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Abstract 

 
In this paper, the response to moving distributed masses of a simply supported elastic thick beam resting on an elastic 
foundation with exponential rigidity is presented. The technique is based on the generalized Galerkin’s method and integral 
transformation. Exact solutions are obtained and the convergence of these solutions established.  Solutions obtained are 
calculated for various values of foundation moduli K, axial force N, and damping coefficient ε0 .  It is observed that, as the 
values of these structural parameters increase, the transverse deflections of the finite elastic beam under the actions of 
moving masses decreases. Furthermore, the conditions under which the vibrating systems will experience resonance 
phenomenon are highlighted. Results presented in this paper are useful in structural engineering design and could also 
form basis for further investigations in this area of study. 

 
 

Introduction: 
This paper is concerned the problem of dynamic behaviour of elastic beam with exponentially varying foundation and under 

a moving partially distributed load. Studies in structural dynamics dealing with moving loads on bridges are enormous and have 
been enriched in the last few decades by the development of high-speed railway networks in the developed countries. Similarly, 
there exist remarkable advances in various branches of transport. These advances are characterized by increasingly higher speeds 
and weights of vehicles. Hence, structures and media over which the vehicles move have been subjected to vibrations and 
dynamic stresses far larger than ever before. Thus, there is the need for continuous study of the behaviour of bodies subjected to 
moving loads. Such studies will, for instance, provide safer and more economic design of structures on which the loads move. 

The problem of concentrated forces moving with constant velocity along a slender member when damping effects is 
neglected has been investigated extensively. Steel [12] has worked on the finite beam with moving load, [13] studied the vibration 
of a beam under random stream of moving forces. Frybal [16] scrutinized non-stationary response of a beam to a moving random 
force, [17] have considered vibration of an elastic beam subjected to discrete loads, [18] have also studied non-linear vibration of 
Timoshenko beam due to moving force and the weight of the beam. Florence [20] has handled the problem of traveling force on a 
[4] have considered dynamics behaviour of beams and rectangular plate under moving loads while [14] treated the oscillations of 
infinite periodic beams subjected to a moving concentrated force. 

In a more recent development, [7] considered the effects of damping and exponentially decaying foundation on the motions 
of finite beam subjected to concentrated loads. The latter authors [22] also considered dynamic response of structurally damped 
beams with rotatory inertia correction factor to moving concentrated forces. In these studies, effects of damping forces on the 
dynamic systems are well investigated. In all these aforementioned studies however, the scope of studies have been limited to the 
cases in which the traveling load is assumed to be point-like.  The more practical cases in which the travelling loads is assumed to 
be distributed has not been extensively studied.  It is well known that in reality, moving loads are usually distributed, but not 
point-like.  Therefore, this paper investigates the dynamic behaviour of elastic beams with exponentially decaying foundation 
under moving distributed masses. 
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2. THE BASIC EQUATION   
 The transverse displacement( , )W x t , of a uniform finite beam resting on an elastic foundation of the exponential rigidity 

and carrying n masses Mi (i=1,2…….n) is governed by the fourth order differential equation[ ]8 . 

4 2

1 2 34 2

( , ) ( , ) ( , )
( , )

W x t W x t W x t
D D D W x y

tx t

∂ ∂ ∂+ + +
∂∂ ∂

=
42

0
2 2 2

( , )1 ( , )
( , ) oR W x tW x t

P x t N
x x tµ

∂∂+ +
∂ ∂ ∂

       (2.1) 

 where 

0
1 2 3 0, , xE ID D D F e λε

µ µ
−= = = , 0

0
kF µ= , 0 NN µ= and x is the spatial coordinate, E is the young modulus ,I is 

the moment of inertia, W(x,t) is the transverse displacement response of the vibrating beam, N is the axial force, µ   is the mass 

per unit length, ε0 is the damping coefficient, K (x) is the non-uniform elastic foundation, Ro is the measure of rotating inertia 
effect and P (x,t) is the time dependent distributed moving load. 
The time t is assumed to be limited to that interval of time when the mass µ  is on the beam that is 0 iC t L≤ ≤  

 In this study, a simply supported beam is considered and thus the following boundary conditions pertain. 

( , ) 0 ( , )W x t W L t= = ,  
2

2

( 0 , ) ( , )
0

W t W L t

x x

∂ ∂= =
∂ ∂

    (2.2) 

and the initial conditions are 

( , 0 ) 0W x = =  ( , 0 )W x

t

∂
∂

       (2.4) 

We assumed that the beam is continuously supported by elastic foundation whose rigidity is of exponential form given by  

0( ) xK x K e λ−=         (2.5) 

where λ  is a constant and 
0K is the elastic foundation constant. 

