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Abstract

In this paper, the vibrational motion of a non-uniffm beam clamped at both ends carrying
moving concentrated loads is investigated. The goirgy equation of motion of our dynamical
system is transformed via Mindlin-Goodman’s cum Gealised Galerking’s methods as alluded
to in [19]. The resulting coupled dynamic equatiors simplified via struble’s asymptotic
techniques alluded to in [3,5,8,11,19], a secondl@nr differential equation that ensued is solved
using integral transform methods to obtain a clostm solution. From the closed form solution,
it is obtained that for the same natural frequendye critical speed for the non-uniform Rayleigh
beams traversed by moving force is greater thanttbmader the influence of a moving mass.
Hence, resonance is reached earlier in the movinggsa problems. Furthermore, the transverse
displacement for the moving force and moving massdels were calculated for various time t and
presented in plotted curves and in the clamped-gted non-uniform boundary conditions. It is
found that, the moving force solution is not an uppbound for the accurate solution of the
moving mass solution. Analysis further shows that @ncrease in the values of the structural
parameters reduces the response amplitude of noifarm Rayleigh beams of our dynamical
problem.

Keywords: , Rayleigh beam, non-uniform, axial force, non-sieal boundary, rotatory-inertia, Foundation-modulli
Clamped-clamped.

1. Introduction:

The problem of assessing the dynamical responsanotlastic system (beam or plate) which supportsimgo
concentrated masses is fundamental in the anadysisdesign of highway and railway bridges and ash,sthis problem
continues to attract the attention of research fewgis and Scientists[1,2,3,4,5,6,7,8,9,10,11].ustnbe noted that this class of
dynamical problems concern results for cases whenetastic system have simple supports at the daoigs and solution
techniques are not easily adjusted to the casesirh the supports conditions are not simple orgs[Lhe boundary conditions
for structural members under moving loads can assified [13,14 ] into two viz:

(a) Geometric boundary conditions.
(b) Dynamic / force boundary conditions. [15, 16, 18]. 1

In considering a non-classical end conditions,digeuss the elastically supported end conditioBappose a beam is
hinged or pinned at one of its ends and supporjednbelastic spring, with modulus k at the othed,ehe magnitude of the
shearing force must be k times the displacement [19

In this paper, the work [19] is extended to coveurwary conditions other than simple ones. In paldr, at enX =0, the

Rayleigh beam is clamped and at && L , the beam is also clamped; thus the termed Clar@t@aiped Rayleigh beam.

In the mathematical model, the beam properties aéogg span L of the beam. The method of GenethlZarlerkin's method
already alluded to in [19] shall be used. This rodtliis employed to simplify the governing fourth erdartial differential
equation with singular and variable coefficientheTiransformed process, in the case of Clamped{i&ddrboundary conditions
is clearly more cumbersome than we had when worlgit simply supported boundary conditions. Theulisg Garlerkin
equations are solved via the modified Struble’srgsgtic techniques already alluded to in [19].
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2.0 Governing Equation
In this paper, a non-uniform Rayleigh beam restinga constant elastic foundation where the beawyepties such as

the moment of inertidl , and the mass per unit length of the begnvary along the spah. of the beam is considerdd’ is the
Rotatory inertial, K is the elastic foundation Mdigx is the spatial coordinate aridis the time. The transverse displacement
U (X,t) of the beam when it is under the action of a mgirad of masdVl which is moving with velocity ¢ is governed by the

fourth order partial differential equation given by

LA (x):x—zzu(x,t)}ﬂ(x)%_%{ﬂ(x)RO %}

32 2032 292 _
Ml ct)[at_2+ 20", 0% ) bt =gl (1)

Where g is the acceleration due to gravity. Itdmarked here that, since the Rayleigh beam is ndorm, | and i/ are no

longer constants but vary with the spatial coordirelong the span of the beam .in particular, adgpghe example in Fryba. L
:Noordhoff 1972,[13].Letl (X) and,u(X) take the forms

(= tfsesn ) o€ )= sof1wsn ) @

where } and |} are constants.
The boundary conditions of the above equation (&)taken to be time dependent, thus at each dbdhedary points, there
are two boundary conditions written as
D Ut)]=fit) i=12 and b ULL]=f) =34 (3)
whereD, are linear homogenous differential operators oéptess than or equal to three.

For example, if the Rayleigh beam in question is
Clamped-clamped ends

- _0 _ _0
Dy =1, DZ_K,D3_1andD4_&. (4)
The initial conditions of the motion at tinte= O are specified by two arbitrary functions thus
AU (x,0) _ -
0x0) - i g (©)
Substituting equation (2) into (1), after some difigations and rearrangements yields

64U(x,t) 24 . 2 30m . K 6m 31K 63U(x,t)
+| ——sin— + ——c0s— - —CcoSs—
ax? L L ax3

U(x0)=Ug(x) and

m 10- 6c052—m+155in1 —sing—m
4 L L L

242 2m 1572 . mx 9m? . 3w 82U (x1) ) 92U (x, )
+| ———CO0S—— Sin sSin—— +/10 1+sin—
L2 L 2 L2 L) ox? at?

%ot L L axat? at? oxot ax?
+KU (x,t) = Mgd(x—ct). (6)
2.1 Operational Simplifications of Equation
The initial-boundary value problem (6) consistiofja non-homogeneous partial differential equatwath a non-

homogeneous boundary conditions is transformed tool-homogeneous partial differential equation withmogeneous
boundary conditions, using the Mindlin-Goodman’stimel. In order to solve the above initial-boundaatue problem, we
introduce the auxiliary variabla(x,t) in the form

4

U(xt)=2(xt)+ z fi (t)oi () (7)

i=1
Substituting equation (7) into the boundary vgbueblem (6), transforms the latter into a boundaalue problem in terms of
z(xt). The displacement influence functiong(x) are chosen so as to render the boundary conditisnghe boundary value

problem in z(xt) homogenous.
Substituting equation (7) into (6) and simplifyipiglds.

