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Abstract

This paper focuses on function theory or representation theoriesin a very elegant and
substantial way in geometry. It is very interesting to see how special functions enter into
geometry. We like to point out that Symmetric, Trigonometric and Theta- functions are
representation theoretic formula, equivariant Euler classes, and the geometry of moduli
spaces of stable maps. The boundary of these holomorphic discs lie in certain special
Lagrangian sub-manifold, which have boundary in some vanishing cycle.
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1.0Introduction:

Mirror principle is a general method developediB][and [16] to compute characteristic classesdradacteristic numbers
on moduli spaces of stable maps in terms of hypengéric type series. The counting of the numbersuo¥es in Calabi- Yau
manifolds from mirror symmetry corresponds to tlmmputation of Euler numbers. This principle computpiite general
Hirzebruch multiplicative classes such as the tGtatrn classes.

Recall that a balloon manifold X is a projectivenifiald with torus action and isolated fixed poinEr the purpose of our
discussion, we define

H=MHy ..., H
as our basis of equivariant Kahler classes. Théncélled a balloon manifold if the following holds
1. The restrictior(p) # H(q) for any two fixed pointp, qe X.
2. The tangent bundigX has linearly independent weights for any fixednppie X.
The 1-dimensional orbits in X joining every two di points in X are calleBballoons which are copies ofp The mirror
principles are of the following:
- Linear and non-linear sigma model;
- Euler data;
- Ballons and hypergeometric Euler data.
Let X be a projective manifold in the model.

In order to achieve our aims, it is very interegtin see how special functions enter into geomednch as Symmetric

function, Trigonometric functions and hyper georiceteries, we construct the following models

a. Non-Linear sigma modelin this model, we define the moduli space of #tatbps of degree (1,d) hyI(?(X) and
genus g into Px X:
MJ(X)={(f, C):f:C— P x X} (1.1)
with C a genusg (nodal) curve andf(C)dH?(P'x X, Z) has bi-degreg1,d) modulo the obvious equivalence. For

convenience the degreewill also be used as integers by choosing a basis(X, Z)
b. Linear sigma model: In this model, we define the moduli space obktanaps of degree (1,d) by, for a toric manifold
X which was first introduced by [23] and later I30] for computations. It is a large toric manifo{dee [17])

Example: Let X = B, with homogeneous coordinat®,[. . . , Z]. Then the linear sigma model is given by the polyial
spaceWy with projective coordinate
[fo(Wo, W), . . ., fi(Wo, Wi)] (1.2)
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Wheref;(wo, w;) are homogeneous polynomials of degiee

In the genus 0 cas®/,can beviewed as the simplest compactification efshaces of degreemaps from Pto X. The following
basic Lemma connects this compactification witltadle map moduli space. A proof can be found irj [18

Lemma:

There exists an explicit equivariant map

g MJI(P") - W,. (1.3)
Here the equivariance is with respect to the induaetions from the torus actions on X arld P
Roughly speaking the computation should bé&/bh(X) . But in generalM J (X) is very “singular” and complicated. ButjAé

smooth and simple, our main strategy is to pustvdod everything to W through the mapg! The functorial localization

formula below is one of the key tricks we used.
Let M g,k(d, X) be the moduli space of stable maps of genasd degreed with k marked points int&. That is

Mgd, X)={(f,C x...%): f:C> X (1.4)

with Xy, . . . ,%. kpoints on the genugs(nodal) curveC .

This modulli space may have higher dimension thgmeeted, even worse, its different components neaye Hdifferent
dimensions .To compute integrals on such spacenege to first define the integral. For this purpose have the notion of
virtual cycles: the virtual fundamental class whigliirst given by [14] and later by [3]. Let usrage the modulli space by

LTS (X)O A(MS),, (1.5)
The equivariant analogue of the virtual fundamentalle which is a class in the equivariant Chowugraf cycles of
M J (X) . Another virtual cycle will also be used:

LTy (d, X) O A(Mg (d X)) (1.6)

Now let us introduce the starting data of the argaimWe let V> X be an equivalent concavex bundle. The notion of
concave bundles was introduced in [4], it representlirect sum of appositive and a negative bunoiteX. From a concavex

bundle V, we can induce vector bundg (X) on M, (d, X) by taking eitherH°(C, V) or H'(C, f*V), or their

direct sum. Let b be a multiplicative charactecisiass.

