Journal of the Nigerian Association of Mathematical Physics
Volume 18 (May, 2011), pp 29 - 34
© J. of NAMP
Successive Over Relaxation Method Which Uses Matrix Norms for Newton Opeiat

Stephen Ehidiamhen Uwamusi

Department of Mathematics , Faculty of Physical Sciences,
University of Benin, Benin City, Nigeria.

Abstract

Succesive Overrelaxation method (S.O.R.) is a well known iterative method which is very sensitive to
extensions and modifications as an attempt to obtaining other iterative methods.

An algorithm for S.O.R functional iteration which uses matrix norms for the Jacobi iteration matrices
rather than the usual Power method, feasible in Newton Operator for the solution of nonlinear system of
equations is proposed. We modified the S.O.R. iterative method known as Multiphase S.O.R. method for
Newton operator. Numerical example is given and results from our method are compared with an existing
classical S. O.R method. It is shown that our method has superiority over the classical S.0.R. method.

Keywords : Gauss- Siedel method, S.O.R method, Newton methattjix norm.

Introduction:
The g-step method for Newton-Jacobi and Newton-&&isdel methods discussed in, [5] is hereby exg@naol include the
Successive Over Relaxation (S.0.R) method for mwiwgf the nonlinear systems of equation

F(x) =0, (1.1)

where F:DOR' - R,F is a differentiable function in the sense of Feichin an open ball
S=S(xr) :{x* OR": Hx— X*H < r} 0D, that satisfie%: '(x)-F '(X*)H < Hx- X*H for which F(x*)=0.

We also assume that all sub functions of F aectije, continuously differentiable with uniformiyonotone gradient which, are
thus feasible with minimum eigenvalue of the Jaaobhatrix F '(X) , that are bounded away from zero, siffe&(X) is positive

definite (see e.g. [4] and [8] for details). New/ito method is attractive because of its almost glatbnvergence under
appropriate conditions. Its efficiency stronglypdads on the linear system solvers which primasilyre basis of our discussion.
[8] is an excellent reference behind this theorg aeveral of its extensions. The simplest wellviimanethod which has global
convergence for Newton’s method is Guass-Siedéhoaket The procedure goes as follows:

w1 = (0 +d(m),(k:0,1,...,m: 01..) (1.2)
Thed™ is obtained from solving the linear system
F'(x¥d™ =-F(x*) (k=0L1..n,m= 012,..) (1.3)

To updated™? and d™, we successively solve the one dimensional limegmation in (1.3). In what follows, we introdudet
relaxation parameter&),, [see e.g [7] and [8], to obtain an iterative fotanu
™ =d™ +,(d -d™),(m=0,1,..). (1.4)

The studies of method (1.4) form the basis of dscubsions and the subsequent derivation of oustnated algorithm for

S.0.R. method. It is well known that féo =1, the S.O.R method is the Guass-Siedel method wiéshhistorically favored to
be globally and monotonically convergent for maime&r problems. However, following [8] it is knowhat the asymptotic
convergence rate of Gauss-Siedel iteration madrof iorder magnitude slower than that of S.O.R haet Thus our objective in
this paper is to formulate a multiphase S.O.R. oethat will not only include all previously knowalaxation methods but will
also indicate that the constructed multiphase S.@w&hod converges faster than those previouslgngin [5]. We paid special
emphasis on the computation of the spectral raafitise Jacobi iteration matrix which is very crudi@ our studies

1. THE METHOD. THE MULTIPHASE S.0.R METHOD:
We seta=F (x) the Jacobian matrix which has real eigenvaluisrdint from zero. We remember that the matrixs R

Corresponding authoBtephen Ehidiamhen Uwamusi: E-mail: uwamusi2000@yahoo.com, Tel. +2348020741193

Journal of the Nigerian Association of Mathematical Physics Volume 18 (May, 2011) 29 - 34
29



Successive Over Relaxation Method Which Uses Matrix Norms ... S. E. Uwamusi J of NAMP
cyclic and consistently weakly ordered in the seafd8], [9] and thus admits, a regular splitting:

A=D-L-U=D(l -B*) 2.1)
where D, L and U are respectively strictly diagomaltrix, strictly lower triangular matrix and stticupper triangular matrix.
If we setFi(x¥)= A and F(X(k)) =p in equation (1.1) we will have

Ad=b (2.2)
where ADL(R),dand bOR".
We hereby introduce the generalized class of lis&tionary iterative methods of first degree ia fibrm
d™ = Gd™ +¢ (m:O,l,.) ) (2.3)
Here d(o) is an arbitrary vector and, for some nonsingulatrix H, we have
G=I-H'Ac=H™ (2.4)
The splitting matrix H is called a preconditioner the coefficient matrix A and satisfies the riglaship [9] in the form:
A=H-(H-A) (2.5)
From an iterative convergent sequence of type
HA™ =(H - A)d™ +b,(m=0,1,...); (2.6)

under certain conditions for values of H in (2@ following preconditioners are always used [B3e[4], [8] and [9] in the
form:
H=I- The Null preconditioner (Richardson method),
H = (D —wL) - The S.0.R. preconditioner ,
H=
2-w
H :(5_[) (5) (5+J) - The incomplete LU factorization.

