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 Abstract  
 

In this work we study the effect of phonon relaxation process on the absorption 
spectra using the Green’s function technique. The Green’s function technique which is 
widely used in many particle problems is used to solve the Kubo formula which 
describes the optical absorption process. Finally the configurational diagram is used to 
explain the absorption and emission process. 
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1.0 Introduction: 
 
In physics, a phonon is a quasi particle characterized by the quantization of the modes of lattice vibrations of periodic 

elastic crystal structures of solids [1]. The study of phonons is an important part of solid state physics because phonons play a 
major role in many of the physical properties of solids, including thermal and electrical conductivity. A phonon is a quantum 
mechanical description of a special type of vibration motion known as normal modes in classical mechanics in which a lattice 
uniformly oscillates at the same frequency. While normal modes are wave like phenomena in classical mechanics, they have 
particle like properties in the wave particle duality description of quantum mechanics. In many materials like metals, 
superconductors and semi conductors, the coupling of an electron with phonons is called polaron. The electron-phonon 
interaction causes superconductivity in many metals and influences the transport properties of every metal. In pure semi 
conducting and ionic solids, the electron-phonon interaction usually dominates the transport properties. In most theoretical 
treatment of kinetic phenomena in pure metals and superconductors associated with the electron phonon interaction, only 
longitudinal phonons are taken into account [2]. The electron phonon interaction is decisive for many properties of metals [3] 
such as the electrical and thermal resistivity, and the renormalization of the linear electronic specific heat. In this work, we 
have shown clearly how the phonon relaxation process affects the absorption spectra by first diagonalising the Hamiltonian 
which describes a localized defect with several possible localized electronic states. Then the Green’s function technique is 
used to solve the Kubo formula [4] which describes the optical absorption process. 
 
2.0 Mathematical formulation 

 
One important model is the Hamiltonian (2.1) which describes a localized defect with several possible localized electronic 
states, and where each of these states [4] may have a different matrix element for coupling to the phonon field: 
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Here ��
� ���� creates (destroys) phonons, �� is the frequency of the phonons, �
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) creates (destroys) conduction electrons, 
	
 is the perturbed energy, ��
 is a single state matrix element. 
The Hamiltonian H is diagonalized using canonical transformation, that is  
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Afterward, (2.3) can be expanded [5] as follows 
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The transformation done on H must be in such a way that �� �  �   so that �"!�! � 1. Also using  
     �!./01 , �"!  � ��!.�"!���!/�"!���!0�"!���!1�"!� …=.3/4031� …                                 (2.7)               
(2.6) becomes  
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If we expand the second part of (2.8) we have  
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Putting (2.8b) into (2.8) we have 
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The Hamiltonian (2.1) is written with the electronic states not interacting with each other, except through the phonons. Any 
terms which permit a direct interaction between the states usually render the Hamiltonian unsolvable, at least exactly. For 
example, terms such as (2.11) are not included.   
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Equation (2.11) permits the particle to change its state by emitting a phonon. In an optical absorption process, an electron 
may change its electronic state, say from i to j, by the absorption of a photon of frequency ω. This process is described by the 
Kubo formula, using the current-current correlation function. For optical frequencies such that βω»1, the formula is  
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where (α, β) are (x, y, z) indices. The relation βω»1 [4] is easily satisfied, since typically ћωi  ≈ 2-3ev is in the visible 
spectrum, while at room temperature β=40ev-1. For the transition between two localized states, the current operator is  
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The matrix element Pij,α is treated as a constant in this problem. It plays no role in the many body Physics which follows. The 
correlation function is:  
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Using the Green’s function technique, we can put  
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Equation (2.15) is now solved exactly by inserting the unit operator 1=e-s es into the trace and using the cyclic property of 
trace, we have 
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The factors Xi result from the transformation of the particle operators:  
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The transformed Hamiltonian H in (2.9) is diagonal in the operator c and aq. The time development of the correlation function 
may be found. The electron and phonon parts of the trace may be separated, which is permissible because the Xi operators do 
not depend on particle states: 
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Using Wick’s theorem for the electron part, where the subscripts ijkl refer to the particle state. 
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For the phonon part, the four operators can be paired and combined into two. This can be easily done since their exponents 
commute and we have. 
                     O\]�E� � �UV_ φab�t�d                                                                                      (2.22) 
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where        

