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Abstract 
 

This paper investigates the transverse response of simply-supported non-uniform Rayleigh beams 
resting on a constant elastic foundation. The beams properties: moment of inertial I(x) and mass per 
unit length of the beam miu vary along the span L of the beam. The Mindlin and Goodman’s 
technique is used to transform the governing non-homogeneous forth order partial differential 
equations with  non-homogeneous boundary conditions into non-homogeneous forth order partial 
differential equations with  homogeneous boundary conditions. 

The resultant transformed equation is then further treated using  the  versatile  Generalized 
Galerkins’s method  with the series representation of the Dirac Delta function, a modification of 
Struble’s asymptotic methods and the integral transformation techniques in conjunction with the 
convolution theory. Analytical solution was obtained for the transverse displacement response of the 
non-uniform Rayleigh beam. Analytical and Numerical results reveal that the deflection profile of the 
non-uniform Rayleigh beam decreases as the value of the foundation stiffness K increases. It is also 
found that the increase of the foundation stiffness K causes increase in the critical velocity of the 
dynamical system, thereby reducing the risk of resonance. 

. 
 
 

Keywords: , Rayleigh beam, non-uniform, axial force, non-classical boundary, rotatory-inertia, Foundation-modulli, 
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1. Introduction: 
 

The vibration analysis of structural elements has been and continuous to be the subject of numerous researchers, since it 
embraces a wide class of problem with immense importance in Engineering Science. In recent years, such important engineering 
problems as the vibration of turbines, hulls of ships and bridge girders or variable depth e.t.c, involving the theory of vibration of 
structures of variable cross-section have intensified the need for the study of the response of non-uniform elastic systems under 
the action of moving loads.  

      Until recently,[1] the literature on one-dimensional structures such as non-uniform Rayliegh beams subjected to dynamic 
loads is very meager. In most cases, even in the absence of inertia effects of the moving loads, exact expressions for the dynamic 
response and frequencies of non-uniform beams executing flexural vibration cannot be determined, even for lower modes of 
vibration. Aside the flexural rigidity and mass per unit length of the beam that are certain functions of the spatial coordinates, x, in 
the governing equation, one important problem that arises when the inertia effects of the masses are considered is the singularity 
which occurs in the spartial coordinate of the inertia terms of the governing differential equation of motion. 

Several investigations have been carried out on the dynamics of structures under moving loads. Such researchers include. [4], 
[3], [5], [6], [7], [8], [10], [14]and [17].  

These works, though impressive, have neglected the practical cases where the elastic systems are of variable cross-section. 
Very recently, [,16], investigated the Dynamic Behaviour of non-Uniform Bernoulli-Euler Beams Subjected to Concentrated  
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Loads Travelling at Varying Velocities. They obtained an analytical solution to the dynamical problem. For the illustrative 

classical boundary conditions considered, they found that for the same natural frequency, the critical speed for moving mass 
problem is smaller than that of the moving force problem. Hence, resonance is reached earlier in moving mass problem.  
     In some of my previous papers, the problem of the flexural motion of a uniform Rayleigh beam resting on an elastic 
foundation and traversed by masses moving with uniform speed was investigated. In the mathematical model, the beam properties 
do not vary along the span L of the beam. However, in many practical problems involving dynamics of structures (beams or 
plates) under moving loads, the structures have variable cross-sections. Thus, the problem of simply-supported non-uniform 
Rayleigh beam under the action of loads moving with variable speeds is considered in this paper. 
When other methods commonly in used to solve dynamical problem broke down or  incapable to handle this problem, we resort 
to a modification of an approximate method best suited for solving diverse problems in dynamics of structures generally referred 
to as Galerkin’ method. This we term Generalised Galerkin’s method GGM. This method is employed to simplify the governing 
fourth order partial differential equation with singular and variable coefficients. The resulting Galerkin’s equations are solved via 
the modified struble’s asymptotic technique. Struble’s asymptotic technique is used to simplify the coupled second order partial 
differential equation into a second order ordinary differential equation. 
 
