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Abstract

In this work we study the effect of phonon relaxati process on the absorption
spectra using the Green’s function technique. Thee8n’s function technique which is
widely used in many particle problems is used tdveothe Kubo formula which
describes the optical absorption process. Finale tconfigurational diagram is used to
explain the absorption and emission process.
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1.0 Introduction:

In physics, a phonon is a quasi particle charaxtdrby the quantization of the modes of latticeratibns of periodic
elastic crystal structures of solids [1]. The stoflyhonons is an important part of solid stategitg/because phonons play a
major role in many of the physical properties dids) including thermal and electrical conductiviy phonon is a quantum
mechanical description of a special type of vilaatnotion known as normal modes in classical meckan which a lattice
uniformly oscillates at the same frequency. Whitenmal modes are wave like phenomena in classicaharécs, they have
particle like properties in the wave particle dyaldescription of quantum mechanics. In many malkerlike metals,
superconductors and semi conductors, the couplingnoelectron with phonons is called polaron. Thecteon-phonon
interaction causes superconductivity in many medaid influences the transport properties of eveefain In pure semi
conducting and ionic solids, the electron-phonaeraction usually dominates the transport properiie most theoretical
treatment of kinetic phenomena in pure metals aqreonductors associated with the electron phdmimaction, only
longitudinal phonons are taken into account [2]e Electron phonon interaction is decisive for mprgperties of metals [3]
such as the electrical and thermal resistivity, Hredrenormalization of the linear electronic spedieat. In this work, we
have shown clearly how the phonon relaxation proedfects the absorption spectra by first diagsivadi the Hamiltonian
which describes a localized defect with severakiinds localized electronic states. Then the Gre&mstion technique is
used to solve the Kubo formula [4] which descrithesoptical absorption process.

2.0 Mathematical formulation

One important model is the Hamiltonian (2.1) whi#scribes a localized defect with several posddualized electronic
states, and where each of these states [4] mayahdifferent matrix element for coupling to the pba field:

H=Y,w,ala, +¥:V; (2.1)
Vi = cleile; + g Myi(ag + al)] = hicle; (2.2)
Herea; (aq) creates (destroys) phonous, is the frequency of the phonorag,(ci) creates (destroys) conduction electrons,

V; is the perturbed energy,; is a single state matrix element.
The Hamiltonian H is diagonalized using canonicahsformation, that is

H=eSHeS (2.3)

S=Y;s5= Zic;rci Zqu—‘zi(a; — aq) (2.4)
Afterward, (2.3) can be expanded [5] as follows

H=e’He™ = H+[S,H] +3[S,[S,H]] + = [s, [S,[S, H]]] + o (2.5)

H=e%[3, wqa:gaq +YVies (2.6)
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The transformation done on H must be in such athals™ = —S so thake e = 1. Also using

eSABCD --e~S = (eSAe™5)(eBe~%)(eSCe~%)(e*De~") ..=ABCD ... (2.7)
(2.6) becomes

H= Zq(eswqe‘s)(esa;e‘s)(esaqe‘s) + Y (esVie™) (2.8)
If we expand the second part of (2.8) we have

eSVie s = eS[e;c]c; + Zq Myi(aq + a;r)cTc] =S @8

eSVie™S = (essie‘s)(e ¢ e (e c;e S)+Z(€SM e™) (esaqe‘s)—i-(esaze‘s)](esc;rie‘s)(escie‘s) (2.8b)

Putting (2.8b) into (2 8) we have
H= Zq Wyq qaq +Xi(e — A ¢l (2.9)
Since (e aqe )— aq, (e age 5) =a,

24
Where A= Tqott (2.10)
q

The Hamiltonian (2.1) is written with the electrositates not interacting with each other, exceptigh the phonons. Any
terms which permit a direct interaction betweenstates usually render the Hamiltonian unsolvadtléeast exactly. For
example, terms such as (2.11) are not included.

[c;rcj + c]Tci] XqMgij (aq + a:;) (2.12)
Equation (2.11) permits the particle to changstiége by emitting a phonon. In an optical absorpfimcess, an electron
may change its electronic state, say ficmj, by the absorption of a photon of frequeancyThis process is described by the
Kubo formula, using the current-current correlationction. For optical frequencies such tfat>1, the formula is

Re(0ap) = 55 /., dte™ (jo (£)j5(0)) (2.12)
where (, B) are (x, y, z) indices. The relati@m»1 [4] is easily satisfied, since typicaliy; ~ 2-3ev is in the visible
spectrum, while at room temperatiire40eVv'. For the transition between two localized stattes current operator is

« = Xij Pij,aC;er @)1
The matrix element;R, is treated as a constant in this problem. It pfaysole in the many body Physics which followseTh
correlation function is:

