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Abstract

In this paper, the response to moving distributechsses of a simply supported elastic thick beamingsbn an elastic

foundation with exponential rigidity is presente@he technique is based on the generalized Galerkimiethod and integral

transformation. Exact solutions are obtained anddtconvergence of these solutions established. &wig obtained are

calculated for various values of foundation moduffi, axial force N, and damping coefficient, . It is observed that, as the
values of these structural parameters increase, thensverse deflections of the finite elastic beamder the actions of

moving masses decreases. Furthermore, the cond#tiamder which the vibrating systems will experiencesonance

phenomenon are highlighted. Results presented imsthaper are useful in structural engineering designd could also

form basis for further investigations in this areef study.

Introduction:

This paper is concerned the problem of dynamic Wieha of elastic beam with exponentially varyingifalation and under
a moving partially distributed load. Studies inustural dynamics dealing with moving loads on beisigre enormous and have
been enriched in the last few decades by the der®lat of high-speed railway networks in the devetbpountries. Similarly,
there exist remarkable advances in various branch&ansport. These advances are characterizéacbyasingly higher speeds
and weights of vehicles. Hence, structures and anesler which the vehicles move have been subjeittedbrations and
dynamic stresses far larger than ever before. Tthese is the need for continuous study of the Wielua of bodies subjected to
moving loads. Such studies will, for instance, levsafer and more economic design of structurestoch the loads move.

The problem of concentrated forces moving with tamis velocity along a slender member when dampifigces is
neglected has been investigated extensively. fiteghas worked on the finite beam with moving Ipf8B] studied the vibration
of a beam under random stream of moving forceshd il 6] scrutinized non-stationary response oéarb to a moving random
force, [17] have considered vibration of an elabam subjected to discrete loads, [18] have aistexl non-linear vibration of
Timoshenko beam due to moving force and the weafittie beam. Florence [20] has handled the proloietraveling force on a
[4] have considered dynamics behaviour of beamsrectdngular plate under moving loads while [14hted the oscillations of
infinite periodic beams subjected to a moving comeged force.

In a more recent development, [7] considered tfectsf of damping and exponentially decaying fouimthabn the motions
of finite beam subjected to concentrated loads. [atter authors [22] also considered dynamic respaf structurally damped
beams with rotatory inertia correction factor tovimg concentrated forces. In these studies, effetamping forces on the
dynamic systems are well investigated. In all trefeeementioned studies however, the scope ofeduutive been limited to the
cases in which the traveling load is assumed tpdit-like. The more practical cases in which taelling loads is assumed to
be distributed has not been extensively studidds Wwell known that in reality, moving loads arsually distributed, but not
point-like. Therefore, this paper investigates tlypamic behaviour of elastic beams with expon#pt@decaying foundation
under moving distributed masses.
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2. THE BASIC EQUATION
The transverse displacem@ntx,t), of a uniform finite beam resting on an elastiarfdation of the exponential rigidity

and carrying n massesiNI=1,2....... n) is governed by the fourth order diﬁeﬁahéquatioﬁs] .

W (x.t) , R,0*W (x,t) 2.1)

0 ‘W (x,t) . 0°W (x,t) + D oW (x,t)
’ ax? dx20t?

)
! ax* at? at

+ D W (x,y)=lP(X,t)+ N° 9
U

where
D, = E%z D, = e%st = Fe " F, = k%, N° = %and X is the spatial coordinate, E is the young uhesd, | is

the moment of inertia, W(x,t) is the transverseldisement response of the vibrating beam, N is#@ force, 1/ is the mass

per unit lengthg, is the damping coefficient, K (x) is the non-umifoelastic foundation, Rs the measure of rotating inertia
effect and P (x,t) is the time dependent distridut®ving load.
The time tis assumed to be limited to that inteofdime when the masg/ is on the beamthatg< Ct < L

In this study, a simply supported beam is considand thus the following boundary conditions perta

W (x,t)=0=W (L,t), IWO.1) _ 5 _ 9°W (L,t) (2.2)
ox ax’?
and the initial conditions are
W(X,O): 0= w (24)
t
We assumed that the beam is continuously suppbytethstic foundation whose rigidity is of exponahtorm given by
K (x) = K e ** (2.5)

where A is a constant ang . is the elastic foundation constant.