—yORO{(l+sin%Ja4U (60) | 7T o K 63U(x,t)} . Ma(x_ct{aZU (x , 26920 (x,t) . c202y (x,t)}

4 3
Eo [10— Gcosz—m +15sin % - sins—m a—Z(x,t) +62 4sin2—m +5c05 % - coss—m a—Z(x,t)
4 L L L Jox? L L L L Joax3
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2
+ Sﬁ[Bcosz— 5sin X + 3S|n3—mja— Z(x t) + ,uo(1+ sinzjzn (x,t)
L2 L L L )x2 L

ol 82 X 32 7 92 2cd c202
- HoR Lx—zzn(x,tﬁsmTax—zzn(x,t)+fcosrax—22n(x,t) +M5(x—ct) Zn(x,t)+gzn(x,t)+ 5

2 (x,t)} v kz(c)
4 El 27K X 37K 27K 37K
- P Elo . K _ ST IV 21K I
—Mgd(x ct) Z[ 7 fl()(lo 6005T+155|n L sin L jg, (x) +6L(4SII’1 0 +5cosT cosTjgI ( )
i=1
+ 3ﬁ2(8c052—m -5sin% + 3sin3—mjgi” (x)} +pof; (t{1+ sinzjgi (x) - /10R0 fi (t{gi” (x) +sin% gi“ (x) + L cos™® gi' (x)j
L L L L L L L L

+ Malx -t (O () + 261 €)ai () + <26 €)ai" () + K (1o ()] 8)

Where do([) represents the derivative with respect to timeilevslash (') represents the derivative with respect to

space coordinate.
Now the expression in equation (7) must satisfylitvendary conditions in equation (3); consequently have

oleals Y Rlatd 1) 1212
Dj [Z L.t ] z DI [gl (t), i =34 (9)
Substituting equat|on (7) into the initial equati@) leads to.
z(x.0) =U(x,o)—z fio)ai (x) . %z(x,o) = Uo(x)—z fi(o)oi (x) (10)

Using the Mindlin — Goodman method [16] the bougdawnditions (9) in terms oZ(X,t) can be made homogeneous if the

function g, (X) are chosen such that the sixteen conditions diyen

Di[gi (0)] = & (=12 j=1234)
And
Di[gi (L)] = 5 (i=34]=1234) (11)
Where
_ |0 for i#j
5”'{1 for i = | (12)

is the Kronecker delta; are satisfied.
Using equations (11) in the non-homogenous bounciamgitions (9) we obtain the homogenous boundangitions.

Di[z(o.t] =0 i=12
Di[ZL.t)] =0 i=34 (13)
The original problem now reduces to that of solvilng non-homogenous partial differential equatiéh gubject to the
homogenous boundary conditions in (13) with the-homogenous initial conditions (10).
2.2 Solution Procedure

It is observed that the initial — boundary — vajueblem in equation (8) is a fourth order partidfedential equation
having some coefficients which are not only varalblit are also singular. These coefficients aeebtinac delta functions which
multiply each term of the convective acceleratigrerator associated with the inertia of the masshefmoving load. It is
remarked at this juncture that this transformedaéiqn is now amenable to a modification of the agjpnate method commonly
called Galerkin’s method

2.3 Analytical Approximate Solution.
The Galerkin’s method requires that the solutioeguiation (8) takes the form

20(60)=3 Vb)) (15)
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where Vj,(x) is chosen such that the desired boundary conditicare satisfiedAn appropriate selection of functions for beam
problems are beam mode shape. Thustife normal mode of vibrations of a uniform beam gitgn

Vm(x) =S nA—[‘X + AfnCosA—’E‘X +BpnS nh/l—r[‘x + CmCoshA—[‘X (16)

is chosen as a suitable kernel of the integral yli®re A, is the mode frequencyA,,, B,,and C_ are constant. An important
feature of the use of this kernel is that it makes transformation suitable for all variants of th@undary conditions of the
dynamical problems. The parametd}{‘], A, B,and C_, are obtained when the equation (16) is substitimtedthe appropriate
boundary conditions.

By applying the Generalized Galerkin's method (GG in (15), equation (8) takes the form

/7
El ) ) i
E -2 10—60052—”( +15$|nz—sm3—m r%V (x) +62 4sin2—nx+5cosz—coss—m rH“ (x)
4 4 L L L L L L L
m=

2
+ 3”—2[8C052Tm - Ssin% + SsinsTm il (x)]Ym(t) + llo(Vm(X) + sin%vm(x)]\?m(t)
L

- 1ROVl (s Pl 1)+ 2050 i) M- At o)+ 20V )+ S (O ki

4

-Mgd(x - ct) +Z Elo ¢, (1] [ 10- 6c0sZ® +15sin"™ - sin |gIV ()| +67[ 4sin 2% +5c0s % - cos % ai"' (x)
< | L L L L L L L
i=

2
+3”—2[8c052—m—Ssinz+3sin3—mjgi“ (X) + o f; (t{1+ sinzjgi (x) - 4RO T (t)(gi” (x)+sinZ g!" (x)+ Lcos™X g} (x)j
L L L L L L L L

+Mofx—ct){f (t)ai (3 + 207 K)ai () + 21, ()al' () +K, (i (9 ]=0 (17)

In order to determine,(t), it required that the expression on the left hside of equation (17) be orthogonal to the functidr)
.Thus,

n

> HHi(m,k)+H2(m k)—RO[H3(m,k)+H4(m, k)+’_LTH5(m,k)va(t)

+ {%([wHe(m, k)+15H7(m, k) - 6Hg(m k)~ Hg(m,k)] + 67{[4H10(m, k)+15H3(m, k)= Hyo(m,K)] +ﬂ£o Hi (m, k) P¥m(t)

+ 3%[8"‘13(”1, k)+15H4(m k) + 3H14(mk)] ) + uM["hs(m' KNin(t) + 2CHy {m kVin(t) + C?Hy 7(m, k)Ym(t)ﬂ -TI—SVk (ct)

