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Abstract 
 

A study on the influence of viscous dissipation and radiation on 
magnetohydrodynamic Couette flow in a porous medium was carried out. On the 
basis of certain simplifying assumptions, the fluid equation of continuity, Navier-
Stokes and energy were reduced to mathematical terms, and closed-form analytical 
solutions of the velocity distribution and energy were obtained on the basis of 
approximations under the considered parameters. The overall analysis of the study 
of these parameters in various degrees show an increase in the velocity profile of 
the fluid, while radiation parameter decreases the temperature profile; viscous 
dissipation and Reynolds number increase the temperature profile of the fluid. 
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1.0 Introduction: 
 
In the early nineteenth century, Maurice Couette studied the flow of fluid with its motion brought about by the relative 

movement of two parallel plates or surface or where one of the plates or surfaces is moving laterally in its own plane. The 
study was later named after him and defines as two parallel plates moving relative to each other which cause a flow of fluid 
in between them. The plate could be flat, parallel or two concentric cylinders of varying radii, all generally referred to as 
plane Couette flow. It is a steady laminar flow of viscous incompressible fluid between two infinite parallel plates separated 
by a distance (d). Bodosa and Borkakati [2] examined the problem of MHD Couette flow with heat transfer between two 
horizontal plates in the presence of a uniform transverse magnet field. Mebine [6], considering the effect of radiative heat 
transfer to an unsteady flow of a conducting optically thin fluid between two parallel plates. On the basis of certain 
simplifying assumptions, the governing hydrodynamic equation were deduced to mathematical terms and closed form 
analytical solutions of the velocity distribution and energy were obtained and the overall analysis of the study shows that the 
flow variables are affected mainly by radiation and convection parameters in addition to magnetic factor. The manifestations 
of these effects are demonstrated analytically and quantitatively although viscous dissipation parameter in the energy 
equation is assumed negligible and permeability not considered. Oladele et al [9] also examined viscous dissipation effects on 
the flow of a radiating gas between concentric elliptic cylinders with a view to assessing their global contribution to velocity 
and temperature distributions in the flow field. The numerical results obtained for the two cases show that the velocity and 
the temperature of the fluid are increased as a result of increase in thermal internal energy of the fluid caused by viscous 
dissipation. This present study however, is an attempt to complement the earlier work of [8] by investigating the 
simultaneous effects of viscous dissipation and magnetic field to his problem of study. This attempt therefore, widens the 
applicability of problems of this nature. 

 
Formalism 
 
The basic hydrodynamic equations governing the physics of the problem following the argument of Israel –[5] and [6] 

are 
0=⋅∇ V                                                                             (1) 
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Where  0, , , , , , , , , , , zT V P g k H a qρ µ υ ρ∞ are respectively temperature, fluid velocity, fluid density, fluid pressure, 

absolute viscosity, acceleration due to gravity, kinematic viscosity, permeability of the medium, magnetic field, porous 
medium density, thermal diffusivity and radiative term and 
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With the assumptions that: 
the difference in temperature between the plates and that of the fluid is large enough for free convection to flow. In the spirit 
of  [3], (4) reduced to 
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Where   *
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0
k
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∧  is the planck’s function, *k
α  is the absorption coefficient,  *k is the frequency of radiation and T  is the temperature. If 

we put (4a) in (3) and under Boussinesq approximation which restrict the effect of variation of density with temperature 
exclusively to the body force term. With these assumptions, the flow equations that describe the physical situation are given 
by 
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Where ξ  is coefficient of volume expansion 

Pertubation 
Denoting the disturbance in the velocity field, temperature field, and pressure field by 
 

, ,e e eV V V P P P T T T′ ′ ′= − = − = −                                                         (8) 

Where, the subscript e denotes equilibrium values. If we put (8) in (5) , (6) and (7) and retaining only unity terms, we obtain 
the following lincarized equations 
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                                                                                               (9) 
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Non- dimensional analysis 
For dimensional homogeneity of the governing hydrodynamic equations, we substitute the following expressions  
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Having employed the Rayleigh’s technique, into equations (9), (10), and (11), which results in 
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Where M is dimensionless magnetic field parameter, Pr is prandtl number, Ec is Eckert number and Gr is Grashof number. 
(13) and (14) are now subject to the boundary conditions 
 

.)(,0)0(,0)(,1)0( UdVV ===∞= θθ  
Assuming that, the fluid velocity at the wall of the plates is equal to the wall velocity (no-slip condition). 
 
