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Abstract 
 

In this paper, the vibrational motion of a non-uniform beam clamped at both ends carrying 
moving concentrated loads is investigated. The governing equation of motion of our dynamical 
system is transformed via Mindlin-Goodman’s cum Generalised Galerking’s methods as alluded 
to in [19]. The resulting coupled dynamic equation is simplified via struble’s asymptotic 
techniques alluded to in [3,5,8,11,19], a second order differential equation that ensued is solved 
using integral transform methods to obtain a closed form solution. From the closed form solution, 
it is obtained that for the same natural frequency, the critical speed for the non-uniform Rayleigh 
beams traversed by moving force is greater than that under the influence of a moving mass. 
Hence, resonance is reached earlier in the moving mass problems. Furthermore, the transverse 
displacement for the moving force and moving mass models were calculated for various time t and 
presented in plotted curves and in the clamped-clamped non-uniform boundary conditions. It is 
found that, the moving force solution is not an upper bound for the accurate solution of the 
moving mass solution. Analysis further shows that an increase in the values of the structural 
parameters reduces the response amplitude of non-uniform Rayleigh beams of our dynamical 
problem. 

. 
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1. Introduction: 

The problem of assessing the dynamical response of an elastic system (beam or plate) which supports moving 
concentrated masses is fundamental in the analysis and design of highway and railway bridges and as such, this problem 
continues to attract the attention of research Engineers and Scientists[1,2,3,4,5,6,7,8,9,10,11]. It must be noted that this class of 
dynamical problems concern results for cases when the elastic system  have simple supports at the boundaries and solution 
techniques are not easily adjusted to the cases in which the supports conditions are not simple ones[12]. The boundary conditions 
for structural members under moving loads can be classified [13,14 ] into two viz: 

(a) Geometric boundary conditions. 
(b) Dynamic / force boundary conditions. [15, 16, 17, 18]. 

 In considering a non-classical end conditions, we discuss the elastically supported end conditions.  Suppose a beam is 
hinged or pinned at one of its ends and supported by an elastic spring, with modulus k at the other end, the magnitude of the 
shearing force must be k times the displacement [19]. 
In this paper, the work [19] is extended to cover boundary conditions other than simple ones. In particular, at end 0=x , the 

Rayleigh beam is clamped and at end Lx = , the beam is also clamped; thus the termed Clamped-Clamped Rayleigh beam. 
In the mathematical model, the beam properties vary along span L of the beam. The method of Generalised Garlerkin’s method 
already alluded to in [19] shall be used. This method is employed to simplify the governing fourth order partial differential 
equation with singular and variable coefficients. The transformed process, in the case of Clamped-Clamped boundary conditions 
is clearly more cumbersome than we had when working with simply supported boundary conditions. The resulting Garlerkin 
equations are solved via the modified Struble’s asymptotic techniques already alluded to in [19]. 
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2.0 Governing Equation 

In this paper, a non-uniform Rayleigh beam resting on a constant elastic foundation where the beams properties such as 

the moment of inertialI , and the mass per unit length of the beam µ  vary along the span L  of the beam is considered.0R is the 

Rotatory inertial, K is the elastic foundation Moduli; x is the spatial coordinate and t  is the time. The transverse displacement 

( )txU ,  of the beam when it is under the action of a moving load of mass M  which is moving with velocity c is governed by the 

fourth order partial differential equation given by 
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Where g is the acceleration due to gravity. It is remarked here that, since the Rayleigh beam is non-uniform, I and µ  are no 

longer constants but vary with the spatial coordinate along the span of the beam .in particular, adapting the example in Fryba. L 

:Noordhoff 1972,[13].Let ( )xI  and ( )xµ   take the forms     
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 where Io and µo are constants.  
    The boundary conditions of the above equation (1) are taken to be time dependent, thus at each of the boundary points, there 
are two boundary conditions written as   
       ( )[ ] ( ) 2,1,0 == itftUD ii     and     ( )[ ] ( ) 4,3, == itftLUD ii  (3)                                                                                                                               

where iD are linear homogenous differential operators of order less than or equal to three.  