+{Galt)- Gp(t) + Gelt)- Gy 1)+ Gelt) + G (1) G 1) ~Galt)+ Gelt) + G+ (1) -Gy t) + Gnlt)-Git)
+Gj (t)+ Gk )+ G () Gm(t) -G (t) - Go t) +Gplt) + Gqt) + Grlt)+ Gslt) | =0 (18)

where

k)= [ Vi, o= [ sin oo, i) = [ Vil v

Ha(mk)= LLsin%er (M (), Hs(m k)= jOLcos%vng(xyk (¥, Hg(mk)= jOLv,:qv (Vi ).
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(m k) ILsm—Vm (x)\/k( )dx H8(m k) jo coszT”\/n'qV (x)\/k(x)dx,.Hg(m,k)zjol_sm—vm (x)\/ ( ) X
1 M, szl = [ oos ! e

cos—V
L m

o= s 25 i, (i)~ [

s = [ o052V (o, Ham )= ¥l (e, )= [ i

)= [ o~k and ()= [ o~ (b

are the resulting integrals and

E|
OZ fIJ‘ gl X)‘/k dx, Gb(): % i 0
0 i=1

ec(t):%g O sl b ed(t):f—;;g O s G e, . s L i
=SS 4 O 0= e T3 ol b )= e S fi(t)joLcoH s
022072 ) ol s =T f > 0], 50 ol Ml -2 w3 40 snl (o
a0=3 1 s a b on)= 03 (0] 36040

4

)= 0] a bl
Z‘j: I sm—g, ' (xMc(X)dx , Go t) oﬂz J- cos’® Al

S_g| X)‘/k( )

¢ i 169 bl andes(t)%o; A0 0 6o

_sz' J.d(x ct)gi (M (X)ox , GR(t)= Ho 0
(19)

Ho i=1
At this junction, the solution is valid for th@se when both ends of the Rayleigh beam are claispszlight. Consequently

Vi (x)is chosen as in equation (16) which is the bearatioim suitable for all other boundary conditionbestthan simple ones

h/]k— (20)

Thus,
Vk(x) sin Ili + Acco /]kX+Bksinh/1LLx+Ckcosh/]kaande( ) SIn/lk—+AkcosAk—+Bksmh—+C cos

which is the beam function suitable for all otheubdary conditions other than simple ones
(21)

P P
(mk)=T1Hy(mk) and H(mk)="D1H;(mKk)
L
Next, use is made of the property of the Dirac-®diinction as an even function to express it ineseform, namely
n7x nmt] (22)

J(X—ct){% +%2cosTco
n=1

In view of equation (22)
m, k)+ Zz cos@ nga(m, n,k)

1 ) Hle(m,k)=%{H18(

H15(m, k) = %{Hl(m, k) + Zz cos@ HlA(m, n, k)
n=1
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Hy7(mk)= %{ Ha(m k)+ Zz cos@H aalmn, k)} and Hyg(mk)= I(I)Vﬁq(x)\/k (x)dx (23)
n=1

where
! |
Haa(m, n,k)=J‘cosC—mLm(x)Vk(x)dx : H3A(m,n,k)=j cos%Vr’{q(x)\/k(x)dx and
m 0

(o]

Higa(m.nk)= VECOS%V&(XM (x)abx (24)

Next, we substitute equations (23) and (24) inteatign (17) after some simplifications and reareangnts, leads to

Y el anlmMnf) +0] | Hulmk) 23 c0s () i)
L

m=1 n=1

+ 20{ ng(m, k) + 22 cos@ngA(m, n, k)}(m(t) + CZ{ H 3(m, k) + ZicogH 3A(m, n, k)]Ym(t)ﬂ

= TI—S{sin/]k%+ A cos/lk% + Bksinh&LCt+ Ck cosh/lkc—ﬂ

~|Ga(t)-Gu 1)+ Get)-Ga 1)+ Celt)+G 1 (t) -Gy (1) +Cn t)-Gi () +

G (t)+ Gk lt) + &1 (1) - Gmlt) - Gn(t) - Golt) + Gplt) + Gq 1)+ &+ 1) + &) (25)
Where

o=k (26)
Ho

aofm k)z[Hl(m, W)+ H2(m,k)—R0[H3(m, ) Halmb)+ gl k)ﬂ 27)

and

al(m,k)zE—LE[[lOH6(m,k)+15H7(m,k)—6H8(m,k)—Hg(m,k)]

+ 6’_I_T[4H10(m, k)+5H3 1(m k)= Hyp(m.k)] +%[8H13(m, k)=5H 4(m, k) +3H14(m, k)]} +/1£o Hq(m,k) (28)

Equation (25) is the transformed equation governie problem of time dependent Clamped-Clamped uroform Rayleigh
beam resting on a constant Winkler elastic foulndaséind transverse by a moving load. This seconératifferential equation is
actually valid for all variants of the classicalumolary conditions. In what follows, we shall comsi€Clamped-Clamped boundary
conditions as illustrative example.

2.4 Clamped-Clamped Boundary Conditions.

In this section, we consider a Rayidigam whose ends are clamped at ends x = 0 arid beth deflection and slope
vanish at these ends. Thus, the conditions areesged as
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0 5}

Z(ot)=0= Z(L,t), &Z(O,t)=0: &Z(L,t) (29)
Thus, for normal modes we have

A Vm(0) _ _ aVm(L)

Un(0)=0=Tin(1), ) o= Xm (30)

This implies that
Vik(0)=0=V(L),

thus, making use of equations (29)-(31) into &gug16) the beam function, it can be shown that
Bm = Bk =-1 (32)

(31)

sinhAy, —sinApy,

Am =~Cm =~ coshApy, —cosAp, (33)
— ¢ —_SinhAy —sinAy
Ac="Ck coshAy — cosAg (34)
V(%) =Vimee(X) = coshM cos% Jm[smh/lT sm/l—'l‘jxj (35)
The frequency equation is given by
coshi, cosdy, —1=0 (36)

Such that [2]
M = 4730041, =7.8532043 =1099561 and so on.

At this juncture, it is pertinent to abt the particular functiong;(x) that ensures zeros of the right hand side of the
boundary conditions. We now sought the functig(x) to be a third degree polynomial.

