Journal of the Nigerian Association of Mathematical Physics
Volume 18 (May, 2011), pp 45 - 62
© J. of NAMP

Motion of Moving Concentrated Loads on a Simply-Supported Non-Uniform
Rayleigh Beam with Non-Classical Boundary Conditions

1S.T. Oni and’S.0 .Ajibola

'Department of Mathematical Sciences

Federal University of Technology, Akure.
?School of Science and Technology

National Open University Of Nigeria, Lagos.

Abstract

This paper investigates the transverse responssimfly-supported non-uniform Rayleigh beams
resting on a constant elastic foundation. The beapreperties: moment of inertial I(x) and mass per
unit length of the beam miu vary along the span If the beam. The Mindlin and Goodman’s
technique is used to transform the governing nonrhogeneous forth order partial differential
equations with non-homogeneous boundary conditioimio non-homogeneous forth order partial
differential equations with homogeneous boundaryralitions.

The resultant transformed equation is then furthdreated using the versatile Generalized
Galerkins’s method with the series representatiof the Dirac Delta function, a modification of
Struble’s asymptotic methods and the integral trémsnation techniques in conjunction with the
convolution theory. Analytical solution was obtaidefor the transverse displacement response of the
non-uniform Rayleigh beam. Analytical and Numericaésults reveal that the deflection profile of the
non-uniform Rayleigh beam decreases as the valudhaf foundation stiffness K increases. It is also
found that the increase of the foundation stiffnesé causes increase in the critical velocity of the
dynamical system, thereby reducing the risk of reance.

Keywords: , Rayleigh beam, non-uniform, axial force, non-sieal boundary, rotatory-inertia, Foundation-moidull
simply supported.
1. Introduction:

The vibration analysis of structural elements hasrband continuous to be the subject of numercgsarehers, since it
embraces a wide class of problem with immense itapoe in Engineering Science. In recent years, supbrtant engineering
problems as the vibration of turbines, hulls oppshiind bridge girders or variable depth e.t.c,liiag the theory of vibration of
structures of variable cross-section have integwithe need for the study of the response of ndfiorum elastic systems under
the action of moving loads.

Until recently,[1] the literature on one-dinsgonal structures such as non-uniform Raylieghmsesubjected to dynamic
loads is very meager. In most cases, even in thergie of inertia effects of the moving loads, exxgiressions for the dynamic
response and frequencies of non-uniform beams &rgcflexural vibration cannot be determined, efenlower modes of
vibration. Aside the flexural rigidity and mass psiit length of the beam that are certain functiohthe spatial coordinates, X, in
the governing equation, one important problem #nises when the inertia effects of the massesansidered is the singularity
which occurs in the spartial coordinate of the tiaeterms of the governing differential equatiomadtion.

Several investigations have been carried out oynamics of structures under moving loads. Susbaechers include. [4],
[3], [3]. [6]. [7], [8], [10], [14]and [17].

These works, though impressive, have neglectegihetical cases where the elastic systems arer@hla cross-section.
Very recently, [,16], investigated the Dynamic Bebar of non-Uniform Bernoulli-Euler Beams Subjett® Concentrated
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Loads Travelling at Varying Velocities. They obtdhan analytical solution to the dynamical probl&mwmr the illustrative
classical boundary conditions considered, they dotivat for the same natural frequency, the critgyaéed for moving mass
problem is smaller than that of the moving forceljpem. Hence, resonance is reached earlier in rgawiamss problem.

In some of my previous papers, the problenthef flexural motion of a uniform Rayleigh beam megton an elastic
foundation and traversed by masses moving withoumifspeed was investigated. In the mathematicakeimtite beam properties
do not vary along the span L of the beam. Howewemany practical problems involving dynamics afustures (beams or
plates) under moving loads, the structures havebiar cross-sections. Thus, the problem of simplyp®rted non-uniform
Rayleigh beam under the action of loads moving wéthable speeds is considered in this paper.

When other methods commonly in used to solve dycalnpiroblem broke down or incapable to handle phablem, we resort
to a modification of an approximate method besteslfor solving diverse problems in dynamics ofistures generally referred
to as Galerkin’ method. This we term GeneralisetefBa’s method GGM. This method is employed to @ify the governing
fourth order partial differential equation with gidar and variable coefficients. The resulting @&dfeés equations are solved via
the modified struble’s asymptotic technique. Stetdblsymptotic technique is used to simplify thepied second order partial
differential equation into a second order ordirgifferential equation.

2.0 Governing Equations.
In this paper, the dynamic behavior of a non-umifé&®ayleigh beam resting on a constant elastic fation where the beams

properties such as the moment of ineiltiabnd the mass per unit length of the beanvary along the spah. of the beam is

consideredRC is the Rotatory inertial, K is the elastic fouridatModuli; x is the spatial coordinate atds the time. The
transverse displacemehlt (X,t) of the beam when it is under the action of a mg¥irad of masdM which is moving with

velocity C is governed by the fourth order partial differahéquation given by

—22E XU (xt +u(x) L2 9 (RO ZEE
e [ c2)

ax a2 ox axat2

8% 2002 %92 ~
+Mc5(x—ct{¥+m+ o ]U(x,t)+KU(x,t)—MgJ(x ) (1)