To treat (2.1), two special cases are considered.   
i. When the distributed load P(x,t) is assumed to be a constant type and take the form 

( , ) ( )mP x t P H x c t= −         (2.6) 

ii.  When the distributed load P(x,t) is assumed to be of varying magnitude and take the form 

( )( , ) t
jP x t P e H x c tω−= −        (2.7) 

3 Case 1 
Dynamic response of structural elastic beams with Rotatory inertia correction factor  
under constant magnitude moving distributed masses. 
 The distributed moving loads P(x, t) in equation (2.1) is assumed to be of constant magnitude in this section thus we 
have  

( , ) ( )mP x t P H x c t= −                             (3.1) 

cmis the velocity of the mth particle of the system. Substituting equation (3.1) into equation (2.1) gives 
 

44 2 2
0

1 2 34 2 2 2 2

( , )( , ) ( , ) ( , ) ( , )
( , ) oR W x tW x t W x t W x t W x t

D D D W x y N
tx t x x t

∂∂ ∂ ∂ ∂+ + + − −
∂∂ ∂ ∂ ∂ ∂

= ( )1
mP H x c t

µ
−    (3.2) 

     Equation (3.2) above represents the motion of a transverse displacement of a uniform finite beam under moving distributed 
loads.  In what follows, we seek the solution of (3.2), though the equation may yield readily to numerical technique, but an 
analytical solution is desirable as the solution so obtained often shed light on vital information about the vibrating system. Thus, 
to this end we make use of a versatile analytical technique called assumed mode method.  
 
3.1  SOLUTION PROCEDURE  
 By applying the assumed mode technique, the dynamic deflection W(x,t) of the vibrating beam, can be written as   

1

( , ) ( ) ( )
n

a m m
m

W x t R t P x
=

= ∑        (3.3) 

where Rm(t) are coordinates in modal space 
Pm(x) is the normal mode of vibrations of the beam and is given as 
   ( )m m m m m m m mP x Sin x A Cos x B Sinh x c Cosh xα α α α= + + +     (3.4) 

Thus, for a simply supported beam, it can be shown that 0m m mA B C= = =  
m

m
and

L

πα =  

where Am, Bm and Cm are constants that can be determined using the boundary conditions. 
Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011), 91 - 98 



93 

 

Exact Vibration Solution for...      Omolofe, Adedowole, Ajibola and Ahmed         J of NAMP 

Thus for a beam with simple supports at both ends equation (3.4) takes the form       

( )m

m x
P x Sin

L

π=         (3.5) 

In view of the equation (3.5), the transverse displacement response of a simply supported elastic beam, using an assumed mode 
method can be written as 

1

( , ) ( )
n

a m
m

m x
W x t R t Sin

L

π
=

=∑       (3.6) 

Substituting equation (3.6) into the governing equation (2.6) and after some simplifications and arrangements we obtain  
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The solution technique requires that the RHS of equation (3.4) be orthogonal to the function sin
m x

L

π  

Thus, multiplying equation (3.7) by sin
m x

L

π  and integrating from 0 to L with respect to x after some simplifications and 

rearrangements yield 
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and over-dot represents the partial derivative with respect to time t. 
We note the following properties of the Heaviside function 
(i) ( ) ( )d

H x c t x c t
d x

δ− = −         (3.10) 

(ii) 0,
( ) ( )

( ),

x c t
f x H x c t

f x x c t

≤
− =  ≥

    (3.11) 

Thus using equations (3.10) & (3.11), equation (3.8) can be written after some rearrangements as 

{ }1 2 3
1

( ) ( ) ( )m m m
m

R t Q R t Q R t Q C o s tθ
∞

=

+ + =∑ && &                (3.12) 

Where 
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3 4
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 1 2 6
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3 4
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Q
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+ +
=

+
     

( )3
3 4
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H H
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µ

−=
+

  and mk C

L

πθ =        (3.13) 

Now considering only the mth particle of the dynamical system we have 

1 2 3( ) ( ) ( )m m mR t Q R t Q R t Q C o s tθ+ + =&& &       (3.14) 

  Subjecting the second order ordinary differential equation (3.14) to a transformation 

( )
0

( ) ste dt
∞

−• = •∫%          (3.15) 

in conjunction with the initial conditions defined in  equation (2.3), yields the following algebraic equation 
2