2.0 Governing Equations. 
 
In this paper, the dynamic behavior of a non-uniform Rayleigh beam resting on a constant elastic foundation where the beams 
properties such as the moment of inertialI , and the mass per unit length of the beam µ  vary along the span L  of the beam is 

considered. 0R is the Rotatory  inertial, K is the elastic foundation Moduli; x is the spatial coordinate and t  is the time. The 

transverse displacement ( ),U x t  of the beam when it is under the action of a moving load of mass M  which is moving with 

velocity C  is governed by the fourth order partial differential equation given by 
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Where g is the acceleration due to gravity. It is remarked here that, since the Rayleigh beam is non-uniform, I and µ  are no 

longer constants but vary with the spatial coordinate along the span of the beam .in particular, adapting the example in Fryba. L 

:Noordhoff 1972,[13].Let ( )xI  and ( )xµ   take the forms  
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where Io and µo are constants.  
    The boundary conditions of the above equation (1) are taken to be time dependent, thus at each of the boundary points, there 
are two boundary conditions written as   
                          ( )[ ] ( ) 2,1,0 == itftUD ii         (4) 

            and 

                         ( )[ ] ( ) 4,3, == itftLUD ii                                                                                          (5)                                                                                                                      

where iD are linear homogenous differential operators of order less than or equal to three.  

For example, the Rayleigh beam in question is simply supported at both sides then   
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The initial conditions of the motion at time 0=t  are specified by two arbitrary functions thus 
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When equations (2) and (3) are substituted into equation (1), the result is a non homogeneous system of partial differential 
equation with variable coefficients given by 
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   2.1    Operational Simplifications of Equation 
  In this paper, the initial-boundary value problem (8) consisting of a non-homogeneous partial differential equation with a non-
homogeneous boundary conditions is transformed to a non-homogeneous partial differential equation with homogeneous 
boundary conditions, using the Midlin-Goodman’s method. In order to solve the above initial-boundary value problem, we 
introduce the auxiliary variable ( )txZ ,  in the form  
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 Substituting equation (9) into the boundary value problem (8), transforms the latter into a boundary value problem in terms of
( )txZ , . The displacement influence functions ( )xgi  are chosen so as to render the boundary conditions for the boundary value 

problem in ( )txZ ,  homogenous. 
Substituting equation (9) into (8) and simplifying yields.                                             
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 Where dot ( )⋅  represents the derivative with respect to time, while slash ( )'  represents the derivative 

with respect to space coordinate. 

Now the expression in equation (9) must satisfy the boundary conditions in equations (3) and (4); consequently, one obtains 

              ( )[ ] ( ) ( )[ ] ( ),,

4

1

tfogDtftoZD iii

j

ii =+∑
=

    .2,1=i      (11)   

                ( )[ ] ( ) ( )[ ] ( ) .4,3,,

4

1

==+∑
=

itfLgDtftLZD iii

j

ii       (12) 

Substituting equation (9) into the initial equations (7) yields. 
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Using the Mindlin – Goodman method [16] the boundary conditions (11) and (12) in terms of ( )txZ ,  can be made homogeneous if 
the function ( )xgi  are chosen such that the sixteen conditions given by 

                      ( )[ ] ( )4,3,2,1,2,1 === jiogD ijii δ       (15)   

And   
                    ( )[ ] ( )4,3,2,1,4,3 === jiLgD ijii δ       (16) 
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 is the Kronecker delta; are satisfied. 
Using equations (15) and (16) in the non-homogenous boundary conditions (11) and (12), we obtain the homogenous boundary 
conditions. 
                 ( )[ ] 0, =tozDi            2,1=i                   
 ( )[ ] 0, =tLzDi  4,3=i                  (18) 
The original problem now reduces to that of solving the non-homogenous partial differential equation (8) subject to the 
homogenous boundary conditions in (15) and (16) with the non-homogenous initial conditions (13) and (14). 
To the author’s best knowledge, a close form solution to equation (8) does not exist. Consequently, an approximate analytical 
solution is desirable to obtain some vital information about the vibrating system. 
3.        Analytical Approximate Solution. 

