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Abstract

In general, numerical results computed by intervalethods tend to grow in diameters as a
result of data dependencies and cluster effectsahhinay be traced to error from one source
that can affect every other source and thereby dicaly lower the efficiency of the interval
inclusion methods. We describe in this paper howstban be reduced and an attempt is made
to address the above problems subject to tolerazoleition sets. Basic computational tools at
our disposal are the Oettli-Prager’s theorem androhn’s method which combine floating
point operation with an interval method.
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Introduction:

We consider the problem of enclosing solutioniokdr interval systems of equations
Ax=b (1.2)
where

{A=[A -D A +ALb=[b-3 b+3]}, A :%(_A“A),M%(_A—A), ADIR™.

X, :1[x—>_<],5:l(l3—b],bDIR” .
2\’ A

Finding inclusion bounds for system (1.1) is protedbe NP-hard [8]. We hereby pay special attentio®ettli-Prager theorem
[4]. Further results in [2], [7] and [9] will plasome crucial roles as basic tools to achieve agpgse.

Computing solution to system (1.1) requires sommpational skills such as being able to handléiefitly the interval
arithmetic operations {)ﬁ-,—,x,/} . Sufficient conditions for regularity or singulgrof interval matrix as regards linear interval

system (1.1) are well detailed in the works ofdaf [6].

Writing

G=[l -RA|+RA , (1.2)
it is easy to obtain [9] a vector d

d=(1-|6|)" ({1 -G)x-g|+3). (1.3)
for which the inequality

(1-G)x-g|<(1-|g])d . (1.4)

holds, that solves the linear interval system (ith high yield of mathematical certainty .

O
After d has been computed sufficiently well, theuion X as an enclosure to system (1.1) is boundetidinequality
x—d<x'<x+d. (1.5)
Using the fact that-G=I-RA, it follows that (1 -|G))™ =(1 -Ra)™",and that IRas<(1-|l —Rpt‘)'l‘FqA_ Letting

M, = (| —‘Kl‘A)_l >0,R, = At the[A -A, A +A]™ enclosure is given by the equation
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[A -0 A +A]" =[R-(M -1)|R,R+(M - 1)|R], (1.6)

which is valid for any regular matrix.
[3] used an identity matrix as a preconditioner tfog linear interval system (1.1) and was latedisa and modified by [7]. In

what follows we take M = (1 -A)"with the property tha¥iA =AM =M -1 where M; = 1.This implies tha?2m, =1=1 .
We note thatp(G) <1and for A, =1 itis easy to see thaRA- 1| :‘R,At -1+ R(A‘Ax)‘ < G, which implies the inclusion of

RAO[l -G, | +G]. It follows that the inverse preconditioned intrvnatrix with midpoint matrix is finitely boundeid the

form ‘A-lR-l -M ‘ =

A‘lR—%(M+M)

s%(M—M)zAM : (1.7)

where AM signifies the deviation of the radius of inverseeimal matrix A from the preconditioned intervahimix A.
As a result, inclusion for the upper bound fo $olution set is given in the form

x =X +m, (b, -|b]), :('V' 5} , (1.8)

where from AO[A-A, A+A],bO[b, - J,b+J] andM (x’ —\x\) +|x| < Mb,

.
Xeal X X o))

2 Characterization of strong Regularity of inteval matrix.

One of the surest ways to check if an intervalrixiak in the linear interval system is strongly tégy is by computing the

spectral value ofo(H A) <1. ltis necessary th{lt —\R\A)_l >0

y yueny

and thaty' = (‘Xl

%

holds. Since regularity of interval matrix A imgi¢he existence of its inverse , as a resulfpna@vide inverse inclusion also for
interval matrix A.