Where g is the acceleration due to gravity. leisarked here that, since the Rayleigh beam is ndorm, | and ¢/ are no
longer constants but vary with the spatial coordirsdong the span of the beam .in particular, adgphe example in Fryba. L
:Noordhoff 1972,[13].Letl (X) and,u(x) take the forms

1(x)= I0[1+sin%j3 (2)

u(x)= ,uo(1+ sin%) (3)

where |, and |4 are constants.
The boundary conditions of the above equatigrafe taken to be time dependent, thus at eatttedfoundary points, there
are two boundary conditions written as

D Uot)]=fit) =12 (4)
and
D u(Lt]= i) =34 (5)
whereD, are linear homogenous differential operators oéptess than or equal to three.
For example, the Rayleigh beam in question is sirappported at both sides then

a2 a2
D]_:l. D2 :—2, D3 =1andD4 =—2 ,
ox ox

The initial conditions of the motion at tinte= O are specified by two arbitrary functions thus
U(x0)=Uo(x) . and w “Uox) 7)

When equations (2) and (3) are substituted intoato (1), the result is a non homogeneous systepadial differential
equation with variable coefficients given by
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Elo 210—6cos—2m+155inm sms—m 64U(X ) 24”sinz—nx+—307Tcosz—6—7Tcos—3nx 63U(x,t)
4 L L L) ax? L L L L) a3

24772 2% 157% . x| 9m® . 3 2U(xt) a2 (x 1)
0S—— ———5| nL 2 sin L + U (1+smTj

|_2 L2 ax? a2

2 2 2 2 2 2,52
~ 11oR° (l+5|n Ja QV(6Y) |, 7700 7K D 0V | sl or) SV | 2007V (x1) |, 0% ()
L)ox? a2 L Lox 42 at? oxat ax2
+kU (x,t) = Mgd(x—ct) . (8)

El 4 ) 3
=01l10- 6c052—+155|n1—sm3—m a—Z(x t) +62 4S|n2—m+5cosz—cosg—m a—Z(x,t)
4 L L L )ox? L L L L Jax3

2.1 Operational Simplifications of Equation

In this paper, the initial-boundary value problé consisting of a non-homogeneous partial dffidial equation with a non-
homogeneous boundary conditions is transformed toeoa-homogeneous partial differential equation withmogeneous
boundary conditions, using the Midlin-Goodman’s Inoet. In order to solve the above initial-boundaglue problem, we
introduce the auxiliary variabla(x,t) in the form

4
U(xt)=2(xt)+ z fi (t)oi () (9)
i=1
Substituting equation (9) into the boundary valugblem (8), transforms the latter into a boundeyie problem in terms of
z(xt). The displacement influence functioggx) are chosen so as to render the boundary condfiorise boundary value
problem in z(xt) homogenous.

Substituting equation (9) into (8) and simplifyipiglds.

2 27K 3K ) 0 . TK 062 7% 92 7 92
+3L—[8005T 55|nT+35|nTj§Z(xt) +/10(1+smTJZn(x,t)—,uoR ax—zzn(x,t)+smTax—22n(x,t)+tcosrax—22n(x,t)

2532

W
2co 0 27K 3
+ Mci(x—ct){zn (x,t)+gztt (x,t)+c—22tt (x,t)} +kz(xt) = Mgd{x—ct) E { {10 6cosT+155|n%—smejg, (x)

i=1

+6— [4sm2—+5005z coss—jgl”'( )
L L L L

+ Siz(Bcosz—m -5sin% + 35in3—mjgi” (x)} + oy (t{l+ sinzjgi (x) - ,uORO fi (t{gl” ( )+ sin”% 0 I (x) + L cos™® gi' (x)j
L L L L L L L L

+Malx-ct)] €)oi (0)+ 2cf; @)at (3)+ e, (at" (3)+ Kk €)oi () (10)

Where dot ([) represents the derivative with respect to time, while slash () represents the derivative
with respect to space coordinate.

Now the expression in equation (9) must satisfyliheendary conditions in equations (3) and (4); egagntly, one obtains

4
Difzlo]l+ Y fit)oifai(o] = ic) =12 (11)
j=1
oL+ S e (= 1) = a8 12)
j=1
Substituting equation (9) injto the initial equasdi) yields.
Z(x,0)=U(x0)- Z fi (0)ai (x) (13)
Srelx0)=Ual)- Y filoli (14)

i=1
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Using the Mindlin — Goodman method [16] the bougdanditions (11) and (12) in terms afx,t) can be made homogeneous if
the functiong; (x) are chosen such that the sixteen conditions diyen

Di[gi (0] = 4 (=12=1234) (15)
And
Di[gi (L)] = 45 (i=34]=1234) (16)
Where
{0 for i# ] 17
| for i=j ()

is the Kronecker delta; are satisfied.
Using equations (15) and (16) in the non-homogetmusdary conditions (11) and (12), we obtain tbenbgenous boundary
conditions.
Di[zo,t)] =0 i=12

Di[z(L.t)] =0 i=34 (18)
The original problem now reduces to that of solvilng non-homogenous partial differential equati8h gubject to the
homogenous boundary conditions in (15) and (16) Wi non-homogenous initial conditions (13) ang).(1
To the author’s best knowledge, a close form smitutd equation (8) does not exist. Consequentlyagroximate analytical
solution is desirable to obtain some vital inforimatabout the vibrating system.
3. Analytical Approximate Solution.