To treat (2.1), two special cases are considered.
i. When the distributed load P(x,t) is assumed to benstant type and take the form

P(x,t) = PH (x—c,t) (2.6)
ii. When the distributed load P(x,t) is assumed tofbexying magnitude and take the form
P(x,t) = Pe™H (x-c;t) (2.7)

3 Case 1
Dynamic response of structural elastic beams with &atory inertia correction factor
under constant magnitude moving distributed masses.
The distributed moving loads P(x, t) in equatiorljds assumed to be of constant magnitude ingbdtion thus we

have
P(x,t) = PH (x—c,t) (3.1)
cmis the velocity of the fparticle of the system. Substituting equation 8o equation (2.1) gives
‘W (x,t 9°W (x,t AW (x,t 9°W (x,t R,0 ‘W (x,t) =
D, a)((4>< ), at(2x )+D2 0(tx )+D3W(X’y)_N0 ax(zx ) _ axzaiz ) %PH (x - cot) (3.2)

Equation (3.2) above represents the motioa tthnsverse displacement of a uniform finite besrtler moving distributed
loads. In what follows, we seek the solution oR}3though the equation may vyield readily to nun@rtechnique, but an
analytical solution is desirable as the solutiorobtained often shed light on vital information abthe vibrating system. Thus,
to this end we make use of a versatile analyteeinique called assumed mode method.

3.1 SOLUTION PROCEDURE
By applying the assumed mode technique, the dyndeflection W(x,t) of the vibrating beam, can hétten as

W, (x.1) = 3 R, (t)P, (x) (3.3)

where R(t) are coordinates in modal space
P.(X) is the normal mode of vibrations of the beard &ngiven as

P_(x) = Sina, x+ A Cosa, x + B, Sinha_x + ¢, Cosha, x (34)

Thus, for a simply supported beam, it can be shivahp =B =C_ =0 anda, = mz
"L

where A, B, and G, are constants that can be determined using thediaoy conditions.
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Thus for a beam with simple supports at both eqdsiton (3.4) takes the form
P (x) = S'n@ (3.5)

In view of the equation (3.5), the transverse dispinent response of a simply supported elastic basimg an assumed mode
method can be written as

W, (x,) :Zn“R\n(t)S'n@ (3.6)
m=1
Substituting equation (3.6) into the governing eiume(2.6) and after some simplifications and agements we obtain

Z{Dl(”l’T)“Rﬂ(t)Snmf“Rn<t>3nmf*+w°<”l”)zaﬂ(t)snmfx+

m=1
: 77X — . M7TX| 1 3.7
D,R Sn——+Dge R (1)Sn—— - PH(x-c,0) =0 (3.7)
L L H
The solution technique requires that the RHS ofiqn (3.4) be orthogonal to the functigm@
L

Thus, multiplying equation (3.7) byin™™ and integrating from 0 to L with respect to x afssme simplifications and
L

rearrangements yield

o . : 1% - Kk7rxdx
S{H.R,®+H,R, 1) +HR, 0 +HR, 0 +HR, 0 +HR, 1) =, [PH(x=c)sin (3.8)
m=1 0
where
4
_ mr) i mirx . kmx a0l MTX . KiTX
Hl‘Dl(L) JosnTmanTmdk Hy =N°JSn= Sn= F
2
H, = ILSin m7x Sin—knx dx, H,=r, (m77) _[LSin M7X Sin k77X dx,
0 L L 0 L L
H, =D, [ sin ™% sin KX gy, Hy = Fof e sin sm%m, (3.9)
and over-dot represents the partial derivative watpect to time t.
We note the following properties of the Heavisidadtion
0] diH (x-ct)=0J(x~ct) (3.10)
X
M f(x)H (x-ct) = 0. = (3.11)
f (x), X = ct
Thus using equations (3.10) & (3.11), equation)(8a$ be written after some rearrangements as
S {R, (D) + QR (1) + Q,R, (D} = Q.Cosht (3.12)
m=1
Where
le H5 , Q2:H1+H2+H6,
Hy+H, H,+H,
0, =1 PO andg = X7Cn (3.13)
u(H;+H,) L
Now considering only the fhparticle of the dynamical system we have
R, (1) + Q,R, (1) + Q,R, (t) = Q,Cosht (3.14)
Subjecting the second order ordinary differerdi@liation (3.14) to a transformation
(7)= _[(-)e‘s‘dt (3.15)
0
in conjunction with the initial conditions definé@d equation (2.3), yields the following algebraiguation
S
(S*+ QS+ Q)R (8) = Qo gy, 57 (3.16)
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It is straight forward to show that equation (3a8r some simplifications and rearrangements gield
R (s)=_ [ S 1 s 1 ] (3.17)