[o]] (X) =g X3 +by X2 +cix+dj,i = 1234 (37)
To obtaing;(x) explicitly, it is required to satisfying four coitions defined in (3), that is,
D1[01(0)]= 611 =1, D;[01(0]]=612=0, D3[gy(0)]]=13=0 and pefg(0)]=14=0 (38)

For clamped-clamped end conditions as in equatipn (

91(x) = (x)+ () ()+d1

Dl[gli] )| =12y (0)+ by (0) + ca(0) + cy] =1

hence, d, =1 (39)
D2[01(0)] = %[gl(x)] =3ayx% + 2oyx+ 0
%[91(0)] =38,0% + 200+, =0

thereforeg, =0 (40)

Dslo1(L)]=0
a1L3 + blLZ +clL+ d]_] 0

using equations (39) and (40) , one obtains

al3+bL2+1=0 (41)
D4fos(L)]= %[91('—)] =3aL2 + 2yl +0;

3yl2+2oL +¢, =0
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using equation (40), then

3yL% +20L=0
Solving equations (41) and (42) simultaneouslis @bvious that
_2 __ 3
aq —F al’ld b_]_ = F

therefore

3 2 2 3 3 2. .- P X
gl(x)=a1x +x© +cx+dp =Fx —Fx +1_1_{f) +2(t)
To obtain gz(x) explicitly, it requires satisfying four conditioms enumerated above.
But go(x) = apx® + byx? +cox +ds
D1[g2(0)] = 621 =0
D2[92(0)] = 622 =1
D3[g2(0)] = 325 =0
D4[g,(0)] = 554 = 0

92(0) = a5(0)+ b5 (0) + ¢, (0) + d
D1[92(0)] = 1[a(0) + b (0) + ¢ (0) + dp] = 0
henced, =0

Do[g2(x)]= :—X[gz(x)] =3apx” + 2px+ ¢y

%[gz(o)] =3a,0% + 2,0+ ¢, =1

therefore,, =1
Dg2(L)]=0
a3 + by L2 + ol +d2] =0
Using equations (46) and (47) , one obtains
apl3+bpl%+1=0

Dalgo(L)] Z%[gz(l-)] =3a,L% + 2yl +cp

3ayl2 + 2yl +cy =0
Using equation (47), then
3a2L2 +2bpL+1=0

Solving equations (48) and (49) simultaneously, it isales that
1 2
=— andb, =-=
ap 2 2 L
Therefore

2 .3
gz(x) = a2x3 +b2x2 +Cox+do =ix3 —ix2 rx =x-22 4 X
L2 L L 2

Similarly, wheni = 34.we have

ot~ 4z
(24

In view of equations (44) and (52). It is straight fard/to show that

and

Ga(t) = Gp(t) =Gp(t) =Gp(t) =0

S.O Ajibola J of NAMP

(42)

(43)

(44)

(49)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)
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72E On

Ge(t) = - [Ny + AN + BNg + CNg [ f(0) - f1(1))

ﬂo
_ 90El o

Gi(t) = L [Ns + AcNg + BcN7 + CNg(fa(t) - fy(t))
0

18El On

Gg(t) =- [Ng + AcN1o+ BN 1+ CiNgo|(f3(t) - (1))

0

36El 772

2
Gn(t) = (f3(0) — 1) Ny3+ ANy 4+ BNy s+ Ci N16‘—(N17 + AcNgg+ByNjg+ CcNpo)

liil ,,2 (fa0) - fl(t)){ (N21+ AcN22 + BcNo3 + CkNag)- LZ(N25+ AN26+ BcNa7 + CkN28)}

12
Gj(t)= (f3(t) - fl(t){ (Nag+ ANzg + BkN31+CkN32) (N33+ ANz +ByNas+ CkN36)}
4,u0 3
.. 3. .
Gk (t) = f1(t)(Na7 + AcNag + BNag + CkNag) +?(f3(t) - f1(t))(N41+ AN+ BiNaz+CNaa)
=3T3~ 10 [Nas + AN46+ BcNg7 + CkNas)
.. 3. .
GL(t) = fy(®)(N21+ AcN22 + BNpg + CkNaa) +?(f3(t) - f1(t))(N49 + A5 + BcNs +CkNsp)
2 (. .
-F(fs(t) - f1(t))(N53 + ANs4+ BNss + CiNsg)
12
Gm(t) = Ro(fs(t) - f1(t){ (Ng7+ AcNag + BcN3g + Ci N40) (N57 + ANsg + BcNsg + Cy Neo)}
o( 12
Gn(t) = RO f3(t) - fa(t) (N21Jr AN+ BcNp3+CNag)- 3 (N25 + AN+ BNp7 +CxNog)
6
Go(t) = RO(f3(t) - fl(t){ (Ng1+ AcNg2 + BxNg3 + CxNea)- 3 (Nes + AcNoge + BxNg7 + CkNGS)}
Gp(t) = ﬂﬂ 'f'l(t){sinAch A cosak% +By sinmk% +Cycoshly ﬂ

2
+ﬂ—(f3(t) - fl(t){ (Ng1+ ACNg2+ BNgg+CiNgg) - X (N45+ AN+ BcNg7+CiNyg)

4
+ZCOS—{ (Ngg+ AxN70+BcN71 + CN7o )= [ (N75 +AcN74+BcN75+ CkN76)H}

2 . . 6 6
Gq(t) =%(f3(t) - fl(t){F(NW + AcNsg + BiNsg + CxNeo) _F[(NM + AN + BgNggz + CiNyg)

- nrct |12 12
+ E cos—— { 3 (N77 + AN7g + BcN7g + CiNgo ) 4 (Neg + AN7g+ BcN71+Cy N72)H}
n=1

2
G () _T(f3(t) - fl(t)){ [smk_+ AkcosAk—+ Bksmh/lk—+Ck cosmk—j —1_§(N57 + AcNsg + BcNsg + Cx Neo)
o} L

o
24 nrct
_F COST(N77+ AN7g+ BkN79+CkN80)‘| ,

n=1
k k 2
Gs(t) :/1_ fi(t) +ﬂ—(f3(t) f1(t)) (N41 + ANy + ByNyg + CyNayg) - 3 (N45 + AcNgg + ByNy7 + CNyg)
0 0

(55)
where
N,,i =1-100 are different integrals.