It is observed that the initial — boundary — vapweblem in equation (10) is a fourth order partidferential equation
having some coefficients which are not only varalblit are also singular. These coefficients agebtinac delta functions which
multiply each term of the convective acceleratigrerator associated with the inertia of the masshefmoving load. It is
remarked at this juncture that this transformedaéiqn is now amenable to a modification of the appnate method commonly
called Galerkin’s method.

3.1 Galerkin’s method
The Galerkin’s method is used to solve equatiorth@form
rz(xt)]-P(xt)=0 (19)
where | is the differential operatoiz(x.t) is the structural displacement antkt) is the transverse load acting on the structure.
A solution of the form
Zj(xt)=q;t)g; (x) for j=123...n. (20)
issoughtwhen j=123, .............. n.
The functions g, (x) are chosen to satisfy the approximate boundaryitons. The Galerkin’s method requires that the

expression (20) be orthogonal to the functipfx) fori=123...n.

Thus
| n
J. Fqu(t)goj (x)-Plg(xjax=0, fori=1,2,........ n (21)
o <o
This gives us a set of ordinary differential edquag in q; (t) to be solved. These differential equations ateaaGalerkin's
equations.
The Galerkin’s method requires that the solutioeaiation (10) takes the form
n
Zn(x,t)=ZYm(t)\/m(x) (22)
m=1

whereVv,(x) is chosen such that the desired boundary conditimre satisfied
Thus, substituting equation (22) into equation ({bOdbtain

/7
El ) ) i
E —2 10—60052—”( +15smz—sm3—m r.'ﬂv (x) +6” 4sin2—m+5cosz—coss—m rH" (x)
. 4 L L L L L L L
m=

+ 3%(&052%7( - Ssin% + 3sin3Tm)vn'q| (x)]Ym (t) + flo [Vm(x) + sin%vm(x)j\?m t)
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= 1R () sin Vi ()« 7 cos () i) + MG tlon Vi) + 20V i)+ €2 (i)

4
+KVpm, X)Ym ] Mgd'x ct) +Z {% fi (t{(lO—GcosZTm+1SSin%—sins—m]gi'v(x)}

‘ L
i=1
Ve . 2TK TK 37K 11 72'2 27K 3 33X ) s . TK
+6-| 4sin== +5cos~ - cos>= |g{!! (x) +3=-| 8cos== —5sin-— +3sin=— |g{ (x) + o i (t) 1+sin= |g; (%)
L L L L L2 L L L L

— 46RO (t)[gi“ (x)+sin% gi“ (X)+%COS% gil (X)j + Mo'(x - ct( f'i (t)gi (x)+ 2Cfi (t)gi (x)+ C2 f; (t)gi” (x)j +Kf; (t)gi (x) ] =0
(23)

In order to determine,(t), it required that the expression on the left hside of equation (23) be orthogonal to the functidr)

Thus,

n

3 HHi(m,k)+Hz(m,k)—Ro[Hg(m,k)+H4(m,k)+’rTH5(m,k)HVm(t)

m=1

+{ ELO (l10H g (m, k) +15H 7 (m, k) - 6Hg(m, k) - Hg(mK)] + 6’{[4H10(m, k)+15H11(m k) - Hyo(m k)]

370 Bty )+ 15H o)+ 31l k)] +-H (m k) i)
L Ho

M

(M Noe)+ 2CH 6 kNim(t)+ 2y (m k)vm(t)ﬂ U8 ) +[oaf)- o)+l
ub) cu) 61 -6 69+ Cul) 01 -G onl)- 61

+G; (1) + Gk 1)+ G () - Gm(t) - G () - Go t) +Gp 1) + Gq 1)+ Gr{t) + Gslt) ] =0 (24)

where
H; (mk) .Where (=12......... 16) are the resulting integrals and

_ 241, ”Z J‘ sinZ% g (M (K)ex* G () = 30El, 7 4 fi(t)J.OLcos%gilll(X)\/k(x)dx

Ao 4o L

4 4
6ol =22 TS 0], cos ! el )= 2225 (0] cosZ% ! ek )= 2 S i oo b

Ay L oy 4y 12 =y Aty L2
4 L 4 L 4

Gi(t)zliiogizl fi(t)J'O sin%gi“(x)\/k(x)dx, 'Gj(t)ziiféizl fi(t)J.O sinsngill(x)\/k(x)dx’ Gk(t) ; f|()j 9|(X)‘/k( )

4
&)=Y 0], 7% o1 b o

i=1

4 4
0-r3 O ol bl on)=r 3 70 an ol b
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Got)=R° 7—[24: fi (t)J-OL COS% ol (M (Xax . Gplt)= ﬁz f (t)IOL5(X = ct)gi (Vi ()ax

4

[, -l ek, G)= D" )] oo (25)

i=1 i=1
Since our beam has simple supports at both endardX=L, we therefore choose the functiom(x):sin’]—fl‘_“x which implies
Vk(x)zsinALLX ande(ct)zsin/]m—IECt) (26)

The frequency equatiGinA,x =sinAx=0, hence,Anx=Ax (27)

The property of the Dirac-Delta function as an efterction to express it in series form thus,