Method of solution 
The problem posed in (13) and (14) are highly nonlinear equations and generally will involve a step by step numerical 
integration of the explicit finite difference scheme. However, analytical solution is possible, if we assume small Reynolds 
number (Re) Bestman [1], Gbadeyan & Idowu [4] and by adopting regular perturbation of the form in Israel- Cookey et al 
[5]. 
 

0 1 0 1( , ) ( ) Re ( ) , ( , ) ( ) Re ( )i t i tZ t Z Z e V Z t V Z V Z eω ωθ θ θ′ ′= + = +                   (15) 

 
Substituting (15) into (13) and (14), neglecting 0(Re 2) and simplifying, we obtain the following sequence of approximations 
after collecting terms of the same order: 
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For 0(1) equations, and 
1 2

1 1 1 1 1( ) Re ( ) ( ) ( ) ( )i t ai V Z V Z Gr Z K V Z M V Zω θ−= + − −                                  (19) 

2 2 1
1 1 1 1 1( ) ( ) ( ) 2Pr ( ) ( )i ti Z Z Z EcV Z V Zωθ β θ α θ ′= − +                                        (20) 
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Subject to:   1 1 1 1(0) 1, ( ) 0, (0) 0, ( )V V d Uθ θ= ∞ = = =                                  (21) 

For 0(Re) equations. 

Where, 
1

p

P
k

Zρ
∂=
∂

  is a constant pressure gradient. 

To solve (16) - (17) and (19) – (20), we further assume that the Eckert number (Ec) is small, and there, advance an 
asymptotic expansion for the flow temperature and velocity as follows 
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Substituting (22) into (16) – (17) and (19) - (20) and neglecting squares and products of perturbation quantities, we obtain the 
following sequence of approximations: 
 

1 2
01 01 01Re ( ) ( ) ( ) ( ) 0i t a

pV Z Gr Z K M V Z Kθ− + − + − =                                      (23) 

01

2 2
01( ) ( ) 0i t Z Zβ θ α θ− =                                                                                      (24) 

1 2
02 02 02Re ( ) ( ) ( ) ( ) 0i t a

pV Z Gr Z K M V Z Kθ− + − + − =                                      (25) 

02

2 2
02( ) ( ) 0i t Z Zβ θ α θ− =                                                                                   (26) 

Subject to:  01 01 02 02(0) 0, ( ) , (0) 0, ( )V V d U V V d U= = = =   

and   01 01 02 02(0) 1, ( ) 0, (0) 1, ( ) 0θ θ θ θ= ∞ = = ∞ =                                   (27) 

For 0(1) equations and  
1 2

11 11 11 11( ) Re ( ) ( ) ( ) ( )i t ai V Z V Z Gr Z K M V Zω θ−′ = + − +                               (28) 

2 2
11 11 11( ) ( ) ( )iti Z Z Zωθ β θ α θ= −                                                                        (29) 

1 2
12 12 12 12( ) Re ( ) ( ) ( ) ( )i t ai V Z V Z Gr Z K M V Zω θ−′ = + − +                            (30) 

2 2
12 12 12( ) ( ) ( )iti Z Z Zωθ β θ α θ= −                                                                      (31) 

Subject to:  11 11 12 12(0) 0, ( ) , (0) 0, ( )V V d U V V d U= = = =   

and   11 11 12 12(0) 1, ( ) 0, (0) 1, ( ) 0θ θ θ θ= ∞ = = ∞ =                                      (32) 

For  0(Ec) equations. 
Solving (26), we assume a solution of the form 
 

   02( ) ZZ eλθ =                                                                                                               (33) 

Substituting (33) into (26) together with the appropriate boundary conditions of equation (27), we get 
  

1
02( ) m ZZ eθ =                                                                                                            (34) 

 If we substitute (34) into (25) and simplify, we obtain  
 

1
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Solutions to (35) after the application of the appropriate boundary condition of (27), gives 
  

6 6 1
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Following the same procedure as in (26), the solution of (31) is given by 
 