It is observed that the initial – boundary – value problem in equation (10) is a fourth order partial differential equation 
having some coefficients which are not only variable but are also singular.  These coefficients are the Dirac delta functions which 
multiply each term of the convective acceleration operator associated with the inertia of the mass of the moving load. It is 
remarked at this juncture that this transformed equation is now amenable to a modification of the approximate method commonly 
called Galerkin’s method. 

3.1   Galerkin’s method 
The Galerkin’s method is used to solve equations of the form 

                   ( )[ ] ( ) 0,, =−Γ txPtxZ  (19) 
where ,Γ  is the differential operator, ( )txZ ,  is the structural displacement and ( )txP ,  is the transverse load acting on the structure. 
   A solution of the form  
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In order to determine ( )tYm , it required that the expression on the left hand side of equation (23) be orthogonal to the function( )xVk
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Since our beam has simple supports at both ends x=0 and x=L, we therefore choose the function;  ( )
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Equation (29) is the transformed equation governing the problem of non-uniform Rayleigh beam resting on a constant Winkler 
elastic foundation and transverse by a moving load. This second order differential equation is valid for all variants of the classical 
boundary conditions. In what follows, we shall consider boundary conditions such as simply supported boundary conditions as 
illustrative examples. 
3.2     Simply-Supported Boundary Conditions. 

The deflection and bending moment at 0=x  and Lx =  vanish for a non-uniform Rayleigh beam having simple supports at 
both ends. 
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also, for normal modes 
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Substituting equations (26) and (27) and evaluating the resulting integrals after simplifications and rearrangements equation (29) 
yields. 
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At this juncture, it is pertinent to obtain the particular functions ( )xgi  that ensure zeros of the right hand sides of the boundary 

conditions for simply supported beam. In view of equations (15) and (16),  the  ( )xgi  are obtained for simply supported non-

uniform Rayleigh beam with time dependent boundary conditions thus, 
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  It is only necessary to compute those of the( )xgi  for which the corresponding ( )tfi  do not vanish. Thus, we need only  ( )xg1  and 

( )xg3  for our boundary displacement influence functions )(1 tf and  )(3 tf  

 In view of equations (42),  
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Substituting equations (43)-(49) and the evaluation of the integrals in equation (50) into equation (36) after some rearrangements 
and simplifications, one obtains 
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Equation (51) represents the transformed equation of the non-uniform Rayleigh beam simply-supported at both ends and having 
boundary and initial conditions which are time dependent. To solve equation (51), two cases are considered :(a)Moving force case 
and (b)Moving mass case respectively. 
 
 
3.2.1 Simply Supported Rayleigh Beam Traversed By Moving Force. 
 
This model neglects the inertia effect of the moving mass M. Thus, in equation (51),ε  is set to zero. On this consideration, the 
transformed equation (51) reduces to 
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where  
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As in the previous seminar we consider a simply–supported beam, one of whose end 0=x , (say) is subjected to a sine-

wave (undamped) transient displacement, starting from rest and the other end, lx =  is subjected to a damped sine wave transient 
displacement starting from rest. Consequently, we have       
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  Where A, B are amplitudes, Ω  is frequency and β  is parameter.  
Substituting )(1 tf , ( )tf3 , ( )xg1  and ( )xg3  in the initial conditions (7), one obtains 
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Substituting equations (63), (64) into (60) after simplifications and rearrangements, yields 
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while when equation (65) is solved by Laplace Transform and Convolution theory yield expression in ( )tYm  thus, 
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     and on inversion yields 
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where ( )txZ ,  is as given in equation (70). 
 Equation (73) is the dynamic response of the non- uniform Rayleigh beam to moving force whose two simply–supported edges 
undergo displacements which vary with time. 
 