1,2 - n7x nsct
6(x—ct)-[ T ;cosTcosTJ (28)
Thus, in view of equations (26) and evaluating th&egrals in equation (24), after some simplifioas and
rearrangement, one obtains

3 ool i) k) m[{m(m, 0+2 cos iz un k)}vm(t)

m=1 n=1

[ee]
+ 2C|: H 18(m, k) + 22 cos@H 18A(m, n, k)‘|Y.m (t) +C 2
n=1

H 3(m, k) + 22 cos%H 3A (m, n, k)}Ym (t)ﬂ

n=1

=%[smkc—[+ Accost S + B sinh % 4 ¢ cosmkc—j - [Galt) - Golt) + Golt) - Ga 1)+ Gelt) + &1 (1) - G )
0

+Gn(t) - Gi(t)+ G (t) + Gk (t)+ Gy (t) - Gm(t) - Gnlt) - Go t) + Gplt) + Gy t) + G (t) + Gst)] (29)
Where
e M (30)
Ho
ao(mk) = [Hl(m, K+ Ha(mk) - RO[Hg(m, )+ Halmi)+ Thgm k)ﬂ (31)

and

a(mk)= f—:g{[NH 6(m k) +15H7(m k) - 6Hg(m k) - Hg(m k)| + 6’{[4H10(m, k) +5Hy4(m k) = Hyo(m k)]

2 ) -5 i)+ S k)l} K (32)

Equation (29) is the transformed equation goveriiegproblem of non-uniform Rayleigh beam restimgaoconstant Winkler
elastic foundation and transverse by a moving |ld&is second order differential equation is vabd dll variants of the classical
boundary conditions. In what follows, we shall ddes boundary conditions such as simply supporteghtary conditions as
illustrative examples.

3.2 Simply-Supported Boundary Conditions.

The deflection and bending momentXaE 0 and X = L vanish for a non-uniform Rayleigh beam having sevgupports at
both ends.

2 2
zot)=0=2(Lt) , 2 azx(gt) =0=2 azx(lz_’t) (33)
also, for normal modes
Vin(0)=0=Vpm(L) , dz;i(rg(o) —0= dz(\j/)r(nz(L) (33)

Similarly
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—0= d44(0) _o- dA (L)
Vi (0)=0=V (L) , vl 2 (35)

Substituting equations (26) and (27) and evaluatiegresulting integrals after simplifications aedrrangements equation (29)
yields.

2 b(rkfn() i KMin 0} 0[Q10Vim )+ Q2 1 Von 1)+ Q3 Vim0

:'\:—35m— [Ga Gb(t) + Gc(t) -Gy (t)+ Ge(t)+ Gt (t)— Gg(t) ¥ Gh(t)— G (t)

+Gj(t)+ Gk (t) + G (t) - Gm(t) - Gn(t) - Go (t) + G t) + G4 t) + G (t)+GS(t)J =0

(36)
where
aa(m,k)={|1+|17+R0 ngz[|1+|17—%|33]] (37)
)2 Bo|m*2 3 - 60pL 12mkL
1{mi)= 4/13{ 3 g T e e M e m+k2ﬂ
—m3n4 6kL+ 12kL( 2 |2) . 60kL(1+q_12 k2) .
L 77[9 m- k219 m+k2J nll m- kzlll m+k2]
+ﬂ[emL- . 6o sop 1083 ] (38)
L4 ntl—(m—k)zlb—(m+k)zl 7119—(m—k)219—(m+k)21

(k.mt =%{1+4Zsm—sm t] (39)
Zi(n2+m - )cos,T

1

__ 4=l 3
Qo (k,m;n,t) = —dcmk 2 rrlnz - ]l ., 2] (40)
and
Q, (k,m,t)=-°2T§”2 Q,(mi) (a1)

At this juncture, it is pertinent to obtain the fiarlar functionsg;(x) that ensure zeros of the right hand sides of thentbary
conditions for simply supported beam. In view ofiations (15) and (16)

, thegi(x) are obtained for simply supported non-
uniform Rayleigh beam with time dependent boundanyditions thus,

2
gl(x):l_%v 92(x )-‘%X XT—G—lLX , g3(x ):%and 94(X)=‘%X (42)

It is only necessary to compute those ofgltg for which the corresponding (t) do not vanish. Thus, we need ony(x) and
g3(x) for our boundary displacement influence functictiye) and f5(t)
In view of equations (42),

Galt)= Golt)=Celt)= Gult)=Gelt)= Gf ()= Gy(t)=Gnlt)= &1 (t)=G;t)=Cm(t)=Cnl)=G:(t)=0  (43)
While,

Gil)= Ny + (30~ B} (44)
61 (1)= fafNs + (1360 - af)} - na (45)
o) =205 () i), (46)
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Golt)= L‘% f(t)sin 7t + LZ“LO [Nz . z;cos”T’“NGJ(fg(t) - f'l(t))] 47)
Gq(t)=ﬁL/ZsinkTm(f3(t)— t) (48)
cat)] i+ () - ) (49)
where

L L L L

Ny :J.sinK—mdx, No =J.xsinK—mdx. , N3 :J.sinzsinK—mdx, Ng :J.xsinzsinK—mdx ,
L L L L L L

o [0} [0} [0}

L L
N5 =J‘cos%sinK—:de and Ng =J‘cos%sinKdex. (50)