For example, if the Rayleigh beam in question is 
Clamped-clamped ends 
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The initial conditions of the motion at time 0=t  are specified by two arbitrary functions thus 
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Substituting equation (2) into (1), after some simplifications and rearrangements yields 
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2.1    Operational Simplifications of Equation 
 The initial-boundary value problem (6) consisting of a non-homogeneous partial differential equation with a non-
homogeneous boundary conditions is transformed to a non-homogeneous partial differential equation with homogeneous 
boundary conditions, using the Mindlin-Goodman’s method. In order to solve the above initial-boundary value problem, we 
introduce the auxiliary variable ( )txZ ,  in the form  
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 Substituting equation (7) into the boundary value problem (6), transforms the latter into a boundary value problem in terms of
( )txZ , . The displacement influence functions ( )xgi  are chosen so as to render the boundary conditions for the boundary value 

problem in ( )txZ ,  homogenous. 
Substituting equation (7) into (6) and simplifying yields.   

( )







∂

∂







 −+− txZ
xL

x

L

x

L

xEI
,

3
sinsin15

2
cos610

4 4

4
0 πππ ( )txZ

xL

x

L

x

L

x

L
,

3
coscos5

2
sin46

3

3

∂

∂







 −++ ππππ  

Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011), 63 - 82  



65 

 

Transverse Displacement of Clamped-Clamped Non-Uniform Rayleigh…  S.O Ajibola     J of NAMP 
 

     ( ) ( )txZ
L

x
txZ

xL

x

L

x

L

x

L
tt ,sin1,

3
sin3sin5

2
cos83 02

2

2

2







 ++







∂

∂







 +−+ πµππππ  

   ( ) ( ) ( )














∂

∂+
∂

∂+
∂

∂− txZ
xL

x

L
txZ

xL

x
txZ

x
R tttttt ,cos,sin,

2

2

2

2

2

2
0

0
πππµ  ( ) ( ) ( ) ( ) ( )txKZtxZ

x

c
txZ

x

c
txZctxM tttttt ,,,

2
,

2

22
+















∂

∂+
∂

∂+−+ δ  

    ( )ctxMg −= δ  ( ) ( )∑
Ψ

=











 −+−−
1

0 3
sinsin15

2
cos610

4
i

IV
ii xg

L

x

L

x

L

x
tf

EI πππ ( )xg
L

x

L

x

L

x

L
III
i







 −++ ππππ 3
coscos5

2
sin46  

    ( ) ( ) ( )xg
L

x
tfxg

L

x

L

x

L

x

L
ii

II
i 







 ++













 +−+ πµππππ
sin1

3
sin3sin5

2
cos83 02

2
&& ( ) ( ) ( ) ( )







 ++− xg
L

x

L
xg

L

x
xgtfR I

i
II
i

II
ii

πππµ cossin0
0

&&  

      ( )] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]xgtKfxgtfcxgtfcxgtfctxM ii
II
ii

I
iiii +++−+ 22 &&&δ  (8) 

              

                Where dot( )⋅  represents the derivative with respect to time, while slash ( )'  represents the derivative with respect to 

space coordinate. 
Now the expression in equation (7) must satisfy the boundary conditions in equation (3); consequently, we have 
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Substituting equation (7) into the initial equation (5) leads to. 
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Using the Mindlin – Goodman method [16] the boundary conditions (9) in terms of ( )txZ ,  can be made homogeneous if the 

function ( )xg i  are chosen such that the sixteen conditions given by 

                      ( )[ ] ( )4,3,2,1,2,1 === jiogD ijii δ       
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is the Kronecker delta; are satisfied. 
Using equations (11) in the non-homogenous boundary conditions (9) we obtain the homogenous boundary conditions. 
                 
              ( )[ ] 0, =tozDi                   2,1=i                   

   ( )[ ] 0, =tLzDi   4,3=i                              (13) 

The original problem now reduces to that of solving the non-homogenous partial differential equation (6) subject to the 
homogenous boundary conditions in (13) with the non-homogenous initial conditions (10). 

2.2 Solution Procedure  
It is observed that the initial – boundary – value problem in equation (8) is a fourth order partial differential equation 

having some coefficients which are not only variable but are also singular.  These coefficients are the Dirac delta functions which 
multiply each term of the convective acceleration operator associated with the inertia of the mass of the moving load. It is 
remarked at this juncture that this transformed equation is now amenable to a modification of the approximate method commonly 
called Galerkin’s method   

2.3 Analytical Approximate Solution. 
The Galerkin’s method requires that the solution of equation (8) takes the form 
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where ( )xVm  is chosen such that the desired boundary conditions were satisfied. An appropriate selection of functions for beam 

problems are beam mode shape. Thus the thm  normal mode of vibrations of a uniform beam given by 
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is chosen as a suitable kernel of the integral (15) where mλ  is the mode frequency, mm BA , and mC are constant.  An important 

feature of the use of this kernel is that it makes the transformation suitable for all variants of the boundary conditions of the 

dynamical problems.  The parameter mmm BA ,,λ and mC  are obtained when the equation (16) is substituted into the appropriate 

boundary conditions.  
 By applying the Generalized Galerkin’s method (GGM) as in (15), equation (8) takes the form 
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In order to determine ( )tYm , it required that the expression on the left hand side of equation (17) be orthogonal to the function( )xVk

.Thus, 
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  At this junction, the solution is valid for the case when both ends of the Rayleigh beam are clamped is sought. Consequently, 

( )xVm is chosen as in equation (16) which is the beam function suitable for all other boundary conditions other than simple ones.  