(Vi -v)\S7+6° S-y, S?+67 S-y,

where

y = -Q, + /le -4Q, andy _ -Q, - \/le -4Q, (3.18)

v 2 2 2
In order to obtain the Laplace inversion of equati®.17), we shall adopt the following representai

-__S _ 1 and _ 1 (3.19)

9(s) S2 4 g2’ fi(s) = s-y, f.(s) = S-,
So that the Laplace inversion of equation (3.1Thésconvolution of;fand g defined as

fi0g = [ fi(t-m)g(u),i=1,2 (3.20)
Thus the Laplace inversion of (3.17) is given Ry (t) = Q, [emzl —ertz 2] (3.21)
Where z = J';e'““ cosfuduandz, = j;e‘yzu cos@udu (3.22)
Thus in view of equation (3.21) and taking into@aut integrals (3.22) we get
R, (1) = Qu/y . [(e“l —cosat)—gsinet]" Q3y22 > {(ey2t —cosHt)—gsinHtj

(yl—yz)(6’2+yl) Va (Vy = v,)(8 +y2) 2
(3.23)
which on inversion yields -
y W (x,t) = Qaty > [(e“‘—cos@t)—isinet]
m=1 (yl_yz)(02+yl) Vi

- QaV» - [(e“‘ - coséft)- La sinet] sin/TX (324)
Va =)@+ ) 2 L

which represents the dynamic response of a stallstidamped elastic thick beam resting on expoad#intdecaying foundation

and subjected to partially distributed constant imgload.

In what follows we now establish the convergenicie series solution (3.24)

4.0. THE CONVERGENCE OF THE SERIES SOLUTION
To show that the series solution (3.24) convergesonly need to demonstrate that the coefficiEh,t(t) of the spatial
sine term in equation (3.24) is convergent. Whidenote we can write

7] Wt e o
Q, Vl(“{yz_e H yz[“{yz y H @.1)

Rm(t) < (yl — y2) (52 + Vf) + (52+ y22)

Now, using equation (3.13), we have

PkmC i_ it i_ yat
prc  nfee o)) nfefy-e))
L 1[ V2 + ’ V2 1 (4.2)

X
(yl—yz)(rogz +;j (67 +r) (62 +v7) m*

R, (1) < -

Therefore, the coefficientR, (t) and the solutioW (X, t) converges asn™,

5.0 Case ll
Dynamic response of structurally elastic beams whitRotatory inertia correction factor
Foundation under Harmonic variable magnitude movingdistributed masses.
The dynamic response of finite beam with expondéiytidecaying foundation under harmonic variable magle moving
distributed masses is investigated. Thus, the R{adt) is given as

P(x,t) = Pe”™H (x—cjt) (5.1)
where all parameters x,&nd t are as defined previously, using equatial) (& equation (2.1) and taking into account
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equation (2.5)

0'W (x,t) = 9°W (x,t) oW (x,t) o 0°W (x,t) R, O'W (X,1)
D + + D +DW(x,y)- N -2
tooaxt at?2 2 a9t W (x.y) ax2 ax20t?
=L peay (x - Cjt) (5.2)
7

Equation (5.2) is the governing equation describihg motion of structurally elastic beam with exeotially decaying
foundation subjected to fast moving distributeddoaf varying magnitude. Closed-form solution toiagpn (5.2) is sought as in
the previous section.

In this view, use is made of an assumed mode metheddy alluded to and by this method, the trarsevdeflection W(x,t) of

a thick beam under the action of variable magnitudeing load can be written as

W, (x.t) = Y R, (P, (x) (5.3)

where R (t) are coordinates in modal space ay(#l)Pare the normal modes of free vibration. Thus feimaply supported beam
equation (5.3) becomes

w,(xt) =3 R, (t)SinjLﬂ (5.4)

Using equation (5.4) in equation (5.2) and follogvithe same arguments similar to the previous sediod after some
simplifications and rearrangements one obtains

Zw: {RJ (1) + Q,R; (t) + Q,R, (t)} = Q3e_“tcosiﬂxcj (5.5)

L
where ¢is the velocity of the'] particle of the system and other parameters adefased previously.