In what follows we introduce the Bauer-Skeel baurdr enclosing solution set to system (1.1) devic:

Theorem 2.1. [11], Bauer-Skeel bounds

if

p(‘gl‘A) <1,for each A, b such tha}tA—At\ <A and \bc —b\ < J, then A is non-singular and the solution of theteg (1.1)

satisfies the inequality

X7+ x #|x s x<xT+x =[x | 2.1)
M =(| -‘Agl‘A)_l, 2.2)
X' =M (x| +|A?|3) (2.3)

A careful analysis will reveal that method (2.1% Isémilar representation as that of method (1.5).
Theorem 2.2 [4]. The set of all admissible sohsiof system (1.1) is a polytope:

X ={x:HAx—me ngle+6} (2.4)

, and X is a non-convex sed,is the precision to which the interval data of thetrix are rounded to.

where|, = > [x,
We define nonsingularity radius for the intervaitpebations as the reciprocal to the

(1) -norm of the inverse matrix A in the form
o(A) = 1 | Letus note that calculation of such norm is NirdH 9].

A7

00,1

Definition 2.1. Let Q be a diagonal matrix suchtthai, (1< i < n)|Qii | =1 The set{ X|QX > O} is called an orthant oR" .
Theorem 2.3, [9]. Let A be a non-singular intemvatrix . Then the matrix equations

QAT, +|QA=E (2.5)
Q'AT,-|Q'|a=E (2.6)

have unique solutionQ, Q'. E is the canonical set cﬁl, 1, ...,ZDT )
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z 0. O

0 z.. 0
T, =diag(z,2,,.,2,) = 2

0 O. zZ

n is the matrix prescribed by the orthant.

As a result, using equations 2.5 and 2.6, andndgit be the sign vector of the i-th row of thetmaQ, it is easily deduced that
‘Q‘i :Q|Ty so thatQAT, +‘Q‘A =E , one then obtainsg(,aE +TyATz) = (Tz)-' In this case we have the expressions for the

values ofQ and —Q in the form:
Q =(H +TyATZ)
-Q :(,ot +TyATZ)_1 for z =-1.

forz =1,

-1
i

With these we are able to solve the system
(A +T,AT,)x=b,-T,5. (2.7)
Computing the hull of the solution set is an NPdharoblem [8]. In order to formulate the exact bdsifor the interval solution x

we define the interval vectdfz by the equations

_|(@.~[Q]9), forz =1 (2.8)
Oeh = -(Qh. +\Q’\5)i for z=-1 (2.9)
- |(@b.+[Qs) . for z=1 (2.10)

(x) = l
—(ch —\Q’\J)i , for z=-1 (2.11)

The dual linear programming problem

min(-(b, =)' ¥, + (b, +9)" ¥,,~ (AT, +4)" v, +(AT,-4)" y,2¢€,y,2 0,y,2 0)

which can be obtained from the linear programmirgbfem max( :—(AT, +A)x < —(b,-0) (AT, -A)X <(b, +J) X = 0)
has feasible solutioy;, Y,) and xO XN IR} . The Oettli-Prager theorem implies that

[mzin[(xz)i ,mzax(xz )} 10 X"
Theorem 2.4, [1]:
Assume thatA\ =I, and let Q be an orthant . Then the hull of oluset to linear interval system (1.1) is in fbem:

(1 -A)Qx< Qb+,
xOY NQ = 1 (I +4)Qx= Qb _J, (2.12)
Qx=0.

It is shown in [1] that for a given orthant Q,
X, =QM (Qb+9) , and that(l -A)Qx, =(Qb+J). Theoretical results [1] reveals tk{a&Q‘ maximizes |X| in> nQ
where Z(A, b)is the interval hull of solution set of the lineaterval system.