Thus,                                                                                                       
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which is the beam function suitable for all other boundary conditions other than simple ones.  
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Next, use is made of the property of the Dirac-Delta function as an even function to express it in series form, namely  
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Next, we substitute equations (23) and (24) into equation (17) after some simplifications and rearrangements, leads to 
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Equation (25) is the transformed equation governing the problem of time dependent Clamped-Clamped non-uniform Rayleigh 
beam resting on a constant Winkler elastic foundation and transverse by a moving load. This second order differential equation is 
actually valid for all variants of the classical boundary conditions. In what follows, we shall consider Clamped-Clamped boundary 
conditions as illustrative example. 
 
2.4 Clamped-Clamped Boundary Conditions. 
 
             In this section, we consider a Rayleigh beam whose ends are clamped at ends x = 0 and x = L, both deflection and slope 
vanish at these ends. Thus, the conditions are expressed as 
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Thus, for normal modes we have 
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thus, making use of equations  (29)-(31) into  equation (16) the beam function, it can be shown that                                                          
              1−== km BB                                                                                                            (32) 

            
mm

mm
mm CA

λλ
λλ

coscosh

sinsinh

−
−

−=−=                                                                                        (33) 

            
kk

kk
kk CA

λλ
λλ

coscosh

sinsinh

−
−

−=−=                                                                          (34) 

          ( ) ( ) 







−−−==

L

x

L

x

L

x

L

x
xVxV mm

m
mm

mccm
λλσλλ

sinsinhcoscosh                       (35) 

The frequency equation is given by 
          01coscosh =−mm λλ                                                                                           (36) 

Such that [2] 
99561.10;85320.7;73004.4 321 === λλλ      and so on. 

           At this juncture, it is pertinent to obtain the particular function ( )xgi  that ensures zeros of the right hand side of the 

boundary conditions. We now sought the function ( )xgi   to be a third degree polynomial. 
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    using equation (40), then 
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Solving equations (41) and (42) simultaneously, it is obvious that 
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To obtain ( )xg2  explicitly, it requires satisfying four conditions as enumerated above. 
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Solving equations (48) and (49) simultaneously, it is obvious that 
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Similarly, when .4,3=i we have 
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In view of equations (44) and (52). It is straight forward to show that 
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 where  

           1001, −=iN i  are different integrals. 

Substituting equations (55) into equation (25), simplifying and rearranging yields.          
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It is remarked here that, it is only necessary to compute those ( )xgi  for which the corresponding ( )tfi  do not vanish. for our 

analysis, we shall consider a clamped beams whose end x = 0, (say) is subjected to a sine-wave (undamped) transient 
displacement, starting from rest and end x = L is subjected to a damped sine-wave transient displacement starting from rest. Thus, 
we can write. 
                          ( ) tBtf Ω= sin1     and   ( ) tAetf t Ω= − sin3

β                                                      (57) 

where A,B are amplitudes, β  is the parameter and Ω  is the frequency. 
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Using the influence functions equations (57) and their derivatives in equation (56), after some simplifications and rearrangements, 
equation (56) becomes. 
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Equation (62) represents the transformed equation of the non-uniform Rayleigh beam model Clamped at both ends which 
undergo displacements which vary with time when it is traveling under the action of concentrated load. In what follows 
we shall discuss two special cases of the equation 

2.4.1 Clamped-Clamped Traversed by Moving Force. 
        This model neglects the inertial effect of the moving mass M. Thus, in equation (62), ε  is set to zero. On this consideration, 
the transformed equation (62) reduces to    
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  This is the classical case of a moving force problem associated with the system. It is an approximate model which assumes the 
inertia effect of the moving mass as negligible. 

To obtain the solution of equation (64), it is subjected to Lap lace transformation defined as 
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0
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where s is the Lap lace parameter in conjunction with the initial conditions 
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and finally, by the use of convolution theory ,one obtains         
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Consequently, by equation (7)                                        
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Equation (69) is the transverse-displacement response to a moving force of a non-uniform Rayleigh beam clamped at 
both ends which are constrained to undergo displacements which vary with time. 