[0} [0}

Substituting equations (43)-(49) and the evaluabbtie integrals in equation (50) into equatio)(8fter some rearrangements
and simplifications, one obtains

) b 0 @0+ Vo) o)

=%Si”kTm‘[F1(t)+ Fa(t)+ Falt)+ Fa(t)l- O L[Fs (t)+ Fe (t)+ F7 (t) + Fa t)] (51)
Where

A= (1) O BOLS (52)

Fall)=5 () (53)

Fal) =)+ (O 00} (54)
F4(t)=(f'3(t)—f'1(t){ ﬂffj(’kkz)—nz&“_k'kz)zJ (55)

Fs(t)= f‘l(t)sin"T’“ (56)

ral)= i)~ o)L= 57)

R )= (h50)- f'l(t))i { (k-n)- 1)':(:;_(: 2+) n)(-2k " }CO s@ )

Folt)= (1)~ 225 ™= (59)

Equation (51) represents the transformed equafitimeanon-uniform Rayleigh beam simply-supporteta@th ends and having
boundary and initial conditions which are time degent. To solve equation (51), two cases are cersid:(a)Moving force case
and (b)Moving mass case respectively.

3.2.1 Simply Supported Rayleigh Beam Traversed By bVing Force.

This model neglects the inertia effect of the mguinass M. Thus, in equation (5&),is set to zero. On this consideration, the
transformed equation (51) reduces to

ol )= s Ll ol ) o] (60)
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where
2, = a1 (mk) (61)
ap(mk)
and
= (62)
Hoao(m,k)

As in the previous seminar we consider a simplypsued beam, one of whose eXd= 0, (say) is subjected to a sine-
wave (undamped) transient displacement, startiom filest and the other end{,= | is subjected to a damped sine wave transient
displacement starting from rest. Consequently, axesh

f1t)=BSnQt and f4(t)= AeAsint (63)
Where A, B are amplitudes, is frequency ang3 is parameter.
Substituting,t), f5(t), g1(x) and gz(x) in the initial conditions (7), one obtains
z(x0)=0  and @:—Q (64)
Substituting equations (63), (64) into (60) aftendifications and rearrangements, yields
Yin(t)+ v Ym(t) = AOSinkTmt +C FgSinQt + C F1oCosQt + C Fy1e A Sinat (65)
where
1 (0% 04 L 2% [ 2
Crg = _—— - VR - 66
Fo ag(m,k)[ i 2w A Ak (66)
1 [(2pL apk (o 2L ]
Cr10 R (67)
sl e A i)
-1 K+l (,82 —92)|_ ka1 L 2k(,6’2 —92) 0 2L
Cr11= -1 +(-)f " —+ = R - 68
T A i &8 L (8

while when equation (65) is solved by Laplace Tfams and Convolution theory yield expressionyiglt) thus,

C C
Ym(t):iﬂzgnK—mt—K—mSinymft + F9me2 Sth—iSnymft + F10Vimf (Coth—Cosymft)
Vort (ij L L 2‘% -0 ) Vit 2 -2
Vr%f -
L
2 2 2 _n2_p2
2C -0+ _ 4c Q _ 2CF11Q Q°-p
_ Fllymf(y%f B) ePsnot + FLini 95 ePcosnt - (me ) Snypt
22 +a2+p2f -0y QZ} {(y%f +92+ﬁ2)2-4}/2mr92} {(yrif va? e p2f a2, 92}
-4C Q
. F1l/nt QB Cosyig +%&+(_1)k+1)9nymft}
2(;/2mf +§22+/32)2—4y§ﬂ§22} d
(69)

and on inversion yields
n

Z(x,t)=z 2’“0 Z[Snzot—iSnymft]+ ZCFQ 5 [Coth—iSnymftj+ ZCF102 (Coth—Cosymft)
v 26 Vi 2y -Q Vi (ymf -Q j

+ CEUD A g ZCF1IS e ACosyiyt +[&(1+(—1)k+1)——CF119Q3 j—l Snymft——zc':llg'g Cosymft}Sn—mm
Q Q K Q )V Q L

(70)
Where
2
Q =[(y§ﬁ +Q?+p? | -apl, 92}, Q=2 +a2+ ),
Q= 9242, Q=2 -2-p?) (71)
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ZO = leE (72)

But From equation (9),
Olx0)=20e)+ 3
Consequently, -
U(xt)=Z(xt)+snQt + (e‘/”‘ —l)%Sith. (73)
where z(x,t) is as given in equation (70).

Equation (73) is the dynamic response of the moiform Rayleigh beam to moving force whose twopymsupported edges
undergo displacements which vary with time.