—Db-U
w

w

1 ( 1p_ Lj( 1 Dj_l ( 1 j - The symmetric successive over relaxation preitiomer,
w

The termD is usually taken as block triangular matrix. Lstnote that the closer the produtct * A approximétesdentity
matrix |, the faster will be the convergence ofsthéerative methods.

We will be more interested in the manipulation 0©OR. method since S.O.R. formula is very sensitveextensions and
modifications due to the nature of Jacobi iteratimatrix arising there from. We aim to achieve fieigt with huge success.

The one step Newton S.0O.R. method [4] needs thtuaien of (D, —al) with n(n—l) partial derivatives as well as the
2

solution of the triangular systems of equations.

Thus this paper further exposes the variants afetheaditional Newton — S.O.R. method wherein, weppse a new brand
multiphase S.O.R. methods by a craft full comboraiof S.O.R. method with itself.

To steer the course of our discussions in the pghépective, first we present the method of [Zhmform:

(g-step Newton-Jacobi method)

(k+1) _ )g(k) + a[meAqﬂJ

X 2.7)
where
(m) g o, (md) (2.8)
d == —F(x("))—Zaﬁdj a '
A H
(m=0,1,..., k=0, 1....q=2,...6=0,1,...q-1, and I N,
and
(g-step Newton-Gauss-Siedel method)
A+l
X (K*D) = 5 (k) 4 d( q ] 2.9)

where
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d(m*T] N = (Xm)_‘i aijdj(m*ﬁ _ Z a”.d["”:) (2.10)
j=1

]
i j=i+l

(m=0,1,...,k=0,1,...9=2,...1=0,1...g-1 andt I N ).

Usually we take g=2 since higher values of g>2 @@llhigher computational costs which in essencay mot really lead to
enhancement of convergence of our computatiorring®f speed, robustness and stability with refegdo inner iterations.
Method (2.7) and (2.10) may be seen as a convaoluticlacobi and Gauss-Siedel methods respectivsigg one Newton step
length. We note that analysis of S.O.R methodlejsendent on the spectral radius of Block Jacebation matrix. Therefore,
following [1], the convergence analysis for theqalzidteration matrix B holds if

p(D*(L+U) <1 (2.11)
Herep denotes the spectral radius of a matrix B. Wetmate that the convergence of Jacobi iteratiorhogeis linear with a
rate that is at least as fastmsPractically, we assumed that given any vectormpi, there exists a corresponding constant K
such that the error,

e OR" with e™ = d™Y —d™ which Satisfiesﬂe(”) < Kp.

The explicit one point S.O.R. iteration matrix retsense of [8] can then be written as

2 =(D-wL) {@-wD +wU} - (2.12)
It follows that solution to the linear system (2v@)l be written in the form:
d™ = gAd™ + w(D-wL)'b (m=0,1,..)- (2.13)

This converges to a unique solution if and onlthé spectral radius ofw <1. We in the same spirit as those works wish to

construct multiphase algorithms for S.O.R. methsithgi Newton step length bearing in mind those matorms to estimate the
dominant eigenvalue for Jacobi iteration matrixésy crucial in our methodology in the form:

(23]
W04 Z (0 L gl™ 2 ) (2.14)

where
A

d_"’”z” = aﬁ -E (x(k))— i.’l a__d(m*%) - Z a__d(m*zj + (1_a,)d(m*%] (2.15)

(i=1,2,...,n).
Method (2.14) has very high speed of convergerte classical S.0.R. method. Because of space,sknallthe convergence
order will form another work which will be reportetsewhere.
The optimum relaxation parameter can be obtainelth&énwith [8], depends greatly on the associatktlb Jacobi matrix B
obtained from the splitting matrix A=D-L-U.

Let fwbe the block successive over relaxation matrix haonvergent forcw =1 which by continuity, is also convergent for

some interval i containing unity be defined. LdR(KT)) be defined for all sufficiently large positive égier m, which
symbolizes the average rate of convergence fortwhic

minp(¢,)=p(t,) (2.16)
Assuming thep( B) is real and let p be a positive integer, it calbegved, [3] and [8] that
p(B)w)? =[p"(p-1)"1 (w, -1)- (2.17)
The relaxation parameter is optimal when p=2 frohiclv we obtain
5 L 5 2. (2.18)
wb = —— -
1+ J1- p2 (B) 1+ J1- p? (B)

We define the asymptotic rate of convergemeg¢r ) tobeRr, (¢,,)=-In(w, -1)(p - 1)

and R, (41) =-p.lnp (B) , SO that the ratio% is practicable.
Rw gl
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2. CONVERGENCE

Theorem 1 [4].