2.4.2 Clamped-Clamped Traversed by Moving Mass. 
In this section, the solution to the entire equation (62) is sought when no terms of the coupled differential equation is 

neglected. Evidently, an exact solution to this second order ordinary differential equation (62) is impossible. 
Though the equation yields readily to numerical techniques, an analytical approximate method is desirable as the solution so 
obtained often sheds light on the vital information about the vibrating system. Therefore, we are going to use a modification of the 
asymptotic methods due to Struble often used in treating weakly homogeneous and non-homogeneous, non-linear oscillatory 
system discussed in [2]. To this end equation (62) is rearranged to take the form. 
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Next, we consider the homogenous part of equation (70) and seek a modified frequency corresponding to the frequency 
of the free system due to the presence of the moving mass.  An equivalent free operator defined by the modified frequency then 
replaces equation (70), using Struble’s technique the equation simplifies to 
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is the modified natural frequency due to the presence of moving mass. 
To obtain the solution of equation (72), it is subjected to a Laplace transform and convolution theory in conjunction with 
the initial conditions.  Thus, 
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Consequently,       

( ) ( ) ( ) ( ) ( ) ( ) 






 −Ω+






 +−Ω+= − 3232
23sin231sin,, L

x
L

xteL
x

L
xttxztxu tβ                      (78) 

Equation (78) is the dynamic response of a Clamped-Clamped non-uniform Rayleigh beam to a moving mass when one end of the 
beam (x = 0) is subjected to a sine-wave transient displacement starting from rest while the other end (x = L) is subjected to a 
damped sine-wave transient displacement starting from rest. 
 
3.0 Discussion of the Analytical Solution 
 
If the undamped system such as this is studied, it is desirable to examine the response amplitude of the dynamical system which 
may grow without bound. This is termed resonance when it occurs.  The Clamped-Clamped elastic Rayleigh beams transverse by 
a moving force will be in state of resonance whenever  
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2 Zmf =α which implies that         3Zmf =α                                               (79) 

and equation (73) shows that the same beam under the action of moving mass experiences resonance effect when 
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From equations (80) and (81), we deduced for the same natural frequency, the critical speed for the system of a Clamped-
Clamped elastic beam on an elastic foundation and traversed by a moving force is grater than that traversed by moving mass. 
Thus, resonance is reached earlier in the moving mass system than in the moving force system. 
 
4.0 Numerical Calculation and Discussion of the Results 
Illustrating the foregoing analysis, the non-uniform Rayleigh beam of length L=12.192m is considered. Furthermore, the load 

velocity u = .123, , 24 /2200 sm
EI =
µ

 and the ratio of the mass of the load to mass of the beam is 

0.25. The traverse deflections of the non-uniform Rayleigh beams are calculated and plotted against time for various values of 
parameters in the dynamical system. Values of axial force N between 0 and 20000, foundation modulli K were varied between 0N

2m  and 4000000N 2m .  
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Fig.1: Deflection profile of the Clamped-Clamped Non-Uniform Rayleigh Beam under a moving 
force for various values of foundation modulli K and for fixed  rotatory inertia r(1)
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   Fig.1, displays the transverse displacement response of Clamped-Clamped non- uniform Rayleigh beam under the action of a 

moving force for various values of foundation modulli K and for fixed values of axial force N and rotator inertia or .The graph 
shows that the response amplitude decreases as the values of the foundation modulli K increases. In, fig.2, the  deflection profile 
due to a moving force of  Clamped-Clamped non-uniform Rayleigh beam for fixed value of foundation modulli K and axial force 

N and for various values of rotatory inertia or . It is clearly seen that as the rotatory inertia value increases, the response 
amplitude of the beam reduces. Also, in fig.5, the response amplitude of the Clamped-Clamped non-uniform Rayleigh beam 
under the action of moving force for various values of axial force N and for fixed values of foundation modulus K and rotatory 

inertial corrector or  is displayed. It is observed that as the axial force N increases the response amplitude of the beam decreases.    
Furthermore, fig.3, depicts the transverse displacement response of Clamped-Clamped non-uniform Rayleigh beam under a 

moving mass for fixed values of rotatory inertia or and axial force N and for various values of foundation modulli K . The 
response amplitude of the beam was found to decrease as the values of the foundation moduli K increases. In, fig.4, the deflection 
profile of the Clamped-Clamped non-uniform Rayleigh beam under moving mass for various values of rotatory inertia and for 
fixed values of foundation modulli K and axial force N is shown. The graph shows that the response amplitude decreases as the 