(a(®)jg(0)) = Tijia PijaPrrple] ()¢ cter) (2.14)
Using the Green’s function technique, we can put
= (cgt(t)cj(t)c,tcl) = eﬁ“Tr(e‘ﬁHethc;rc e~ttclc)) (2.15)

Equation (2.15) is now solved exactly by inserting unit operator 1=%&° into the trace and using the cyclic property of
trace, we have

N = efTr(e Fletitxl X clcie XX, clc)) (2.15)
The factors Xresult from the transformation of the particle i@ters:
Hl' = eSCie_s = CiXi (216)
Mgi
Where X; =exp [— qu—‘;(a:g - aq)] (2.17)

The transformed Hamiltonian H in (2.9) is diagoimathe operator ¢ and,.al'he time development of the correlation function
may be found. The electron and phonon parts ofrftte may be separated, which is permissible bedaesX operators do
not depend on particle states:

N = eltleimei= 8t )N, N, (£) (2.18)
N, = Tr[e‘BHc;Lcjc,Icl] (2.19)
Ny = Tr[e PHXT (©)X;(©) X[ (0)X,(0)] (2.20)
Using Wick’s theorem for the electron part, whére subscriptgkl refer to the particle state.
Ny =Trle ¢/ cicie] = n(1-n,)  Putting=k andi=| (2.21)

For the phonon part, the four operators can beegand combined into two. This can be easily damgesheir exponents
commute and we have.

Npp () = exp{—¢u (D} (2.22)
Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011) 107 - 110

108



Phonon Relaxation Process on Absorption Spect  Babalola, lyorzor anddiodi  J of NAMP

where _ (2.23)

Mg and M, are two single states matrix elements, usualy and M, are not equal, at least not for all different w.
vectors, so that phonon effects are present itrémsition
By putting (2.23) into (2.22) we have

(2.24)
Also putting (2.21) and (2.24) into (2.18) we h:
(2.25)
Putting (2.25) into (2.14) we have the resulttfer correlation function for the conctivity
— (2.26)

3.0 Discussion of Result

The model used in section 2.0 describes dynaméxaéibn. In the initial state of the system, thecabon s in a staté,
and the phonons are relaxed about their equilibgonfiguration for the statl. In the optical absorption the electron sti
in statel and ends in state The phonons start with an ecguilibrium configuratabout the point (')q but end the optical
transition with the equilibrium configuration abdhbe point ¢, Y. The phonon system must alter its equilibrium @anétion
during the transition. This change is a relaxapoocess, since it must relax to the new equilibrzonfguration during the
optical step. The effect of the phonon relaxatioacps on the absorption process is contained in (2.24g piocess i
indicated schematically in Figure 3.1 which showsotential energy diagram for each oscillator cowte C, There are
two parabolic curves, with parabolicity . The lower curve describes the ground state ofsgfstem. If there were r
coupling to the particle in statethe phonon parabola would be a minimum at the p@,=0. However, because of t
coupling My to this particle, the potential minimum is aq('). The upper curve describes the final state pakptiergy
curves of the phonons plus particle. The particlergy is , and the curve crosses here because the phon@mslyas thi
energy when 0. This potential energy curve has the minimu@q(k). This minimum has been shown on the other sic
the axis to emphasize thiais usually a point differe than the ground state minimum. Fig 3.1 is callezl¢bnfigurationa
coordinate diagram [6]

N

Absorption \-/L Fluorescence

6%1 Lite)
E i q

2> 2 :
é qi('

Figure 3.2.Energy diagram of an electro
transition with phonon coupling along
configurational coordinatg, anormal mode
of the lattice. The upwards arrows repre
absorption without phonons and with fc
phonons. The downwards arrows repre:
the symmetric process in emiss

Fig 3.1 Configurational coordinate diawing of

the independent boson mald. The wo paratolas
representhe phonon pdential erergy of the inital
ard final electronic statesin the trarsition.
Trarsition path A IS most likely, while pah B
isless likeéy but gives the zem-phcnon prolabili ty.

Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011) 107 - 110
109



Phonon Relaxation Process on Absorption Spectra Babalola, Iyorzor and Idiodi  J of NAMP

The phonon absorption and emission spectra is gyopeplained with the help of Fig. 3.2. The uppearve represents
the final of the relaxation process, while the lowarve represents the initial state of the syst&fen relaxation from the
lower curve to the upper curve takes place, thsipiisies of absorption of dour phonons and withpbionons are indicated
by the upward arrows. Likewise during emission, kiea/e the corresponding release of four phononsadsa without
phonons represented by the downward arrows. Thisegs occurs during the interaction of electroribauit phonons.

3.0 Conclusion

We have looked at the Hamiltonian which describémcalized defect with several possible localizézt®onic states.
By diagonalising the Hamiltonian and also using @reen’s function technique, we were able to dbscthe relaxation
process from one state to the other and hencdfew en the absorption and emission spectra.
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