Substituting equations (55) into equation (25), sigpld and rearranging yields.
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m=1 n=1

S Lo kim0 + an it +5[H1(m, +23 cos iy, mn k)vmm]

+ ZC[ ng(m, k) + 22 cos-nTmt ngA(m, n, k)Ym(t)] + Cz[H3(m, k) + Zz cos% H3A(m, n, k)Ym(t)ﬂ

n=1 n=1

= P[sin/lk%t A cosAk% + By sinh/ % +Cy coshiy %J + (130 - f10)Hag - OH24

+(f3t) - fl(t))ui Hag +ﬂ£ fit) - a_[ f‘l(t)P[sinAk% A cosxlk% +By sinh/lk% +Cy coshil %j
0 (0}

n=1 n=1

+ (fé(t) - f'1(t){ Hzo+H 312 COSnTm] + 2C(f'a(t) - fl(t){H32 + Hasz COSnTm]

+ 02(f3(t) - fl(t)){l_—i[sin/lk % + A cosxlk% + By sinhA, % +Cy coshly %J - { Hgy + H3SZ COS%]H (56)
n=1

It is remarked here that, it is only necessary to compute thds) for which the corresponding;({t) do not vanish. for our

analysis, we shall consider a clamped beams whose end x =ay),igssubjected to a sine-wave (undamped) transient
displacement, starting from rest and end x = L is subjeotacdamped sine-wave transient displacement startingréstmT hus,
we can write.

f,()=Bsinat and f5(t)= Ae A sinQt (57)
where A,B are amplitudeg; is the parameter and is the frequency.
Therefore, the requiredy(x) are g(x) andgs(x). The determination of(t), f(t), o (x) and g3(x) allows the complete

determination of the right hand side of the initial cootigi. Thus, setting/y(x) and %Uo(x) to zero respectively for simplicity

and substituting‘l(t), fa(t), o(x) and g5(x) into the initial condition. One obtains

Z(x0)=0, and z(x0)=-Q (58)
Which when transformed yield

Z(mo)=0 and Z;(mo0)=17, (59)
where

12 = Nor |(L=cosAm) + Br(coshm —1)+ Ay, Sin A, + Crpy SinhA ] (60)
and

for = _% (61)

Using the influence functions equations (57) and theivdgvies in equation (56), after some simplifications and aegements,
equation (56) becomes.

n ©
> oot + st +5{H1(m. +23 0 gy mn k)]vmm

m=1 n=1

+2C| ng(m, k) + 22 cosnTmt ngA(m, n, k)}?m(t) + C{Hg,(m, k) + ZZ cos@ H3A(m, n, k)}Ym(t)H
n=1 n=1

=PV (ct)+ H3zgsinQt + H40e"[”t sinQt - H41e'[’,t cosQt —eLlH425ith + H43e"[”t sinQt — Hy4cosQt + H45e"[”t cosQt

0 o) 0
+Hyg E cosmsinQH Hy7 E cosﬂe_'& cosQt + Hyg E cosme_ﬁt sinQt
L L L
n=1 n=1 n=1

0 0
- z H 492 cosnTmtcoth —HggVi (ct) + HgVk (ct)e_ﬂ[ sinQt
n=1 n=1
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Where
Hy = (N = Ng)+ AN = Ng) Ho = (N5 = N7 )+ A((Ng = Ng).  Hg = (Ng = Nyg) + Ac(Nio—Nyo)
Hs = (Ngs—Ny7)+ AdNig=Nog).  Hg = (No1= Nog)+ Ac(Nap = Nos)
H7 = (Ng5=Na7)+ Ac(Nag = Nog), Hg = (Nog = Ngg)+ Ac(Na3g = Naz)Hg = (g3 Nas)+ Ac(Naa = Nag),
Hi1o = (Na7 — Nag)+ Ac(Nag ~ Nao). H11 = (Na1— Nag)+ Ac(Naz — Nag) Hip = (Nas = Naz) + Ac(Nag = Nag)
H11= (Nag = Nag)+ Ac(Nap = Naa). Hip = (Nas = Naz)+ Ac(Nag = Nag) Hiz = (Nag = Ni7)+ Ac(Nyg = Nao),
H14 = (Nsg — Nss) + Ac(Ns4 — Nsg), Hi5 = (Nos = Ns1) + A (Nso = Ns), Hig = (N1~ Neg) + Ac(Ng2 ~ Nea)
Hi17 = (Nes—Ne7)+ Ac(Ng6 — Neg). Hig = (Ngo = N74)+ Ac(N79—N72). Hig = (N73 = N7s)+ Ac(N74 = Nyg),

2 2 2

H20 = (N77 = N7g)+ Ac(N7g = Ngo) H21=[H4+TH5], H22=(H6‘EH7}H23=(H8‘IH9]'
3 2 3 2 6 12

H24={H10+He/, H25=[—H11——H12} H26=[—H13——H14]’H27=[—H10——H15]
( ) L2 3 L2 3 L2 3

6 12 6 6 3 2 6 4

stz[_HG‘_HY} H29=[_H16__H17er30=(_H11__H12ij31=(_H18__H19jr
L2 3 L2 3 L3 L4 L3 L4

6 6 24C Hig 12 24 3 2
Hgzo = 20[— His __Hll} Has =—[H20 ——) v Hzg=—Hj5,H3s =—rHpo, Hgg =[— H11——H12]
L3 4 L3 L 4 L4 L2 L3

oo o { T2EIg7Hy | 90El7Hp _18Elg7Hg _ 36Elo7Hpy , 90El7°Hy 54Elon2H23}
37~ - - -
Ho Ny Ho L4 Ho L4 Ho L4 Ao L4 Aty L4

| 18l on(

6 3
AL 4H1+6H3—2H21+27H22——7H23j, H38:H37_l(H25+H26)_R0(H27+H28+H29)Jv
(0}

4
_| 52 2 k k _{p2_n2 k _ _[n2 2
H39—[Q Hzg+Q H24_'U_H36+/1_j H4o{(ﬁ -Q )H38+'U—H36} H41—2/39H381H42—(Q H3zp+C H34)
0 0 0