3. Numerical Experiment.
EXAMPLE 1. Consider the following example givenpsblem 1.
AX=b
with A =1 £Aand:
01 01 01,01 01
01, 02 01, 01 0.1
A=|02, 03 01 02 02 b=([17],[-10,-4],[-68],[89],[-102])"
01, 04,01 01 0.1
01, 05 01 04, 01

Journal of the Nigerian Association of Mathematic&hysics Volumel8 (May, 2011) 25 - 28

27



Solvability of linear Interval System of Equations via ... S. E. Uwamusi  J of NAMP

The following results are given in Table 1.
Table 1. Our results computed from the given problsing Matlab 7.0 version

k Oettli- Prager theorem Rohn’s method (1.6) with Results from origina
with tolerable solution set tolerable solution set Oettli-Prager theorem
X X (2.11) without tolerablg

K K solution set.
Xy

1 [3.7500, 4.2500] [2.5839, 5.4161] [-0.7000, 4.8000]

2 [-7.4500, -6.5500] [-9.3513, -4.6487] [-12.7000, -5.8000]

3 [0.7000, 1.3000] [-2.5158, 4.5158] [-9.8000, 4.8000]

4 [6.6500, 10.3500] [4.2785, 12.7215] [3.3000, 8.0000]

5 [-6.5500, -1.4500] [-9.1566, 1.1566] [-5.7000, 2.6000]

4.  Conclusion

We studied the effects of tolerable solution séts the linear interval system with Oettli-Praghedrem and compared such
results with a formular derived by (Rohn,2010) vehby the inverse midpoint matrix happened to baibmatrix. It was shown
that tolerable solution sets for the Oettli-Prattpeorem and a formular due to (Rohn,2010) coulthbéetter alternatives due to
their ability to narrow down the interval widthstime obtained results when compared with the resiitained from the original
Oettli-Prager theorem of equation (2.11).

References

[1] Chabert, G. , and Goldsztejn, A. ,(2007). dndion of the Hansen-Bliek Method to Right-QuaetifiLinear Systems,
Reliable Computing 13, PP. 325-349.

{2] Konickoval J., (2001). On the Hull of the stitn sets of interval linear equations. Scienti@omputing, Validated
Numerics, Interval Methods,Edts Kramer, W. , aniblff von Gudenberg, J., Kluwer Academic /Plenunbiners, New
York, PP. 91-102.

[3] Hansen, E. R., (1992). Bounding the solutiérinterval equations. SIAM Journal of Numerical Ayss, 29(5), pp. 1493-
1503.

[4] Oettli, W. , and Prager, W., (1964). Comphaitity of approximate solution of linear equatiowth given error bounds for
coefficients and right-hand sides, Numerische Maithté, 6, Pp. 405-409.

[5] Poljak, S., and Rohn, J., (1993). Checkingusimonsingularity is NP-hard, Mathematics of Colhtgignals, and Systems, 6,
PP.1-9.

[6] Rex, G., and Rohn, J., ((1999). Sufficient ditions for regularity and singularity of intervalatrices, SIAM Journal on
Matrix Analysis and Applications, 20, PP. 437-445.

[7]1 Rohn, J., (1993). Cheap and tight bounds: fBoent result by E. Hansen can be made more effjdigterval Computations,
4, PP. 13-21.

[8] Rohn, J., and Kreinovich, V., (1995). Compgtiexact Componentwise bounds on solutions of kiegatems with Interval
data is NP-Hard. SIAM Journal on Matrix Analysisiakpplications 16, PP. 415-420.

[9] Rohn,J., (2005). A Handbook of Results on v Linerar Problems. Czech Academy of Sciend&ague, Czech Republic,
European Unionwww.cs.cas.cz/~rohn

[11] Rohn, J., (2010). An improvement of the BaS8&eel Bounds. Technical report No. 1065, Instinft€€Computer Science,
Academy of Sciences of the Czech Republic, Prague.

[12] Rohn, J. , (2010). Explicit inverse of an & Matrix with Unit Midpoint. Technical Report NdLl071, Institute of
Computer Science, Academy of Sciences of the CReglublic ,Prague.

Journal of the Nigerian Association of Mathematic&thysics Volumel 8 (May, 2011) 25 - 28
28