1 2 3 2 2
( ) ( )m

S
S Q S Q R s Q

S θ
+ + =

+
       (3.16) 
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It is straight forward to show that equation (3.5) after some simplifications and rearrangements yields 

3
2 2 2 2

1 2 1 2

1 1
( )

( )m

Q S S
R S

S SS Sγ γ γ γθ θ
 

= × − × − − −+ + 

   (3.17) 

where 
2

1 1 2
1

4

2

Q Q Q
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− + −
=  and 

2
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2

4
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Q Q Q
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=               (3.18) 

In order to obtain the Laplace inversion of equation (3.17), we shall adopt the following representations 

2 2
( ) ,

S
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=

+
  

1
1

1
( )f s

S γ
=

−
  and 
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So that the Laplace inversion of equation (3.17) is the convolution of fi and g defined as 

0
( ) ( ), 1, 2

t
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Thus the Laplace inversion of (3.17) is given by  1 2
3 1 2( ) t t

mR t Q e Z e Zγ γ = − 
   (3.21) 

Where  1
1 0

co s
t uZ e u d uγ θ−= ∫ and 2

2 0
cos

t uZ e uduγ θ−= ∫      (3.22) 

Thus in view of equation (3.21) and taking into account integrals (3.22) we get 
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which on inversion yields     
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    (3.24) 

which represents the dynamic response of a structurally damped elastic thick beam resting on exponentially decaying foundation 
and subjected to partially distributed constant moving load. 
 In what follows we now establish the convergence of the series solution (3.24) 
 
4.0. THE CONVERGENCE OF THE SERIES SOLUTION 
 To show that the series solution (3.24) converges, we only need to demonstrate that the coefficient ( )mR t of the spatial 

sine term in equation (3.24) is convergent.  While we note we can write 
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Now, using equation (3.13), we have 
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Therefore, the coefficients ( )mR t and the solution ( , )W x t converges as 4m− . 

 
5.0 Case II  
 Dynamic response of structurally elastic beams with Rotatory inertia correction factor  
Foundation under Harmonic variable magnitude moving distributed masses. 
The dynamic response of finite beam with exponentially decaying foundation under harmonic variable magnitude moving 
distributed masses is investigated. Thus, the load P(x, t) is given as 
  ( )( , ) t

jP x t P e H x c tω−= −         (5.1) 

where all parameters x, ci and t are as defined previously, using equation (5.1) in equation (2.1) and taking into account  
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equation (2.5) 

44 2 2
0

1 2 34 2 2 2 2

( , )( , ) ( , ) ( , ) ( , )
( , ) oR W x tW x t W x t W x t W x t

D D D W x y N
tx t x x t

∂∂ ∂ ∂ ∂+ + + − −
∂∂ ∂ ∂ ∂ ∂

   

( )1 t
jP e H x c tω

µ
−= −          (5.2) 

Equation (5.2) is the governing equation describing the motion of structurally elastic beam with exponentially decaying 
foundation subjected to fast moving distributed loads of varying magnitude. Closed-form solution to equation (5.2) is sought as in 
the previous section. 
In this view, use is made of an assumed mode method already alluded to and by this method, the transverse deflection Wb(x,t)  of 
a thick beam under the action of variable magnitude moving load can be written as 

( )
1

( , ) ( )
n

b j j
j

W x t R t P x
=

= ∑         (5.3) 

where Rj (t) are coordinates in modal space and Pj(x)  are the normal modes of free vibration. Thus for a simply supported beam 
equation (5.3) becomes  

1

( , ) ( )
n

b j
m

j x
W x t R t Sin

L

π
=

= ∑         (5.4) 

Using equation (5.4) in equation (5.2) and following the same arguments similar to the previous section and after some 
simplifications and rearrangements one obtains  

{ }1 2 3
1
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t j

j j j
j

i xc
R t Q R t Q R t Q

Le
ω π∞

−

=
+ + =∑ && &      (5.5)                                                     

where cj is the velocity of the jth
  particle of the system and other parameters are as defined previously. 

By considering only the jth
 particle of the dynamical system we get  

1 2 3( ) ( ) ( ) cos
t

j j jR t Q R t Q R t Q te
ω η−+ + =&& &       (5.6) 

Equation (5.6) is analogous to equation (3.14). Subjecting equation (5.6) to Laplace transform in conjunction with the boundary 
condition (2.2) and using convolution theory we obtain 
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which on inversion yields 
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which represents the dynamic response of a structurally damped elastic thick beam resting on exponentially decaying foundation 
and subjected to partially distributed harmonic variable magnitude moving load. It can be shown, following the same procedures 
as in the previous sections that series solution (5.8) converges rapidly. 
 