2
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Substituting (37) into (30) and simplifying, results 
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2
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The complete solution of (38) is therefore, 
3 4 2
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Following the same steps taken in (26), the solution of (30) can be written as 
2
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Substituting (40) into (28) and rearrangement results in   
2
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Following the approach in determining the solution of (38), the solution of (41) after imposing the boundary conditions of 
(32) is 
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Following the same method in determining the complete solution of (29), (34) can be written as  
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                                                                                                              (43) 
We substitute (43) into (23) and after simplification, we get 
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Following the method adopted in determining the complementary function of (35) and a similar method in solving for the 
particular integral of the same equation, the solution of (44), is given by 
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Substituting (36) and (45) into (22a), gives 
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Also substituting (34) and (43) into (22b) results, 
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                                                                                      (47) 
Again, substituting (42) and (43) into (22c) results, 
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Finally, putting (37) and (40) into (22d), we get  
22

1( ) m Zm ZZ e Eceθ = +                                                                       (49) 

Similarly, if we put (46) and (48) into (15a) and also (47) and (49) into (15b), we obtain the velocity and temperature profile 
of the flow respectively as: 
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For Couette flow, kp = 0 which turns C2 = 0 and (50) reduces to  
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Results 

We have formulated and solved the problem of the influence of viscous dissipation and radiation on magnetodynamic 
Couette flow in a porous medium based on fairly realistic assumptions and approximations. The solutions (51 and 52) of the 
field variables, show that the parameters entering the problem are Reynolds number (Re), free convection parameter or 
Grashof number (Gr), Prandtl number (Pr), viscous dissipation parameter or Eckert number (Ec), dimensionless radiation 
parameter (α), dimensionless magnetic parameter (M), and dimensionless permeability term (ka). Others are constant 
dimensionless frequency of oscillation (ω), constant thermal diffusivity (β), and dimensionless constant time (t). In other get 
physical insight and numerical validation of the problem, a typical value of the Prandtl number corresponding to an 
astrophysical body (Air) at 250c is chosen as 0.71. Air is chosen because it is weakly electrically conducting under assumed  
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circumstances and the problem under study in particular. The values of the other parameters made use of are α = 2.0; t =2.0; β 
= 0.8; kp = 2.5; U = 5; Re =10, 20, 30, 40, 50; Ec = 0.01, 0.05, 0.10, 0.15, 0.20; M2 =2, 4, 6, 8, 10; Ka = 0.4, 0.8, 1.2, 1.6, 2.0; 
α

2 = 2, 4, 6, 8, 10; Gr = 2, 4, 6, 8, 10. 
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Discussions 

In the analysis, we start with the temperature profile due to its primary importance in astrophysics environments. The 
effect of increase in Reynolds number (Re) is shown in Fig 5.1. It is evident that an increase in Reynolds number (Re), shows 
an increase in the temperature distribution. Fig 5.2 shows the effect of viscous dissipation parameter or Eckert number (Ec) 
on temperature and the result shows that further increase in Eckert number leads to a slight increase in temperature and later 
temperature stagnation. This observation is in agreement with the findings of Israel-Cookey et al [5], that a greater heating by 
viscous dissipation caused a rise in temperature. Fig 5.3 displays the variations on temperature profile with various values of 
the radiation parameter (α ). It is evident that an increase in radiation parameter leads to a decrease in the temperature. This 
result is consistent with the findings of Mebine [6] that increase in radiation function, brings about a decrease in temperature. 
Figures 5.4 and 5.5 are graphs of (52). Fig 5.4 shows the effect of magnetic field on the velocity profile. It reveals that 
increase in magnetic field parameter brings about a drastic decrease in velocity profile. 

This result was shared by Mebine [6]. Analysis of figure 5.5 shows that an increase in viscous dissipation parameter 
results in an increase in velocity profile owing to an increase in thermal internal energy of the fluid. In the absence of viscous 
dissipation parameter or Eckert number and magnetic field parameter, the results have already been reported by Ngjangia and 
Wonu [7]. 

 
Conclusion 

In this study, we have provided an approximate solution to the governing hydrodynamic equations. Generally, difficulty 
in closed-form solutions owing to non linearity and sometimes difficult geometries is well known but   realistic assumptions 
and approximations employed in analyzing the problem revealed that, increase in magnetic field parameter and permeability 
term results in an increase in the velocity profile while increase in viscous dissipation, and radiation, results in a decrease in 
the velocity profile. Finally, a decrease in temperature profile is observed when radiation parameter increases but increase in 
temperature profile is observed when Eckert number and Reynolds number are respectively increased. In all, the observed 
result are in qualitative and quantitative agreement with results of earlier works of Ngiangia [8] and Mebine [6] and also 
sheds light on the applicability of problems of this nature. 
 
Appendix  
The following constants have been used. 
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