Mqk and Mql are two single states matrix elements, usually M
vectors, so that phonon effects are present in the transition.
 By putting (2.23) into (2.22) we have  

                   

Also putting (2.21) and (2.24) into (2.18) we have 

 

                                                                                                                             
Putting  (2.25) into (2.14) we have the result for the correlation function for the conduc

 

 
3.0 Discussion of Result  

The model used in section 2.0 describes dynamic relaxation. In the initial state of the system, the electron i
and the phonons are relaxed about their equilibrium configuration for the state 
in state l and ends in state k. The phonons start with an equilibrium configuration about the point Q
transition with the equilibrium configuration about the point Q
during the transition. This change is a relaxation process, since it must relax to the new equilibrium conf
optical step. The effect of the phonon relaxation process
indicated schematically in Figure 3.1 which shows a potential energy diagram for each oscillator coordinate Q
two parabolic curves, with parabolicity 
coupling to the particle in state l, the phonon parabola would be a minimum at the point Q
coupling Mql to this particle, the potential minimum is at Q
curves of the phonons plus particle. The particle energy is 
energy when Qq=0. This potential energy curve has the minimum at Q
the axis to emphasize that it is usually a point different
coordinate diagram [6] 
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are two single states matrix elements, usually Mqk and Mql are not equal, at least not for all different wave 
vectors, so that phonon effects are present in the transition. 

          

Also putting (2.21) and (2.24) into (2.18) we have  

                                                                                                                                                                   
Putting  (2.25) into (2.14) we have the result for the correlation function for the conductivity   

The model used in section 2.0 describes dynamic relaxation. In the initial state of the system, the electron i
and the phonons are relaxed about their equilibrium configuration for the state l. In the optical absorption the electron starts 

. The phonons start with an equilibrium configuration about the point Q
transition with the equilibrium configuration about the point Qq

(k). The phonon system must alter its equilibrium configuration 
during the transition. This change is a relaxation process, since it must relax to the new equilibrium conf
optical step. The effect of the phonon relaxation process on the absorption process is contained in (2.24). The process is 
indicated schematically in Figure 3.1 which shows a potential energy diagram for each oscillator coordinate Q

. The lower curve describes the ground state of the system. If there were no 
the phonon parabola would be a minimum at the point Qq=0. However, because of the 

to this particle, the potential minimum is at Qq
(l). The upper curve describes the final state potential energy 

curves of the phonons plus particle. The particle energy is k, and the curve crosses here because the phonon system has this 
=0. This potential energy curve has the minimum at Qq

(k). This minimum has been shown on the other side of 
it is usually a point different than the ground state minimum. Fig 3.1 is called the configurational 
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are not equal, at least not for all different wave 

 (2.24) 

   (2.25)               
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The model used in section 2.0 describes dynamic relaxation. In the initial state of the system, the electron is in a state l, 
In the optical absorption the electron starts 

. The phonons start with an equilibrium configuration about the point Q(l)q but end the optical 
. The phonon system must alter its equilibrium configuration 

during the transition. This change is a relaxation process, since it must relax to the new equilibrium configuration during the 
n the absorption process is contained in (2.24). The process is 

indicated schematically in Figure 3.1 which shows a potential energy diagram for each oscillator coordinate Qq. There are 
. The lower curve describes the ground state of the system. If there were no 

=0. However, because of the 
. The upper curve describes the final state potential energy 

, and the curve crosses here because the phonon system has this 
. This minimum has been shown on the other side of 

than the ground state minimum. Fig 3.1 is called the configurational 
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Energy diagram of an electronic 
transition with phonon coupling along the 
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of the lattice. The upwards arrows represent 
absorption without phonons and with four  
phonons. The downwards arrows represent  
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The phonon absorption and emission spectra is properly explained with the help of Fig. 3.2. The upper curve represents 
the final of the relaxation process, while the lower curve represents the initial state of the system. When relaxation from the 
lower curve to the upper curve takes place, the possibilities of absorption of dour phonons and without phonons are indicated 
by the upward arrows. Likewise during emission, we have the corresponding release of four phonons and also without 
phonons represented by the downward arrows. This process occurs during the interaction of electrons without phonons.                    

3.0 Conclusion 
 
We have looked at the Hamiltonian which describes a localized defect with several possible localized electronic states. 

By diagonalising the Hamiltonian and also using the Green’s function technique, we were able to describe the relaxation 
process from one state to the other and hence the effect on the absorption and emission spectra. 
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