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Abstract 
 

In this paper, we make use of the new concept of analytic functions introduced in [1]  and 
we derive some coefficient inequalities for functions ( )f A ω∈  to be ω - starlike and 

ω − convex and ω λ− − spiral-like Starlike functions all of order α . 
 

 
1.0 Introduction: 

Let ( )A ω  denote class of functions of the form 
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which are analytic in the unit disk { }:| | 1U z z= < ,normalized with ( ) 0f ω =  and 

( ) 1 0f ω′ − =  and ω  is a fixed point in U . 

Also we let ( ) ( )S Aω ω⊂  denote the class of analytic and univalent in U . With ( )A ω  and ( )S ω  [1] defined the following 
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where the two classes above are respectively the classes of ω − starlike  and  ω − convex functions. Authors like [2], [3] studied 
the above classes using various extension and many interesting results   were obtained. The concept defined in (1.1) was also used 
by [6] to study certain classes of Bazilevic functions and this also serves as part of motivation for the present works. 
        For the purpose of this work the following Lemma and definitions shall be employed. 

Lemma A: [4]. A function ( )p z B∈  satisfies the following condition ( )Re 0p z  >    ( )z U∈  �� ��� ���	 ��  
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Proof: It is fairly obvious that the following transformation  
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maps the unit circle U∂ onto the imaginary axis ( )Re 0h = . Indeed for all ς such that  ( )1, Cς ς< ∈   we set 
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Moreover, by noting ( )0 1p and=  ( )p z B∈  we know that  
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Hence the proof. 
Definition A:  A function ( )f z  defined as in (1.1) is said to be ω − starlike of order α  if and only  if 
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and this class of functions is denoted by * ( , )S ω α  and ω is a fixed point in U . 
Definition B : A function ( )f z  defined as in (1.1) is said to be  ω − convex of order α  if and only  if 
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This class of functions is denoted by ( , )cS ω α  and ω is a fixed point  in U . 

Also let  ( )P Pω ⊂ (the class of Caratheodory functions) which are analytic, with ( ) 0p ω =  and Re ( ) 0p z >  and of the form 
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and ω  is a fixed point  in U  [5]. 
     
2. Coefficient inequalities 
First, we shall derive the following lemma which shall play a major role in all our next results. 
Lemma 2.1: A function ( )f A ω∈  is in the class ( ),S ω α∗   if and only if 
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and ω  is a fixed point in . 
Proof: From (1.1),(1.2) and (1.4),  let  us set 
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Using Lemma A, we have 
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which readily yields 
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    dividing both sides of (2.3) by ( )( )2 1 zα ω− −  to obtain  
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 and ω is a fixed point U . This completes the proof of Lemma 2.1. 
Using Lemma 2.1 we state and proof the following 

Theorem 2.1:If ( )f z   satisfies the following condition 
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then ( ),f S ω α∗∈   and ω is a fixed point in U . 

 Proof:We first note that  
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and ω is a fixed point in U . 
  Hence, if the following inequality  
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which is the relation (2.1) of Lemma 2.1. It is easily seen that (2.4) is equivalent to  
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   where for convinience we write 
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Considering the Cauchy product of the first two factors of (2.6), we have  
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Thus, if ( ) ( )f z A ω∈  satisfies the following inequality, 
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then ( ) ( ), .f z S ω α∗∈  Hence the proof. 

Corollary 2.1: If ( )f z ∈� ( )ω  satisfies the following condition: . 
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Theorem 2.2: If ( )f z ∈� ( )ω  satisfies the following condition    
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then ( ) ( ),f z S ω α∗∈  and ω is a fixed point in U . 

Proof: Since ( ) ( )'z f zω−  belongs to the class ( ),S ω α∗
 if and only if 

we replace ja  in Theorem 2.1 by jja , Theorem 2.2 is readily proved.  

  Corollary 2.2: If ( ) ( )f z A ω∈ satisfies the following condition 
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Proof: By setting � � 0 in Theorem 2.2, the result follows immediately. 
With various choices of the parameter involved we could obtain various existing classes of coefficient inequalities and some 
new ones. 

 3.Coefficient inequalities for functions in the class ( ), ,SP ω λ α  

In this section, we consider the subclass ( ), ,SP ω λ α of ( )A ω , which consist of functions ( )( )f z A ω∈  if and only if 

the following inequality holds true: 
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and ω is a fixed point in U  
For the purpose of the next result, we shall derive the following Lemma. 
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Proof: Let us set  
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 It follows from Lemma 2.1 that 
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We need not consider Lemma 2.1 for the case when ,z ω= because (3.3) implies 
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dividing both sides of (3.5) by ( ) ( )2 1 cos 0zα ω λ− − ≠  and noting that 
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and this completes the proof of Lemma 2.2. 
With the aid of Lemma 2.2, we shall state and prove the following 

Theorem 3.1: If ( ) ( )f z A ω∈  satisfies the following condition  
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then ( ) ( ), ,f z SP ω λ α∈ . 

Proof: Applying the same method as in Theorem 2.1, we see that ( )f z  is in the 
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which implies that if ( )f z  satisfies the hypothesis (3.6) of Theorem 3.1, then ( ) ( ), ,f z SP ω λ α∈ , and ω .is a fixed 

point in U . This completes the proof of the Theorem. 

Corollary 3.1: If ( ) ( )f z A ω∈  satisfies the following condition: 
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Then, ( ) ( ) ( ), ,0 ,f z SP SPω λ ω λ∈ =  and ω .is a fixed point in U . 

Proof: By setting 0α =  in Theorem 3.1, the result follows immediately. 
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