Hyg = l(ﬂz - QZ)H30 -2CH3, —C2H34J. Has = 2COH3p , Hys = (2CQH»; - 2BOH30) Hye = (QZH31+C2H35)1
Ha7 =2CQH33, Hag = l(ﬁz -Qz)Hal-ZﬁCHss-Cszsl

2

Hyg = (2ﬁQH3l+ 2CQH33) y Hgo = [sz +%C2] andH51 = % (63)
L L

Equation (62) represents the transformed equation of theméorm Rayleigh beam model Clamped at both ends which
undergo displacements which vary with time when it iseliag under the action of concentrated load. In what follows
we shall discuss two special cases of the equation

2.4.1 Clamped-Clamped Traversed by Moving Force.
This model neglects the inertial effect of the mgvirass M. Thus, in equation (62, is set to zero. On this consideration,
the transformed equation (62) reduces to

- 2 1 . ct ct . ct
Yt tam Yot = P| sin A, — + A, cosA, — + By sinh A, —
m() + o Yrd W[[ kT A kT *Bx kT

+Cycsinh/y % +HggsinQt +H40e A sinQt - Hyqe A cosQt (64)

This is the classical case of a moving force problem assdaiéth the system. It is an approximate model whichrass the
inertia effect of the moving mass as negligible.

To obtain the solution of equation (64), it is subjedtetap lace transformation defined as

(D =] (et (65)

where Sis the Lap lace parameter in conjunction with the initial cooit
Z(m0) =0=Zt(m0)
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and finally, by the use of convolution theory ,one obtains

a . . a a . 73 .
Yin(t) = E Po% smzj—ismamft +P0Ak%(cosamt+cosz3t) + PyBk 5 il 5 smh23t——35|namft
Omf apf — 28 Omf anf — 73 g +28 Omi

a * a - [ oz . ) 200 Q [ _
+ PyCyk 5 rof 5 (cosh23t —cosamt) +Hgzg % sinQt —isinamft + H4O[ﬂ(e A sint +sma'mft)+ i (e A cosat —cosa'mft)j
ai; - 73 as; —Q At Q4 4
+ Hzle"/ﬁ(Qi [5(/?2 + aﬁﬂ + Qz)sinamft ++ O (pz + "r%f - QZXe_ﬁt cosQt — cosapy t)— 2,[30/m§2e_lﬁ sithD +C°sina,, t] (66)
4
Where
P = S =13 ho= Hao Hey = Has
° " ag(mk) ao(mk) ag(mk)’ ag(mk)
ar%f - al(m'k) and Z3 :ﬁ (67)
ag\mk L
Therefore,
5 ) ) ) )
Zn(xt) = ZYm(t{sin%X + A cos%X +By sinh%x +Cy cosh%x} (68)
m=1

Consequently, by equation (7)
U(xt)=Z(xt)+ sith[l— 3(%)2 + 2[%}3] +e A sinQ{z[%jz - 2[%)3] (69)

Equation (69) is the transverse-displacement response twiagrforce of a non-uniform Rayleigh beam clamped at
both ends which are constrained to undergo displacementl warig with time.

2.4.2 Clamped-Clamped Traversed by Moving Mass.

In this section, the solution to the entire equation (62ought when no terms of the coupled differential equagion
neglected. Evidently, an exact solution to this second ordiémary differential equation (62) is impossible.
Though the equation yields readily to numerical techniquegnatytical approximate method is desirable as the solution so
obtained often sheds light on the vital information altbetvibrating system. Therefore, we are going to use a roatiifnh of the
asymptotic methods due to Struble often used in treatindgdlyvd@mogeneous and non-homogeneous, non-linear osijllato
system discussed in [2]. To this end equation (62) isaeged to take the form.

Y (t) {al(m,k% gCZ[H3(m,k)+ Zi cos N H3A(m,n,k)HYm(t)

L
n=1

ZEC{ng(m,k)+ ZZ cos nIcht ngA(m,n,k)

Vi (t) + nl +
7t ct
{ao(m,k% g[Hl(m,k)+ 22 cosnL HlA(m,n,k)H {ao(m,kﬁ g[Hl(m,k)+ ZZ cosnL HlA(m,n,k)H
n=1 n=1
_ L * [H52$inﬂk%t +HgoA¢ COSAK% + HgoBy Sinhﬂk%t"' Hg5oC COS/1|(C—Lt +H53Sith
{ao(m,k% E[Hl(m,k)+ 22 cos nlzct HlA(m,n,k)H
n=1
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0 00
= nrct . nrct - B .
+ Hyqc08Qt — Hgse A cosat - Hae E cosTstt - Hy7 E cosTe A cosqt + Hsge A sinat
n=1 n=1

0 (o] o) [ee]
-H 452 cos%sin Qt-H 472 cos% e A cosQt - H 482 cosnTmt e AsinQt+H 492 cosnTmt e A cosat (70)

n=1 n=1 n=1 n=1
Where
m _ _[ H
p=T9 = , Hs2=(g+Hso) Hss—[—o H39—H42j,
Ho Lo m
Hea=| 22 H 0-Hyg|, and Hsg=| 2o H 1+ H (71)
547| Hao~Haz ), 55| T HartHas

Next, we consider the homogenous part of equation (70) anchsmeklified frequency corresponding to the frequency
of the free system due to the presence of the moving fasgquivalent free operator defined by the modified frequelney t
replaces equation (70), using Struble’s technique the eqsatipfifies to

¥in(t)+ Bt Yon{t) =0
and the entire equation becomes

- AL . ct ct . ct ct
Ymlt)+ Ymit) = Hso| sinAy — + A, cosAy — + By sinh A, — + Cy, coshA, —
mlt) + Bt Yn(t) W[ 52[ kT A kT + B kTt kLJ

00
+Hg3zsinQt + H54e_'gt SinQt + Hy4cosQt — H55e_/3't cosQt - H462cos$sin§2t

n=1
(o] [ee] 00
ct - wct —z . t
- H47ZCosnTe A cost - H4gzcosnTe Asinat + H492cos%cos§2t} (72)
n=1 n=1 n=1
where
_ A Hl(m, k) C2H3(m,k)
=apf|1-= - 73
B mf |: 2 {ao(m’ k) ao(m’ k)ﬂr%,f ( )

is the modified natural frequency due to the presence ofngonass.