3.2.2  Simply Supported Non-Uniform Rayleigh Beam Taversed by Moving Mass

In this case, the moving load has mass commensunaitih that of the beam. Consequently,Z 0 . As meetion
earlier, there is no exact analytical solutionhis fproblem. Thus, we resort to the modified Stigbhsymptotic technique. In
order to solve equation (51), it is rearrangedit@tthe form

i{vm(m P ()v'm(t)} WALl bl WY

~= m k) + eQut o5 (m k) + eQut)
e e S 0 O 0 0+ ) )+ o) ) (74)
where
1 kﬂm( 1 J (t) on(t) = ;/;: Fl(t)'
f,(t)+ (-2)<" £, t (2R o e (75)
( ()) Fo) = u(leEZ ,TZ(iLKk)Z](f() f()j
and

As in the previous section, the homogeneous pagtjohtion (74) is first considered as a modifiedjfrency corresponding to the
frequency of the free system due to the presentigeainoving mass is sought. An equivalent freeesystperator defined by the

modified frequency then replaces equation (74)dd ¢his, consider a parametgr <1  for any arbitrarysmaso £ defined as.
&

A=—— (76)
1+¢
It can be shown that £=1+0(12) (77)
All the various time dependent coefficieafghe differential operator which acts ohfm(t) in atjon (74) can be written
in terms of A when one considers that @(A)
E=A (78)
Thus, 1 - < ! [1— < ! A£[1+4isinkﬁsinﬁj+o(ﬁz)+ ............. } (79)
F— a(mk)|” oX(mk) 207 AL L
{aj(mk)+A (1+4Zsmsmﬂ
2 ) L L
where
1 kt . mrxt (80)
m/} 5 [1+ 4ZSIHTSIHTJ <1l
Now, using (78) and (79) in (74), one obtains.
t o AR ( Q(t)]
Y.t - Qlt Y.t
$15.0- 228000 1 0020
_ AL ket 0 o o ofy) _ _ (81)
= a;(m,k)[gsm L (Fl (t) +F, (t)+ Fs (t)+ F, (t)+ Fs(t) +Fg (t) F7(t) Fs(t)):|
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whenA =0 , a case corresponding to the case when thelreffect of the mass of the systems is negte@ebtained. In such
a case, the solution is of the form.

Yn(t) = C, coslyn(t) - &) ®2)
whereC, andg, are constants (83)

Since A <1 for any arbitrary mass rafib , Strubble’s téghes requires that the solution of the homogemauis of equation
(74) takes the form,

Y, (t)=dmt)cody,, (t)-w(mt)| +Av,{)+0() (84)
where ¢(m,t) and(//(m,t) are slowly varying function of time.eTimodified frequency is obtained by substitutingatpn
(84) and its derivatives into the homogenous paeoguation (81). The resulting variational equasiaiescribing the behavior of

¢(m,t) and l//(m,t) during the motion of the mass determine todified frequency.

To this end, substituting (84) and it derivativéoii81) in conjunction with the expanded expressimnequations (78) and (79)
yields
2V (b(mt)Sin[met —l//(m,t)] + 20y w(mt)(”(mt)cos[ymf t_‘/’(mt)] _aAcmk y ¢(m’t)sin[ymft ~y(mt)]
ay(m,k) (m? - k?)
8Acmky,, i;(n2 +m? —kz)dm,t)cos%msin Yt -w(mt)] A V2 ¢ m?2 72
ma(m Kl = (=K o = (m+ k] a,(mk)| [ L va

(cz m? 71
+

+1];¢(m,t)cos[ymt —l//(m't)]

+1j;qdm,t)4isin k T:t sin mZECt cody, t—(mt)]+ A v, (0) =0 (85)
n=1

7
retaining terms to 0rde®(/]) only.
At this juncture, the following trigonometric idities are noted, namely

Cosn%ctsm[}/mft _w(mt)] :;{Si{nmt ryt ‘w(m’t)j _Sir{mECt Yt +l//(mt)ﬂ (86)

L
and

sin K77 gjp M7CE cody, t-p(mt)|= l{co{(m— k)”—Ct +yt +z//(m,t)}
L L 4 L
+ cos{(m— k)”TCt — Y t+ zp(m,t)} - cos{(m+ k)’TTCt — Yt —z//(m,t)}

- co{(m + k)’TTCt — Yt z//(m,t)H (87)

Since only the terms involvingn{ymt +@(mt) awiywt-w(m,t)} contributahe variational equations describing the behavior
of gmt) and y(my) , in view of the identities (86) and (8@ation (85) reduces to

4icmky,, ¢(mt)
a;(m kv - k)

—2yw¢(m,t)sin[ywt —w(m,t)]— sin[ymft —w(m,t)]

+2mw<m,t><o(m,t>cos[ywt—w<m,t>]—aﬂ(ﬁ;*k)[ﬁ”‘;;’z+1];qo(m,acos[yﬂt-w(m.r)]:o (®8)

The variational equations of our problem areabistd by setting the coefficients ogin{ymft -w(m,t)} ar@gd)iymt -w(m,t)}

to zero and solved to obtain
-2Acmk
] 1

¢(m,t) = G[W tk

2.2 ]
and y(mt)= Ay, LA L by (89)
Ly e 4a;(mk) |
respectively, wherd;,k, an8  are constants of iatéemgr.
Therefore, when the effect of the mass of the glaris considered, the first approximation to tbenbgenous system is

Y, (t) = dmt)cody,t-w,] where _ _ | (ewtr ) 1 0Y9
Yo =V Lyw”  )4ag (mk) |
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is called the modified natural frequency represgnthe frequency of the free system due to thegree of the moving mass.
Thus, the homogeneous part of (81) can be writsen a