6.0 DISCUSSION OF CLOSED FORM SOLUTIONS 
 The response amplitude of a dynamical system such as this may grow without bound. Condition under which this 
happens is termed resonance conditions. Evidently, from equation (3.22)   a structurally elastic damped thick beam resting on 
exponentially decaying foundation and subjected to constant magnitude moving loads will experience resonance effects when    

2 2 2 2
1 2 1 2, orγ γ γ θ γ θ= − = − =         (6.1) 

and the velocity at which this occurs is termed the critical velocity and it is given by 

( )
2

2 2 1 / 2 2
2 1 1 2 14 2 ( 4 ) 2a

L
C Q Q Q Q Q

k π
 = + − − ×  
 

     (6.2) 

While the same system traversed by a structurally elastic damped thick beam in equation (5.8) and subjected to harmonic variable 
magnitude moving loads will experience resonance effects whenever  

2 2 2 2
1 2 3 4, o rθ θ θ η θ η= − = − =         (6.3) 

And the velocity at which this occurs, is known as critical velocity and it is given by the relation 

( )
2

2 2 1 / 2 2
2 1 1 2 14 2 ( 4 ) 2b

L
C Q Q Q Q Q

i
ω

π
 = + − − × − 
 

     (6.4) 

Equations (6.1) and (6.3) show that for the same natural frequency, the critical speed for the system consisting a structurally 
damped beam on exponentially decaying foundation and under the actions of constant magnitude travelling load is smaller than 
that of the system involving elastic beam under the actions of harmonic variable magnitude  moving load. Thus, resonance is 
reached earlier in latter than in the former. 
 
7 NUMERICAL RESULT S AND DISCUSIONS 
 In order to illustrate the analytical results, the structurally damped thick beam is taken to be of length /12.192m.  
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Other values used are velocity, c of the distributed loads which is taken to be 8.128m/s.  The flexural rigidity EI is 6068242m3/s2. 
The values of foundation moduli are varied between 0N/m3 and 4 x 108 N/M3, the values of axial force N are varied between 0 
N/M3 and 2 x 108N/M3 and the values of rotatory inertia ro are varied between 0 and 2 . The transverse displacement response of a 
structurally damped thick beam resting on exponentially decaying foundation and under the actions of traveling distributed forces 
are calculated and plotted against time for both constant and variable magnitude cases and for various values of foundation 
moduli K0, damping coefficient ε0, axial force N and  rotatory inertia ro. 
Figures 7.1 and 7.5 display the effect of axial force N on the transverse deflection of a structurally damped thick beam resting on 
variable elastic foundation under the actions of traveling distributed forces for both constant and variable magnitude loads 
respectively for fixed values of K0, ε0, N and ro. The graphs show that the response amplitude decreases as axial force N increases. 
In figures 7.2 and 7.6, the response amplitude of a structurally damped thick beam resting on variable elastic foundation when  the  
traversing distributed forces are of constant and variable magnitude  respectively are depicted.   It is clearly seen that as the values 
of foundation moduli K0 increase, for fixed values of the damping coefficient ε0, axial force N and rotatory inertia ro, the response 
amplitudes decrease.  

                     
Figure 7.1: Transverse displacement response of a simply  
supported structurally damped thick beam resting on  
exponentially decaying foundation and subjected to constant  
magnitude moving loads for various values of axial force N  
and for fixed values of foundation moduli K0 = 400,000, 
 rotatory inertia ro=0.5  and damping coefficient ε0 = 78 

                                                     
Figure 7.3: Response amplitude of a simply supported  
structurally damped thick beam resting on exponentially  
decaying foundation and subjected to constant magnitude  
moving loads for various values of  damping coefficient ε0  
and for fixed values of axial force N = 200,000,  
rotatory inertia ro=0.5  and foundation moduli K0 = 400,000 
 

                                          
Figure 7.5: Transverse displacement response of a simply  
supported structurally damped thick beam resting on  
exponentially decaying foundation and subjected to Harmonic  
variable  magnitude moving loads for various values of axial  
force N and for fixed values of foundation moduli K0 = 400,000,  
rotatory inertia ro=0.5  and damping coefficient ε0 = 43 
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Figure 7.2: Displacement response of a simply supported 
 structurally damped thick beam resting on exponentially  
decaying foundation and subjected to constant magnitude  
moving loads for various values of foundation moduli K0 

and for fixed values of axial force N = 200,000, rotatory 
inertia ro=0.5  and damping coefficient ε0 = 78 