values of rotatory inertia correction factor  or  increases. Also, fig.6, shows the deflection profile of the Clamped-Clamped non-
uniform Rayleigh beam under the action of moving mass for various values of axial force N and for fixed values of foundation 

modulus K and rotatory inertia or . From the graph it is shown that as the axial force N increases the response amplitude of the 
beam decreases. Finally, fig.7 shows the comparison of the transverse displacement for the moving force and moving mass cases 
of the  Clamped-Clamped non-uniform Rayleigh beams for fixed values of foundation moduli K, axial force N and rotatory 

inertia or .As evident in the figure, the deflection profile for moving mass is higher than that of the moving force confirming also 
that the moving force solution is not always an upper bound for the accurate solution of the moving mass problem. 
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Fig.2: Deflection profile of the Clamped-Clamped Non-Uniform Rayleigh Beam under  a moving 
force for various values of rotatory inertia r and for fixed value of foundation modulus 
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Fig .4: Deflection profile of Clamped-Clamped Non-Uniform Rayleigh beam under the action of 
moving mass for various values of rotatory inertial and fixed value of axial force N(20000 )

and foundation modulus K(40000).
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Fig 3. Deflection profile of Clamped-Clamped Non-Uniform Rayleigh beam under the action of 
moving force for various values of axial force N and fixed value of rotatory inertia r(1) and 
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Fig.6 Deflection profile for Non-Uniform Rayleigh beam Clamped-Clamped at both ends under 
the action of moving mass for various values of axial force N , for fixed value of rotatory 

innertia r(3) and foundation modulus K(2000000). 
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Fig 5: Deflection profile of the Clamped-Clamped Non-Uniform Rayleigh Beam under the action of moving 

mass for various values of Foundation Modulli K and for fixed value of axial force N and  Rotatory inertia r(1) 
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5.0    Concluding Remark 

             The problem of dynamical analysis of non-uniform Rayleigh beam with time dependent Clamped-Clamped boundary 
conditions when it is under the action of traveling loads is considered in this paper. The main objective is to obtain an 
approximate analytical solution for the dynamical problem. To this end an approach due to Mindlin and Goodman [16] is 
extended to transform the governing non-homogeneous partial differential equation with non- homogeneous boundary conditions 
to a non-homogeneous partial differential equation with homogeneous boundary conditions.  
Subsequently, the property of the Dirac-delta function as an even function is used to express it in Fourier cosine series form and 
the partial differential equation subjected to Generalized Galerkin’s method. The Generalized Galerkin’s method (GGM) is used 
to remove the singularity in the Governing equation and to reduce it to a sequence of second order differential equation with 
variable coefficients. This second order differential equation is then simplified using the modification of the Struble’s asymptotic 
technique. The methods of Integral transformation and the convolution theory are then employed to obtain the analytical solution 
of the one-dimensional problem. 
              Analysis of the approximate analytical solutions obtained is carried out and the resonance conditions for the dynamical 

system are obtained. The influences of the rotatory inertia or  and foundation moduli K on the dynamic response of the Non-
uniform Rayleigh beams having time dependent Clamped-Clamped  boundary conditions and under the actions of moving 
concentrated loads were investigated. The transverse displacements for the moving force and moving mass models are calculated 
and presented in ploted curves. 

  As the rotatory inertia or  and foundation moduli K increases, the displacement response of the Rayliegh beam having time 
dependent Clamped-Clamped boundary conditions and under the actions of moving concentrated loads for both moving force and 
moving mass models reduces. We also observed that in Clamped-Clamped non-uniform Rayleigh beams, the moving force 
solution is not an upper bound for the accurate solution of the moving mass solution. Hence, the non-reliability of moving force 
solution as a safe approximation to the moving mass solution is confirmed. Furthermore for fixed rotatory inertia and foundation 
modulus, the response amplitude for the moving mass problem is greater than that of the moving force. However for the same  
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Figure 7:  Comparison of the transverse displacement of moving mass cases for Clamped-Clamped 

 Non-uniform Rayleigh beam for fixed values of foundation modulus K(400000) and rotator inertia r(1). 
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natural frequency the critical speed for moving mass problem is smaller than that of the moving force problem. Hence, resonance 
is reached earlier in moving mass problem.   Finally, higher values of Rotatory inertia and Foundation moduli are required for a 
more noticeable effect in the case of moving mass than moving force non-uniform Clamped-Clamped boundary conditions. 
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