3.2.2 Simply Supported Non-Uniform Rayleigh Beam Traversed by Moving Mass    
 

In this case, the moving load has mass commensurable with that of the beam. Consequently, . As mentioned 
earlier, there is no exact analytical solution to this problem. Thus, we resort to the modified Struble’s asymptotic technique. In 
order to solve equation (51), it is rearranged to take the form                      
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where 
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and 
As in the previous section, the homogeneous part of equation (74) is first considered as a modified frequency corresponding to the 
frequency of the free system due to the presence of the moving mass is sought. An equivalent free system operator defined by the 
modified frequency then replaces equation (74). To do this, consider a parameter for any arbitrary mass ratio ε defined as.      
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   Now, using (78) and (79) in (74), one obtains. 
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when , a case corresponding to the case when the inertial effect of the mass of the systems is neglected is obtained. In such 
a case, the solution is of the form. 

                      (82) 

  where  and  are constants   (83) 

Since for any arbitrary mass ratio , Strubble’s techniques requires that the solution of the homogenous part of equation 

(74) takes the form, 

                            (84) 

where  and  are slowly varying function of time. The modified frequency is obtained by substituting equation 

(84) and its derivatives into the homogenous part of equation (81). The resulting variational equations describing the behavior of 

 and  during the motion of the mass determine the modified frequency. 

To this end, substituting (84) and it derivative into (81) in conjunction with the expanded expressions in equations (78) and (79) 
yields 
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retaining terms to order  only.                                                

 At this juncture, the following trigonometric identities are noted, namely 
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Since only the terms involving  and  contribute to the variational equations describing the behavior 

of  and , in view of the identities (86) and (87) equation (85) reduces to 
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   The variational equations of our problem are obtained by setting the coefficients of    and   

to zero and solved to obtain 

         and                        (89) 

  respectively, where  and  are constants of integration. 

Therefore, when the effect of the mass of the particle is considered, the first approximation to the homogenous system is 

          where                                  (90) 
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 is called the modified natural frequency representing the frequency of the free system due to the presence of the moving mass. 
Thus, the homogeneous part of (81) can be written as                                                  

                                                                              (91) 

Hence, the entire equation (74) taking into account (90) takes the form 
      (92)                                                                          

In order to solve the non-homogeneous equation (92), it is first simplified and re arranged, using trigonometric identities and the 
standard formulae, some 36 integrals are evolved and evaluated to obtain 
   

 

           

          

          

           (93)  

  where        
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and                                        (94) 

where 
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        (95)

 

Therefore, 

                                      (96) 

Consequently in view of equation (9), 

              

                                     (97) 

Equation (97) is the dynamic response of a non-uniform Rayleigh beam to Moving Mass whose two simply supported 
edges undergo displacements which vary with time.  
 
4.0 Discussion of the Analytical Solution 
 
If the undamped system such as this is studied, it is desirable to examine the response amplitude of the dynamical system which 
may grow without bound. This is termed resonance when it occurs. Equation (61) clearly shows that the simply supported elastic 
Rayleigh beams transverse by a moving force will be in state of resonance whenever  

                                       
L

um
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πγ =         (98) 

While equation (90) shows that the same beam under the action of moving mass experiences resonance effect whenever 
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From equations (90) and (100), we deduced that for the same natural frequency, the critical speed for the system of a simply 
supported elastic beam on an elastic foundation and traversed by a moving force is greater than that traversed by moving mass. 
Thus, resonance is reached earlier in the moving mass system than in the moving force system.   
 