Figure 7.4: Displacement response of a simply supported 
structurally damped thick beam resting on exponentially 
decaying foundation and subjected to constant magnitude 
moving loads for various values of ro  and for fixed values 
of foundation moduli K0, axial force N = 200,000 and 
damping coefficient ε0 = 78 

Figure 7.6: Deflection profile of a simply supported 
structurally damped thick beam resting on exponentially 
decaying foundation and subjected to Harmonic variable  
magnitude moving loads for various values of foundation 
moduli K0 and for fixed values of axial force N = 200,000, 
rotatory inertia ro=0.5  and damping coefficient ε0 = 43 

 



97 

 

Exact Vibration Solution for...      Omolofe, Adedowole, Ajibola and Ahmed         J of NAMP 

 

                                          
Figure 7.7: Transverse displacement response of a simply 
 supported structurally damped thick beam resting on  
exponentially decaying foundation and subjected to Harmonic  
variable  magnitude moving loads for various values of damping  
coefficient ε0 and for fixed values of foundation moduli K0 = 400,000,  
rotatory inertia ro=0.5  and axial force N=200,000 
 

 
Fig 7.9:Comparison of the response amplitude of a simply  
supported structurally damped thick beam resting on exponentially 
 decaying foundation and subjected to constant and  variable magnitude  
moving loads for   fixed values of  damping coefficient ε0=37 , 
axial force N = 200,000, rotatory inertia ro=0.5 and and foundation moduli K0 = 400,000 
 

The transverse displacement response of a structurally prestressed damped thick beam resting on variable elastic foundation 
under the actions of traveling distributed forces for both constant and variable magnitude loads are depicted in figures 7.3 and 7.7 
respectively. The graphs show that higher values of damping coefficient ε0 and for fixed values of foundation moduli K0 = 
400,000, rotatory inertia ro=0.5 and axial force N=200,000 reduce the deflection profiles in both cases. 

The effect of rotatory inertia ro on the transverse deflection of a structurally prestressed damped thick beam resting on 
variable elastic foundation under the actions of traveling distributed forces for both constant and variable magnitude loads for 
fixed values of K0, ε0, and N are displayed in figures 7.4 and 7.8 respectively. The results show that as the rotatory inertia ro 
increases the maximum amplitude of the beam decreases. Finally,  Figure 7.9 depicts the comparison of the response amplitude of 
a simply supported structurally damped thick beam resting on exponentially decaying foundation and subjected to constant and  
variable magnitude moving loads for   fixed values of  damping coefficient ε0=63 ,axial force N = 200,000, rotatory inertia ro=0.5 
and and foundation moduli K0 = 400,000. Clearly, the response amplitude of variable magnitude moving load is higher than that 
of the constant magnitude moving load.  
 
7.    CONCLUSIONS 
      The problem of the dynamic response of a structurally damped thick beam with exponentially decaying foundation resting on 
variable elastic foundation under the action of traveling distributed masses has been investigated. Also, numerical analysis has 
been carried out by way of illustration, for structurally damped beam under the action of constant magnitude moving distributed 
masses and harmonic variable magnitude moving distributed masses. The analysis shows that: 

(i) the transverse displacement response of the elastic beam decreases as the value of axial force N increases for 

fixed values of foundation modulus Ko, rotatory inertia r0 and damping ratio 0ε . 

(ii)  the higher the value of foundation stiffness K0 the lower the deflection profile of the beam for fixed value of the 

beam parameters axial force N, rotatory inertia r0 and damping coefficient0ε . 
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Figure 7.8: Response amplitude of a simply supported 
structurally damped thick beam resting on exponentially 
decaying foundation and subjected to Harmonic variable 
magnitude moving loads for various values of ro and for   
fixed values of  damping coefficient ε0=37 ,axial force N = 
200,000 and foundation moduli K0 = 400,000 
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(iii)  for fixed values of axial force N, rotatory inertia r0 and foundation modulus K0, the response amplitude of the 

vibrating beam reduces as the values of damping coefficient 0ε  increase.  

(iv) as the values of rotatory inertia r0 increase, the displacement response of the beam reduces for fixed values of 

axial force N, foundation moduli K0 and damping coefficient0ε . 

(v) the critical velocity of the vibrating system involving structurally damped beam under the action of distributed 
moving masses increases as the values  of the beam parameters namely foundation stiffness K0, axial force N, 

rotatory inertia r0 and damping coefficient0ε  increase thereby reducing the risk of resonance. 
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