By considering only thd"jparticle of the dynamical system we get

R; (1) + QuR; (1) + Q,R; (1) = Q;@ ' cosnt (56)
Equation (5.6) is analogous to equation (3.14)j&uing equation (5.6) to Laplace transform in coion with the boundary
condition (2.2) and using convolution theory weaiiot

R, (t) = &[{,@94 (cosqt - 994‘)} + B0, @™ - cogit )+ (B~ B,)sinnt] (5.7)

(6, - 6,)
which on inversion yields
_ % _1Qs _ .04 o5t _ _ i i 171X (5.8)
W, (x,t) ;Z:l @.-0) [{/5’264 (cosryt e )} + 4.0, @ cogpt )+(B, - B,)sinnt]Sin 3

which represents the dynamic response of a stalltidamped elastic thick beam resting on expoaéwptdecaying foundation
and subjected to partially distributed harmonidafale magnitude moving load. It can be shown, feiig the same procedures
as in the previous sections that series solutid) onverges rapidly.

6.0 DISCUSSION OF CLOSED FORM SOLUTIONS

The response amplitude of a dynamical system siscthis may grow without bound. Condition under chihthis
happens is termed resonance conditions. Evideintdyn equation (3.22) a structurally elastic dathpleick beam resting on
exponentially decaying foundation and subjectecbiustant magnitude moving loads will experiencemasace effects when

Vi=V,-yi =6%r -y;=6°* (6.1)
and the velocity at which this occurs is termeddtiical velocity and it is given by
L 2
Caz :(4Q2+2Q1(Q12—4Q2)1/2— Zle)x(k”) (6.2)

While the same system traversed by a structurédistie damped thick beam in equation (5.8) andestibg to harmonic variable
magnitude moving loads will experience resonanfectf whenever

6,=6,-02=n%r-62=n* (6.3)
And the velocity at which this occurs, is knowncatical velocity and it is given by the relation
2
CbZ :(4Q2+2Q1(Q12_4Q2)1/2_ 2Q12)x(%j -w (6.4)

Equations (6.1) and (6.3) show that for the santerakfrequency, the critical speed for the sysmnsisting a structurally
damped beam on exponentially decaying foundati@huarder the actions of constant magnitude traxgliad is smaller than
that of the system involving elastic beam underdbions of harmonic variable magnitude movingdlo&hus, resonance is
reached earlier in latter than in the former.

7 NUMERICAL RESULT S AND DISCUSIONS
In order to illustrate the analytical results, sheucturally damped thick beam is taken to been§th /12.192m.
Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011)91 - 98
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Other values used are velocity, ¢ of the distriduteds which is taken to be 8.128m/s. The fleligidity El is 6068242rs”.
The values of foundation moduli are varied betw@liim® and 4 x 18 N/M3, the values of axial force N are varied between 0
N/M3 and 2 x 18N/M3 and the values of rotatory inertigare varied between 0 and 2 . The transverse displent response of a
structurally damped thick beam resting on expoadytdecaying foundation and under the actiongafeling distributed forces
are calculated and plotted against time for bothstant and variable magnitude cases and for vanaluses of foundation
moduli Ko, damping coefficient,, axial force N and rotatory inertig r

Figures 7.1 and 7.5 display the effect of axiatéoN on the transverse deflection of a structurddignped thick beam resting on
variable elastic foundation under the actions akdling distributed forces for both constant andialde magnitude loads
respectively for fixed values ofgKey, N and §. The graphs show that the response amplitude aleeseas axial force N increases.
In figures 7.2 and 7.6, the response amplitudestiftecturally damped thick beam resting on variaiéestic foundation when the
traversing distributed forces are of constant aarthble magnitude respectively are depictedis dtearly seen that as the values
of foundation moduli Kincrease, for fixed values of the damping coedfiti,, axial force N and rotatory inertig theresponse
amplitudes decrease.

DEFLECTION(x ]

Figure 7.2: Displacement response of a simply stpgo
structurally damped thick beam resting on expaatynt
decaying foundation and subjected to constant madmmi
moving loads for various values of foundation mo#ul
and for fixed values of axial force N = 200,00Gatory

inertia 1,=0.5 and damping coefficies, = 7€

Figure 7.1: Transverse displacement responseioffys
supported structurally damped thick beam resting on
exponentially decaying foundation and subjectecbimstant
magnitude moving loads for various values of afaede N
and for fixed values of foundation modulj K 400,000,
rotatory inertiag=0.5 and damping coefficiens = 78

Figure 7.3: Response amplitude of a simply supgorte
structurally damped thick beam resting on expoadnti
decaying foundation and subjected to constant rmadmi
moving loads for various values of damping coéffitey
and for fixed values of axial force N = 200,000,
rotatory inertia 4=0.5 and foundation moduligkc 400,000