Y(t)+ )2, (t)=0 (91)
Hence, the entire equation (74) taking into acc@®@j takes the form
Y(t)+ yaYa () - %f(n';k)[g sinktCt —(Fo(t) + F2M) + FL@) + FO() + Ryt) + F2() - F7(t)+_F8(t))} (92)

In order to solve the non-homogeneous equation {BB) first simplified and re arranged, usinggthometric identities and the
standard formulae, some 36 integrals are evolvddegaluated to obtain
Y, (t) = A sinzt + Agsiny,t + A, sinQt + A, cosy,t + Ae” cosQt
+ A P sinQt+ A codz, Q)+ Ag(z, +Q)t + Ae ™ cosy,t+ A,e P siny,t
+ A sin(z, ~QJt+ Age™ sin(z, + Q)t + Aue” codz, + Q)+ Agsin(z, + Q)t
+ Aysin(z, ~Q)t+ Az codz, + Q)t + Age sin(z, + Q)t + Age™ cofz - Q)
+ ’Abgle_ﬁt Sin(21 - Q)t + Abgzsm(zi + Q)[ + Aggssin(zi - Q)[ (93)
—_ T1
Yoo 2

Ao =i{ Stk ZT8 +%(T39(/32 +02 -2+ T (8 + 1 +07)) —Te[(z" (g o[z, af _yfn)_(anz_Q)(ﬂz +(z,-9f —yé)]

where Alo =

YalVo=Z Va=Q Q Q
T ﬂ[ (& +V§;Z(Zo +f)_(p +V§go +Q)2)] +T{V§ +Zzzt ?Q)Z + 7 —Zzz: ?Q)ZJ _T{(HQ)(BZ+éa+9)2-%)_(A—Q)(Bzézl—ﬂ)z—%«)j
e
Aoz L

1 1 1 z+Q z-Q
A, = | 2BaT, - (8% + 2 - Q%))+ T, 2 e o
* [QD('B gt - S(yé—(zo—ﬂ)z+yé—(zo+0)z]+ 'BTG( Q Q, ]

+T7[(ﬂ2 +12-(2,-0F)_(p+vi-(z, *Q)z)] +2Tg/{%ég—zl—_9] +Tw[('82 o=@ +af) (p+y -z -Q)Z)H

Q Q Q Q Q
= i 2 42 2 0?2 _1 2.2 _ 2 _~2)_ - -Ts - -Ts
'%0 - Q;; (T3 +T4(IB + yrzn Q )) A;o - aé)(-ra + (ﬂ + yi Q ) 2[?QT4), A70 yyzﬂ _(ZD _ Q)z 1 ’%0 V,i _(ZD + Q)2

Q ) Qe q
A JH(ZD +0)F+(z+0f -12)_(2,-0)F +(z +9F -Vi)] +T[(Zo +Qlf +Ha+9f ) _(a-0F +@+oF -yni)ﬂ
AN Q Q ? q o}
- 264(z,-9) _—2A(z,+Q)  F-t-0f) (Fer-ar )] Ao T T
A, Q! ) As Q A= —T{ % + Qllzo } As v -(z+Qf’ A V2 —(z,-QF
:Tlo(ﬁ‘2 +yrz"—(zl+Qz)) :_25(21"'92)-50 :Tm(ﬁz +y:1_(21_92)) ! - _ZIB(ZI_QZ)TIO = Ty
%7 (23 1 AQB (23 A99 Q‘\‘ A991 Q; '%92 yﬁ‘ _(21 +Q)2
and P (94)
? %-(z-9f
where

Q, =B +ya+ Q' + 2B+ fO1 - 20
Q =B +1+(z,+ Q) +2 B2 + Bz, + QF - 2/2(z, + QY]
Q = +yi+(z-Q)f + B2 + £(z, - QF - 2/2(z, - ]
Q = B+ +(z +Q) + 282 + Bz + QF - 2/(z,+ O |
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Q =p"'+y+(z-Q) +2B%2 + f(z - QF - 2¢2(z - OF] )
Therefore,
Zn(x,t):Zn:Ym(t)sinm—ljR (96)

Consequently in view of equation (9),
t
Ulxt)=2(xt)+ Y 1 )a, (1)
1=1

=7(xt)+sinQt + (e —1)(%)sith 97)
Equation (97) is the dynamic response of a noneamifRayleigh beam to Moving Mass whose two simpigported
edges undergo displacements which vary with time.

4.0 Discussion of the Analytical Solution

If the undamped system such as this is studiad,désirable to examine the response amplitudeetiynamical system which
may grow without bound. This is termed resonancemh occurs. Equation (61) clearly shows thatdimeply supported elastic
Rayleigh beams transverse by a moving force wilhtstate of resonance whenever

_ mm
Vet = L (98)
While equation (90) shows that the same beam uhdeaction of moving mass experiences resonaneetafhenever
_ mm
Vo = L (99)

From equation (90), it implies,
mra

- L
Vot = — (100)
1_/1[u m'r’ 1

Ly L] 4a; (m, k)

From equations (90) and (100), we deduced thathflersame natural frequency, the critical speedHersystem of a simply
supported elastic beam on an elastic foundationti@veérsed by a moving force is greater than tteatersed by moving mass.
Thus, resonance is reached earlier in the movirgsmgstem than in the moving force system.