To obtain the solution of equation (72), it is subjedted Laplace transform and convolution theory in conjunciibin
the initial conditions. Thus,

1
Ym(t):m["' 56Ya tHs7Yp + HsgYe HisgYdq + HeoYe * He1Ys + HeaYg

~HeaYn + Hea¥i ~HeaYj ~HesYk ~HesYi ~HesYm + HesYn + He7Yo + He7Yp]

(74)
where
ALHg, ALH s ALHg, ALH 44 ALH g5

Hsg = ,Hs7 =HseAy , Hsg =HseBy , Hsg = HseCp s Hgo = Hey = Hgo = ,Hgs = ,

56 ag(mk 57 56%%» Hssg 560k » 59 56k 1 160 ao(m, k) 61 ao(m, k) 62 ao(m, k) 63 7—”0 m Kk
Hgq = yHgs = yHgg = and Hy, = 75

o4 2a0im,ki 65 2a0im,ki 66 aoim,ki 4 Za'oim,ki (75)
and

t t
Ya = [sin 23tJ- Sin By T cOSzzmr — 00523tJ-
(o] (o]

t t
Sin B rsinzydr] » Yb =[00523t.[ Sin By T coszamdr + sin23t.[

Sin By T coszzrdr
(o] (0]

t t
Yo = [sin,b’mf tJ- sinhzg7 oSSy T — COSPy t.[
(0] (0]

t t
sinhzg7 sin By rdr] yYd = [sin,b’mf tJ- coshzzr — cosBy ™1 — COSByy tJ-

coshzgzr —sin By 1
(o] (o]

t t t t
Ve = [sin,b’mf t.[ SiN B 7SINQ T — cOSB tJ- Sin By rcosQrdr] Vi = [sin,Bmf tJ- e P COSByy TSINQMT — COSPy tJ- e P sin B rsinQrdr]
(0] (o] (0] (0]
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t
Yg :[cothj Sin B rcosQrdr+stt.[ Sin B rstrdr]

Yh :e_ﬂ[[cosﬂtj P sin Bt rcostdr+sith.[ BT sin By rsiandr]
[0} [0}

00

Y = Z[sm 7+ Q)II sin By Tcos(zl + Q)Idr cos(zl + Q)tJ. Sin By rsm(zl + Q)Id ]
n=1

yj= Z{sm 7 - Q)tj sin By rcos(zl )rdr cos(zl Q)tj Sin By rsm(zl Q)rdr]

n=1

d t t

=) e? {cos(zl + Q)tj P sin Bui Tcodzy + Q)rdr +sin(z + Q)II P sin By sin(z + Q)rdr]
=1 (] (0]

hd t t

y = Ze_ﬁ[ {cos(zl - Q)II P sin B rcodzy — Q)rdr +sin(z - Q)tJ. P sin B rsin(z - Q)rd Tj
n=l ° °

00

t t
Ym = {sin,b’mf tj e P cosByy rsin(zy + Q)7 ~ cosByg tj e P sin B rsin(zy + Q)rdrj
e o )
t t
Sin B tj e P cosp Tsin(z - Q)rdr ~ coS By tj e P sin B Tsin(z - Q)rdr
o] [0}
cos(zl + Q)tJ. Sin By rcos(zl + Q)Idr +sin zl + Q)tJ. Sin B Tsm(zl + Q)Id ]

Yp= Z[cos(zl Q)II Sin By Tcos(zl )Idr +sin zl Q)II Sin By TSIn(Z]_ Q)zd j

(76)
Hence,
n
z Ym {smM + Ag cosﬁ% + By smhA— +Cy cosh/‘—} (77)

m=1
Consequently,

u(xt) = z(x.t)+ sith(l— 3(>/L)2 + 2(>I/_)3J +e A sith[S(yL)z - 2(%_)3] (78)

Equation (78) is the dynamic response of a Clamped-Clampediniform Rayleigh beam to a moving mass when adeoéthe
beam (x = 0) is subjected to a sine-wave transient displacestagtihg from rest while the other end (x = L) is subjedted
damped sine-wave transient displacement starting from rest

3.0 Discussion of the Analytical Solution

If the undamped system such as this is studied, #sgable to examine the response amplitude of the dynamitaisyghich
may grow without bound. This is termed resonance wheccitirs. The Clamped-Clamped elastic Rayleigh beams trangyerse
a moving force will be in state of resonance whenever

a? =72 which implies that o, =7, (79)
and equation (73) shows that the same beam under the actimvioly mass experiences resonance effect when

B2 =22 which implies that 3. =z, (80)
from equation (73), it implies that
— ZS

a e = [1_ Az( ;ilgr’:'l:; - ;Z(Hn':(km);ri)f ﬂ
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From equations (80) and (81), we deduced for the sameahdtequency, the critical speed for the system @lamped-
Clamped elastic beam on an elastic foundation and traversed by a mfovo®is grater than that traversed by moving mass.
Thus, resonance is reached earlier in the moving mass systetin tthe moving force system.