 
4.0.1 Numerical Calculation and Discussion of the Results for Simply-Supported Non-Uniform Rayleigh Beam. 
  
      To illustrate the foregoing analysis, the Non-uniform Rayleigh beam of length L=12.192m, is considered. Furthermore, the 

load velocity u = 8.123, mkgxE /10109.2 9=  , 24 /2200 sm
EI =
µ

and the ratio of the mass of the load to mass of the 

beam is 0.25. The values of the foundation modulli K are varied between 0 and 400000units while the values of axial force N are 
varied between 0 and 40000.The traverse deflections of the non-uniform Rayleigh beam are calculated and plotted against time 

for various values of rotatory inertia  or , axial force N and foundation stiffness K. 
Fig.1, displays the transverse displacement response to a moving force of simply supported non- uniform Rayleigh beam 

for various values of foundation modulli K and for fixed value of rotatory inertia or , and axial force  N. The graph shows that the 
response amplitude of the beam decreases as the values of the foundation modulli K increases. Fig.2 also shows the deflection 
profile due to moving force of a simply supported non-uniform Rayleigh beam for fixed value of foundation modulli K and axial 

force N and for various values of rotatory inertia or . 
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 The graph shows that the response amplitude of the beam decreases as the values of the   rotatory inertia correction factor or  are  
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Fig 2: Deflection profile of the simply surported non-uniform Rayleigh beam under a moving 
force for various values of rotatory inertia and for fixed value of foundation K = 40000
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Fig.1: Deflection profile of a simply supported non-uniform Rayleigh beam under moving force for

 various values of foundation modulli K and for fixed value of axial force N and rotator inertia r(1) 
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increased. Furthermore, fig.3 shows the deflection profile of simply supported Non-Uniform Rayleigh beam under the action of 

moving force for various values of axial force N and fixed value of rotatory inertia or  and foundation modulus K. The graph 
shows that as the value of axial force N increases the displacement response of the beam decreases. In fig.4, the deflection profile 
of simply supported Non-Uniform Rayleigh beam under the action of moving mass for various values of axial force and fixed 

values of rotatory inertia or  and foundation modulus K is shown. Evidently, as the axial force increases  
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Fig4: Deflection Profile of a simply supported Rayleigh beam under the actions of moving 

mass for various values of axial force N and for fixed values of Rotatory inertia r(1) and 
foundation modulus K(40000)
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Fig3.Deflection profile of simply supported Non-Uniform Rayleigh beam under the action of  
moving force for various values of axial force N and for fixed value of rotatory inertia r(1) and 

for fixed  value of foundation modulus K(40000). 
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Fig .6: Deflection profile for simply supported non-uniform Raylegih beam under the action of 
moving mass for various values of rotatory inertia and for fixed values of axial force N(20000)

and foundation modulus K(40000)
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Fig.5: Deflection profile of a simply supported non-uniform Rayleigh beam under the action of 
moving mass for various values of foundation modulus K and for fixed values of axial force 

N(20000) and rotatory inertia r(1)
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the response amplitude of the beam decreases. In fig.5, the transverse displacement response to a moving mass of simply 

supported non-uniform Rayleigh beam for fixed values of rotatory inertia or  and axial force N and for various values of 
foundation modulli K is displayed. From the graph it is shown that the response amplitude of the beam decreases as the values of 
the foundation modulli K increases. Furthermore, fig.6,the depicts deflection profile of simply supported Non-Uniform Rayleigh 
beam under the action of moving mass for various values of rotatory inertia and for fixed values of axial force N and foundation 

modulus K. The graph shows that the response amplitude of the beam decreases as the values of rotatory inertia or  increases.  
  
       Finally, fig.7 shows the comparison of the transverse displacement of the moving force and moving mass cases of simply 
supported Non-uniform Rayleigh beams with time dependent boundary conditions under the action of moving loads for fixed 

values of foundation modulli K, axial force N and rotatory inertia or . It is also evidently confirmed that the moving force solution 
is not an upper bound for the accurate solution of the moving mass problem.  
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