Suppose thaF : D 0 R" - R" is F-differentiable on a convex spt [ D and that for eaclk1D,, F‘(x) is nonsingular

and satisfies
[F'(x) = F(y)=alx -yl
[F'(x)|< B,0x,y0 D,

If xX® 0D and ris the radius such that

HF '(x("))_1 F (x(°))

ro= wazi—ls n_,
o /720 T

<n a”da:%ﬁny<1 as well a5§(x(0),ro)g D, Where

then the Newton iterates given by

X(k+1) — X(k) _ F'(X(k))_lF(X(k))y k = 012,....

remain in S(X(O) : ro) and converges to solutiod* [ S(X(O), I’o) of F(x)=0
moreover

||x* —x(k)” <eg, ||x(k) - x& D ||2 i=12,.
Where

g =X @) sapa-aty?

The proof of this theorem can be found in [4],e¢ $heorem 12.46, pp412].
Remark:

The question now is whyF (XD) =0~
That F(x*) =0 can be inferred from the inequalities
HF '(X)_l(F '(X(k))(x(k+l) _ X(k)H < HF "(x¥) -l(F '(X(k))(x(k+1) _ X(k))H + Hx(k+1) _ X(k)H
< {on* —x(k’H+1}Hx(k*l) -x®ll'k = 01,..,

Where from,

[F"0e9) 7 F ) [ = lim [P (x|
lim
= ||F'(x*) TR (xO)(x* - x‘k))” =0
k — 00
In the limit ask — 0, it is easily seen thaf, = O which shows that F(x)=0. Thus signifying that fitter condition is
satisfied in the seb, 0 D.

5. Numerical Experiment/Discussion
Consider the nonlinear system of equation takem {2] and [8] as the scalar test problem

20%, — COS? X, + X, — Sin x, = 37
cos2x, + 20x, +log (1 + x;) = -5
sin(x, + X,) — X, + 19X, + arctan x, =12
2tanh x, + e 24*%5 + 21x, = 0
X© = (2.0154195-0.31822410.6364483-0.087443§' '
We present the numerical result for the non statip$.0.R. method in Table 1.

F(x)=
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TABLE 1. RESULTS FOR OUR METHOD (2.14).

No of iterations X X X X4
0 2.0154195 -0.3182241 0.6364483 -0.0874438

1 1.891312879 -0.2279547q5  0.534767008 -0.02241936
2 1.895738905 -0.20960129 0542783484  0:02391607
3 1.896537738 -0.21026916  0.542045354) -0.023888312
4 1.896513584 -0.21026774 0542088833 -0.023884314

For A =1 the asymptotic rate of convergence of the g-stemén stationary S.0.R method is precisely theesagthat of the
original S.0.R method applied on a linear syster)(2

It is then to be expected that the g-step for ratianary S.O.R method is g faster than the origf®.R method since for the
corresponding linear problem, one complete iteratigcle of the k-step process amounts to g-S.OnRtional iterations.

To obtain the relaxation factof), we set & _ 2 where p (B) is the spectral radius of Jacobi iteration matrix.

1+ ./1- p?(B)
Practically in our work, the replacement of thedp® radius of the matrix B by the maximum colusum or maximum row-

sum norm instead of the traditional power methaosllieen found very satisfactory for our purpose.
Table 2: Results for classical S.0.R. Method

No of Iterations X1 Xo X3 X4
0 2.0154195 -0.3182241 0.6364483  "0.0874438
1 1.89724871 0.20917457 0.53596913 0.02394419
1 9 4
1
1.87227933 0.20878891 0.54238189 0.02392051
2 8 5 6 7
3 1.89650046 ; 0.54205771 -
2 0.21021919 7 0.02389172
1 4
. 1.89651452 021026642 0.54206019 0.02388717
4 2 0 5

From results presented in both Tables 1 and Zaritle seen that we halt each inner successiveidterafter four complete
cycles. We have found out that the use of S.O.Fh ®isteps gives better results than that of oep wfith respect to inner
iterations. It is suggested therefore that our m@tshould be of good computational utility for teagsearchers in the Numerical
Linear algebra or in the areas of Partial diffelargquations.
6. Conclusion

The paper presented a modification for Successiwgr Belaxation (S.0.R) method. The method usesixnadrms rather
than the well known Power method for finding thgegivalues of the resulting Jacobi Iteration masricapplied on Newton
operator for finding zeros of systems of nonlineanations. Of special interest at the peak of imgirigs was that,
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the modified S.OR. method which makes use of tvepsstiteration is iteratively faster than the ClealsiS.0.R method for

obtaining inner iterations in each Newton step #rad our presented method includes all the preWokisown class of S.O.R
methods.
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