4.0 Numerical Calculation and Discussion of the Relts
lllustrating the foregoing analysis, the non-uniform Regh beam of length L=12.192m is considered. Furthermbee)oad

El
velocity u = .123F = 2.109x10°kg/m — =2200m*/s? and the ratio of the mass of the load to mass of the beam i
U

0.25. The traverse deflections of the non-uniform Rayleiggnis are calculated and plotted against time for various values of
parameters in the dynamical system. Values of axial forcethden 0 and 20000, foundation modulli K were varied batée

m? and 4000000/

2

1.5 A

K=0
) — - — K=4000000
------ K=40000000
SN \
VAR
05 oo : ! ' ‘
/ '. ;
/\ ! e V[ .".i/
0 A W I I B e e
L2 g 02 - 0 F —

0.4
_05 4

-1.5

2.5 4

Time (t)

Fig.1: Deflection profile of the Clamped-Clamped Non-Uniform Rayleigh Beam under a moving
force for various values of foundation modulli K and for fixed rotatory inertia r(1)
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Fig.2: Deflection profile of the Clampl)né%t—)(:lamped Non-Uniform Rayleigh Beam under a moving
force for various values of rotatory inertia r and for fixed value of foundation modulus
K(40000)

Fig.1, displays the transverse displacement responskimip€d-Clamped non- uniform Rayleigh beam under the aofien

moving force for various values of foundation modulli Kdefor fixed values of axial force N and rotator inetid. The graph
shows that the response amplitude decreases as the valuesafritiation modulli K increases. In, fig.2, the deflecpoofile
due to a moving force of Clamped-Clamped non-uniformdgly beam for fixed value of foundation modulli K asxial force

N and for various values of rotatory inertld. It is clearly seen that as the rotatory inertia value incredsestesponse
amplitude of the beam reduces. Also, in fig.5, the resp@msplitude of the Clamped-Clamped non-uniform Rayléigam
under the action of moving force for various values of dgiade N and for fixed values of foundation modulus Kl aatatory

inertial correctorr © is displayed. It is observed that as the axial force Ners®s the response amplitude of the beam decreases.
Furthermore, fig.3, depicts the transverse displacement resmpdn€lamped-Clamped non-uniform Rayleigh beam under a

moving mass for fixed values of rotatory inertidand axial force N and for various values of foundation rio#u. The
response amplitude of the beam was found to decrease as theofaheefoundation moduli K increases. In, fig.4, the efetfbn
profile of the Clamped-Clamped non-uniform Rayleigh beacher moving mass for various values of rotatory ineridhfar

fixed values of foundation modulli K and axial force N l®wn. The graph shows that the response amplitude decreakes as t

values of rotatory inertia correction factdr® increases. Also, fig.6, shows the deflection profile of@lemped-Clamped non-
uniform Rayleigh beam under the action of moving massdapus values of axial force N and for fixed values of faiizh

modulus K and rotatory inerti&®. From the graph it is shown that as the axial forcediemses the response amplitude of the
beam decreases. Finally, fig.7 shows the comparison of thedraaglisplacement for the moving force and moving mass cases
of the Clamped-Clamped non-uniform Rayleigh beams if@dfvalues of foundation moduli K, axial force N and rotator

inertia r° .As evident in the figure, the deflection profile for mayimass is higher than that of the moving force confirnailsg
that the moving force solution is not always an uppenddar the accurate solution of the moving mass problem.
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Fig 3. Deflection profile of Clamped-Clamped Non-Uniform Rayleigh beam under the action of
moving force for various values of axial force N and fixed value of rotatory inertia r(1) and
for fixed value of foundation modulus K(40000)
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Fig .4: Deflection profile of Clamped-Clamped Non-Uniform Rayleigh beam under the action of
moving mass for various values of rotatory inertial and fixed value of axial force N(20000 )
and foundation modulus K(40000).
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Fig 5: Deflection profile of the Clamped-Clamped Non-Uniform Rayleigh Beam under the action of moving
mass for various values of Foundation Modulli K and for fixed value of axial force N and Rotatory inertia r(1)
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Fig.6 Deflection profile for Non-Uniform Rayleigh beam Clamped-Clamped at both ends under
the action of moving mass for various values of axial force N, for fixed value of rotatory
innertia r(3) and foundation modulus K(2000000).
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Figure 7: Comparison of the transverse displacemémf moving mass cases for Clamped-Clamped

Non-uniform Rayleigh beam for fixed values of foudation modulus K(400000) and rotator inertia r(1).

5.0 Concluding Remark

The problem of dynamical analysis of non-uniform Rayldiglam with time dependef@lamped-Clamped boundary
conditions when it is under the action of traveling lo#&lsconsidered in this paper. The main objective is to olaain
approximate analytical solution for the dynamical problem.tAis end an approach due to Mindlin and Goodman [16] is
extended to transform the governing non-homogeneous gdiffeakntial equation with non- homogeneous boundary itiond
to a non-homogeneous partial differential equation with lgemeous boundary conditions.

Subsequently, the property of the Dirac-delta function asvan function is used to express it in Fourier cosine sfengsand
the partial differential equation subjected to Generalized Galsrkiethod. The Generalized Galerkin’s method (GGM) is used
to remove the singularity in the Governing equation ancketiiuce it to a sequence of second order differential equatibn wit
variable coefficients. This second order differential equasdhean simplified using the modification of the Strubkesymptotic
technique. The methods of Integral transformation and the hdimrotheory are then employed to obtain the analytical isolut
of the one-dimensional problem.

Analysis of the approximate analytical sohaiobtained is carried out and the resonance conditionsefatynamical

system are obtained. The influences of the rotatory ineftiand foundation moduli K on the dynamic response of the-N
uniform Rayleigh beams having time dependent Clampendyidd boundary conditions and under the actions of moving
concentrated loads were investigated. The transverse displacéongéhésmoving force and moving mass models are calculated
and presented in ploted curves.

As the rotatory inertia® and foundation moduli K increases, the displacement respifribe Rayliegh beam having time
dependent Clamped-Clamped boundary conditions and undacttbes of moving concentrated loads for both moving forde an
moving mass models reduces. We also observed that in Clabigegbed non-uniform Rayleigh beams, the moving force
solution is not an upper bound for the accurate solutfdhe moving mass solution. Hence, the non-reliabilftynoving force
solution as a safe approximation to the moving massiaolig confirmed. Furthermore for fixed rotatory inertial doundation
modulus, the response amplitude for the moving masdgmob greater than that of the moving force. However feisaime
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natural frequency the critical speed for moving mass protdesmaller than that of the moving force problem. Hencenesxe
is reached earlier in moving mass problem. Finally, highkres of Rotatory inertia and Foundation moduli are reqdoed
more noticeable effect in the case of moving mass than mawiog fion-uniform Clamped-Clamped boundary conditions.
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