fully saturated state, bearing in mind 
that the obtained results will find use in the selection of suitable methods for processing of agricultural products, in a 
qualified assessment of optimal modes of technological processes, and the development of modern fully automatic 
agricultural equipments. Dominguez-Muñoz et al [2] highlighted that increasing attention is being paid to the application of 
uncertainty and sensitivity analysis methods to model validation and building simulation by presenting polynomial fits for the 
average thermal conductivity and its standard deviation as functions of density for typical insulation materials. They 
explained further that insulation materials are extensively used to reduce the heat losses (or gains) from thermal systems like 
buildings, pipes and ducts. Xinwei Wang et al. [10] studied thermal conductivity of Nanoparticle-fluid mixture, where the 
effective thermal conductivity of mixtures of fluids and nanometer-size particles were measured by steady state parallel-plate 
method, using two types of Nanoparticle (Al2O3 and CuO), dispersed in water, vacuum pump fluid, engine oil and ethylene 
glycol and the result showed that the thermal conductivities of Nanoparticle-fluid mixtures are higher than those of the base 
fluids. In this research, we develop sufficient base on the analysis varying different thermal conductivity and heat transfer 
through a laminar boundary layer in the flow of a viscous fluid over a body of arbitrary shape and arbitrary specified surface 
temperature constitutes a very important problem in the field of heat transfer. The difference in the temperature initiates the 
physical contact between the particles, creating kinetic energy and momentum. 
 
2  Formulation of the Problem 
The equations describing the steady flow of compressible, laminar two-dimensional boundary layer flow under the 

assumption that the viscosity ( )µ  is proportional to the absolute temperature ( )T  and the Prandtl number ( )σ  is unity [4],  
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is given as 

( ) ( ) 0u v
x y

ρ ρ∂ ∂+ =
∂ ∂

       (2.1) 

1 1u u p u
u v

x y x y y
µ

ρ ρ
 ∂ ∂ ∂ ∂ ∂+ = − +  ∂ ∂ ∂ ∂ ∂ 

      (2.2) 

2

p

T T p T u
C u v u k

x y x y y y
ρ µ     ∂ ∂ ∂ ∂ ∂ ∂+ − = +     ∂ ∂ ∂ ∂ ∂ ∂     

    (2.3) 

with  
p RTρ=          (2.4a) 

0
o

T

T
µ µ

 
=  

 
         (2.4b) 

subject to the following boundary conditions; 

1 1

0, 0

,
wu v T T at y

u U T T at y

= = = =
= = = ∞

      (2.5) 

where wT  is the constant wall temperature, ( , )x y  are the Cartesian coordinates with x − and y − axes along and normal to 

the surface of the cylinder respectively, ( , )u v  are the velocity components along x − and y − axes, p is the pressure, ρ is 

the density, k  is the thermal conductivity, pC  is the specific heat at constant pressure, R  is the gas constant and the suffix 

o , refers to some standard state, say, 0x = . The main stream velocity 1U  is taken as the velocity in the irrotational motion 

of an incompressible fluid. Thus, if a  is the radius of the cylinder, then, 

1( ) sin( / )U x U x a∞=         (2.6) 

3 Method of Solution 
In obtaining a solution describing the flow and heat transfer equations, equations (2.1) - (2.3) are further reduced to almost an 
incompressible form by applying the Stewartson’s transformations [9]. 

1

000 0

ya
Y

a v

ρ
ρ

= ∫         (3.1) 

0 0u v
y

ψρ ρ ∂=
∂

        (3.2) 

For an incompressible two-dimensional steady laminar flow with ρ = constant, we deduce from equation (2.1) by 

transformation (3.1) and (3.2), the values of 

1
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a
u

a y
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         (3.3) 
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ρ ψ
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∂

        (3.4) 
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Let  0 0
0 0

T p

T p
µ µ
   

≡   
   

, and equation (3.6) becomes 
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2 2
0 1
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       (3.7) 
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1
3 3
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  ∂ ∂ ∂=   ∂ ∂ ∂   
       (3.8) 

furthermore, from equation (2.3), 
2 2 2

1 1
2 2 2
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a aT k T T
k k

y y Y Ya v a v Y

    ∂ ∂ ∂ ∂ ∂= +    ∂ ∂ ∂ ∂ ∂     
    

2 2
1
2 2

0 0

aT k T T
k k
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     (3.9) 

By the Eulerian equation of motion of an inviscid flow, assuming nobody force and steady flow 
1u u p

u v
x y xρ

∂ ∂ ∂+ = −
∂ ∂ ∂

        (3.10) 

If there be a constant flow along the x-direction, and the pressure gradient term is assumed to be known from Bernoulli’s 
equation and applied to the outer inviscid flow, we have 