CERLECTIONU2X]

s.00E-02

Figure 7.5: Transverse displacement responseiafdys
supported structurally damped thick beam resting on
exponentially decaying foundation and subjecteldaamonic
variable magnitude moving loads for various valokeaxial
force N and for fixed values of foundation modugi#&400,000,
rotatory inertia4=0.5 and damping coefficiens = 43
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Figure 7.4: Displacement response of a simply stpgo
structurally damped thick beam resting on expoadinti
decaying foundation and subjected to constant madmi
moving loads for various values qf and for fixed values
of foundation moduli i axial force N = 200,000 and
damninn coefficient, = 7¢

SoERLECHONUZIY

Figure 7.6: Deflection profile of a simply suppatte
structurally damped thick beam resting on expoadénti
decaying foundation and subjected to Harmonic bégia
magnitude moving loads for various values of fouita
moduli Ky and for fixed values of axial force N = 200,000,
rotatory inertia4=0.5 and damping coefficiens = 43
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Figure 7.7: Transverse displacement response offys Figure 7.8: Response amplitude of a simply supgorte
supporte_d structura_lly damped_th|ck beam_restmg o structurally damped thick beam resting on expoaénti
exponennally d.ecaymg fqundanon and sgbjecteldannomq decaying foundation and subjected to Harmonic béia
variable magnitude moving loads for various valoiedamping magnitude moving loads for various values,amd for
coefficienteo and for fixed values of foundation moduly K 400,000, fixed values of damping coefficient=37 ,axial force N =

rotatory inertia4=0.5 and axial force N=200,000 200,000 and foundation moduli¥ 400,000
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Fig 7.9:Comparison of the response amplitude afaly

supported structurally damped thick beam resting>qronentially

decaying foundation and subjected to constant\arthble magnitude

moving loads for fixed values of damping coeéfiit e,=37 ,

axial force N = 200,000, rotatory inertig0.5 and and foundation moduli ¥ 400,000

The transverse displacement response of a strilgtprastressed damped thick beam resting on Marialastic foundation
under the actions of traveling distributed foramstoth constant and variable magnitude loads epéctéd in figures 7.3 and 7.7
respectively. The graphs show that higher valuedarfping coefficient, and for fixed values of foundation modulp k
400,000, rotatory inertia*0.5 and axial force N=200,000 reduce the deflegiimfiles in both cases.

The effect of rotatory inertia, ron the transverse deflection of a structurallyspresssed damped thick beam resting on
variable elastic foundation under the actions a¥eting distributed forces for both constant andalde magnitude loads for
fixed values of I, e, and N are displayed in figures 7.4 and 7.8 raspdg. The results show that as the rotatory iners
increases the maximum amplitude of the beam dezse&@mally, Figure 7.9 depicts the comparisothefresponse amplitude of
a simply supported structurally damped thick beasting on exponentially decaying foundation andestibd to constant and
variable magnitude moving loads for fixed valeésdamping coefficient,=63 ,axial force N = 200,000, rotatory inertjz0.5
and and foundation moduligkc 400,000. Clearly, the response amplitude of Wégianagnitude moving load is higher than that
of the constant magnitude moving load.

7. CONCLUSIONS

The problem of the dynamic response of acsirally damped thick beam with exponentially désgyfoundation resting on
variable elastic foundation under the action ofefang distributed masses has been investigatesb, Alumerical analysis has
been carried out by way of illustration, for sturatly damped beam under the action of constantnihate moving distributed
masses and harmonic variable magnitude movinglaliséd masses. The analysis shows that:

0] the transverse displacement response of the elasticn decreases as the value of axial force Nases=for
fixed values of foundation modulus,Kotatory inertiagand damping ratic, .
(i) the higher the value of foundation stiffnesstie lower the deflection profile of the beam fixefl value of the

beam parameters axial force N, rotatory inegtiand damping coefficied, .
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(iii) for fixed values of axial force N, rotatory inertipand foundation modulusgkthe response amplitude of the
vibrating beam reduces as the values of dampinfficieet £, increase.

(iv) as the values of rotatory inertigincrease, the displacement response of the bedues for fixed values of
axial force N, foundation moduliand damping coefficieis, .

(v) the critical velocity of the vibrating system inviig structurally damped beam under the actionistfibuted

moving masses increases as the values of the pasmeters namely foundation stiffness #&xial force N,
rotatory inertia gand damping coefficie®, increase thereby reducing the risk of resonance.
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