4.0.1  Numerical Calculation and Discussion of theeBults for Simply-Supported Non-Uniform Rayleigbeam.

To illustrate the foregoing analysis, the Noiform Rayleigh beam of length L=12.192m, is ddased. Furthermore, the

El
load velocity u = 8.123F = 2.109x10°kg/m ,— =2200n"* /s and the ratio of the mass of the load to mass @f th
U

beam is 0.25. The values of the foundation modubire varied between 0 and 400000units while theegaof axial force N are
varied between 0 and 40000.The traverse deflectibrise non-uniform Rayleigh beam are calculated plotted against time

for various values of rotatory inerti&®, axial force N and foundation stiffness K.
Fig.1, displays the transverse displacement regptina moving force of simply supported non- unifdRayleigh beam

for various values of foundation modulli K and fored value of rotatory inertid ©, and axial force N. The graph shows that the
response amplitude of the beam decreases as thesval the foundation modulli K increases. Figg&athows the deflection
profile due to moving force of a simply supportezhfuniform Rayleigh beam for fixed value of fouridatmodulli K and axial

force N and for various values of rotatory inerfia.
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8.00E+00

6.00E+00

K=0
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4.00E+00 |

V2PRE00

0.00E+00

-2.00E+00

-4.00E+00 |

-6.00E+00
Time(t)

Fig.1: Deflection profile of a simply supported noruniform Rayleigh beam under moving force for

various values of foundation modulli K and for fixed value of axial force N and rotator inertia r(1)

5.00E+00

4.00E+00 -

3.00E+00 -

2.00E+00 -

1.00E+00 -

0.00E+00

u(L/2,Hm

1
-1.00E+00 +

-2.00E+00 { /)
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-4.00E+00 -

-5.00E+00
Time(t)

Fig 2: Deflection profile of the simply surported non-uniform Rayleigh beam under a moving
force for various values of rotatory inertia and for fixed value of foundation K = 40000

The graph shows that the response amplitude di¢hen decreases as the values of the rotatatjaierrection factorr © are
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increased. Furthermore, fig.3 shows the defleqtiaifile of simply supported Non-Uniform Rayleighdwe under the action of

moving force for various values of axial force Nidixed value of rotatory inerti#® and foundation modulus K. The graph
shows that as the value of axial force N increéiseslisplacement response of the beam decreadags4irthe deflection profile
of simply supported Non-Uniform Rayleigh beam unither action of moving mass for various values aédlagorce and fixed

values of rotatory inerti&® and foundation modulus K is shown. Evidently, s axial force increases

6.00E+00
N=0
— - - — N=200000
4.00E+00
P R N=2000000
2.00E+00
V(L/2,9m
0.00E+00
\
-2.00E+00 |
-4.00E+00 |

-6.00E+00
Time (t) sec.
Fig3.Deflection profile of simply supported Non-Urniorm Rayleigh beam under the action of
moving force for various values of axial force N and for fixed value of rotatory inertia r(1) and
for fixed value of foundation modulus K(40000).
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0.3 - N=0
— - - — N=200000000 N, oY
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0.2

0.1
V(L/2,Hm

0 = G -

-0.1 1

-0.2

-0.3 1

-0.4
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Fig4: Deflection Profile of a simply supported Rayigh beam under the actions of movin

mass for various values of axial force N and for fixed values of Rotatory inertia r(1) and
foundation modulus K(40000)
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14
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124 e 4000000

V(L/2,H)m
1
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0.6 4

0.4 4

0.2 4

-0.2

Time(t)sec

Fig.5: Deflection profile of a simply supported noruniform Rayleigh beam under the action ¢
moving mass forvarious values of foundation modulus K and for fixe values of axial forc:
N(20000) and rotatory inertia r(1)
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Fig .6: Deflection profile for simply supported noruniform Raylegih beam under the action c
moving mass for various values of rotatory inertia and for fixed values of axial force N(20000)
and foundation modulus K(40000)
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3.00E+02

—e— Moving Force
2.00E+02 —#— Moving Mass

1.00E+02
U(L/2,t)

0.00E+00 —& + + * * +

-1.00E+02 +

-2.00E+02 -

-3.00E+02

Time(t)

Fig. 7: Comparison of the displacement response ofoving force and moving mass cases for
Simply supported non-uniform beam for fixed axial force N(40000), foundation

modulus K(40000) and rotatory inertia r(1)

the response amplitude of the beam decreasesg., the transverse displacement response to angawass of simply

supported non-uniform Rayleigh beam for fixed valw# rotatory inertiar® and axial force N and for various values of
foundation modulli K is displayed. From the grapksishown that the response amplitude of the beeeneases as the values of
the foundation modulli K increases. Furthermorg,&ijthe depicts deflection profile of simply supieor Non-Uniform Rayleigh
beam under the action of moving mass for variolsegof rotatory inertia and for fixed values ofaxorce N and foundation

modulus K. The graph shows that the response ardplivf the beam decreases as the values of rotattia I ° increases.

Finally, fig.7 shows the comparison of thensverse displacement of the moving force and mgpwass cases of simply
supported Non-uniform Rayleigh beams with time dejgst boundary conditions under the action of mgvoads for fixed

values of foundation modulli K, axial force N aratatory inertia °. It is also evidently confirmed that the movingde solution
is not an upper bound for the accurate solutioi@fmoving mass problem.
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