1u v dU u
u v U

x y dx y y
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   ∂ ∂ ∂ ∂+ = +   ∂ ∂ ∂ ∂   
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      (3.11) 

with ( )1 1,u U T T= =  from the boundary conditions in (2.5). Using the stream function, equation (3.11) becomes 
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    (3.12) 

and by the power law of Isentropic process,  
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Multiplying equation (2.2) by u , and adding it to equation (2.3), taking pC C= , with the boundary condition (2.5) and  
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taking the function S  as relating to the absolute temperature T , with Mach number relation 

2
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1 1 2
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    (3.14) 
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We sufficiently consider a flow in which the Mach number <<1, replacing the factor 0 1a a by unity, hence, the equations 

describing the flow and heat transfer are 
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subject to the boundary conditions 
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The computational constraints involved in solving differential equations, is usually cumbersome, hence, we introduce 
Merkin’s [5] non-dimensionless variables 
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We non-dimensionalize equation (3.16), (3.17) using (3.19) and (3.20), to get 
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At the stagnation point 0ξ = , equation (3.21) and (3.22) becomes 
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Case I 
If we consider thermal conductivity that is linear in S , i.e. 

Sk α+= 1          (3.26) 
then the resulting coupled ordinary differential equation is 
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subject to the boundary conditions of (3.25) 
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        Case II 

If the thermal conductivity is quadratic in S , i.e. 
2 21k Sα= +          (3.29) 

then, we have 
2 1 0f ff f S′′′ ′′ ′+ − + + =        (3.30) 

( ) ( )2 2 21 2 0S S SS f Sα α′′ ′ ′+ + + =       (3.31) 

subject to the boundary conditions of (3.25). Equations (3.27), (3.28) and (3.30), (3.31) along with the boundary conditions 
(3.25) are solved numerically using the Equilibrium (Boundary-Value) method [3] for the different values of surface 

temperature and surface curvature parameter at two different Mach angles 0.3 0.075andα α= = . 

 
4. Properties of Solution 
Existence and Uniqueness of Solution 
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Theorem 2 
There exists a unique solution for problems (3.30) and (3.31), satisfying equation (3.25). 
Proof: 
The condition for existence and uniqueness is established as stated in theorem 1. Hence,  
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applying (3.32), we get 
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 is bounded and there exist k  such that { }1 2 3 4 5 6max 0,1, , , , , ,k m m m m m m=  and 0 k< < ∞ . Therefore, 

( )1 2 3 4 5 6, , , , ,if x x x x x x  are Lipchitz continuous and hence there exist a unique solution. 

 
Stability 
We examine the stability of the model by the Liapounov method and to achieve the desired result, we streamline the 

eigenvalues to be 0 1orλ = − , so as to avoid multiple solutions. 

Theorem 3 
Suppose 0x =  is a stationary point for ( )x f x=& , let the Jacobian matrix A  be a Liapounov function such that 

xxA ∀≤ ,0)(&         (3.37) 
then, equation (3.27), (3.28) and (3.30), (3.31) is asymptotically stable when 0x ≤ . 
Proof: 
Using the system of differential equation 
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      (3.38) 

with stationary points of 3 20 0x and y= =& & , we employed the four stationary points 

1 2 3 1 2( , , , , ) (0,0,0,0,0), (1,0,1,0,2), (1, 2,1,1, 2)x x x y y = − −  and (1,1,1,1,1), such that for different values of Mach 

angle α , 0λ ≤ . Hence, our Liapounov function is asymptotically stable. 
 
5 Results and Discussion 
The result is presented as temperature, separation parameter of thermal conductivity over a circular cylinder in figures 1 to 4. 

And the results show that at 0.3 0.075andα α= =  for both cases of non-linear ODE, as the temperature increases, the 

points of separation at surface temperature decreases to an asymptotic value. 

Generally, an increase in temperature wS , makes its temperature coefficients increase also, thus, it is higher at the initial 

stagnation point 0ξ =  and later break down at the separation point ξ  for values of wS . 
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Figure 1: Variation of Surface temperature with separation 
    Parameter at 3.0=α  for Sk α+= 1  

Figure 3: Surface temperature profile with separation 

    Parameter at 3.0=α  
221 Sk α+=  

Figure 2: Variation of Surface temperature with separation 
    Parameter at 075.0=α  for Sk α+= 1  
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6 Conclusion 

The problem of heat transfer effect over a cylindrical cylinder at different values of thermal conductivity establishes that 
thermal conductivity cannot be assumed to be constant. The reason being that thermal conductivity varies dramatically both 
in magnitude and temperature from one material to another due to differences in sample sizes. Consequently, whenever the 
property of any material is considered, thermal conductivity should not be regarded as a constant. 
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