Problem: The main problem of mirror principle is to comptite integral
KS = j b(V,?). (1.7)

LTy, (d, X)

More precisely, lek, g be two formal variables. We would like to corgthe generating series,
F(a,4) =) K§A°q" (1.8)
d.g

in terms of a certain natural explicit hyper geatioeseries. So far we have rather complete sucfarsthe case of balloon
manifolds and genug = 0.

2.0 Rational curves

The mirror principle for the genus 0 case has bmemne or less fully developed, which implies alma#itof the genus 0
conjectural formulas from string theory [16], [118]. The most famous corollary is possibly then@aas formula (Cd). In this
note we will briefly review our approach to the g genus mirror principle, which is still undepgress with partial successes
as discussed in [17]. Roughly speaking we now hia@dollowing general theorem:

Theorem: Assume g = 0. Mirror principle holds for balloon mifalds and any concavex bundles.

Remarks:

1. For toric manifolds, the above mirror princijleplies almost all mirror conjectural formulas dexd from string theory.

2.In the above statement of mirror principle, wedéo requiresplitting typeon V when restricted onto each balloori, &d
certain condition on the first Chern clagé\) . (see [15,16]).

There are many non-split bundle V with given siplgt type, such as TP and many equivalent bundles over toric
manifolds[19]. Such bundles will give non-complatiersection Calabi-Yau manifolds, such as Pfaffiariety; moduli space of
rank 2 bundles over Riemann surface.
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3. The special case of.Pwith V the sum of positive line bundles, b thalé class, a second approach can be found ir24],[
following [8]; for V direct sum of positive and native line bundles, (see [5]). A mirror formula wai®ved by using relative
stable maps.

Recently, Lee, the functorial localization formuleb] and deformations of normal cone were used davdd a mirror
formula with V the sum of positive or negative libendles,, and b the Euler class. However, it megustrong restrictions on the
first Chern class of V, and it yields no informatiohen V is the trivial bundle.

One of the most interesting corollary of the mirpoinciple is when we take V to be the sum of negabundles. This gives the
so-called local mirror symmetry, which is calledgeetric engineering in [10]. The examples include:

a). Take X to be the de Pezzo surface; P or P. Take V = K, the canonical line bundle and b the Euler cllsthis case
, the corresponding hypergeometric series are geidd elliptic curves, which are called the Seib@fijten curves[10]. Indeed
the total space dfx is an open CY, its mirror is the elliptic curvhetSeiberg-Witten curve.

b) The simplest but very interesting example iwiX = P, V = O(-1) 0 O(-1) andb the Euler class. In this case we

have the multiple cover formula of Candelas etkal= d°. When X = P V = O(-2) and b the total Chern class, we get a
similar multiple cover formul&y = d* Another very interesting example is when X= ¥ = O(-3) and b the total Chern class
[15].

3.0 Higher genus
As one may notice that, almost all of the technigioe genus 0 case work well for higher genus, pixtiee last step of finding
the hypergeometric type series which is more diffi;n higher genus due to the complicated fixethpmoduli spaces.

Functorial localization formula is one of the simple techniques used in the approac
Let X and Y be two manifolds with torus action.
Lemma: Let f ; X — Y be an equivariant map. Ldt Y be a fixed component, and s be the fixed comparianX. Let § =

flg, then for an equivariant cohnomology clag$] HTD(X) , we have the identity on F:

ifw 1 — iE(fw)
fom[er(fz/ 51 = S F v (3.1)
It is interesting to note that this functorial ldzation formula is very much in the spirit of tHRiemann- Roch formula.
Functorial localization is one of the key ideaq1B] and [16]. This same idea was later used inaf] [14]. Which apply this
formula to ¢ , the collapsing map. Before that, let us first kvout the fixed points in the nonlinear and linsma models with

respect to the induced-&ction from P, as well as some of its key properties.
The fixed points inM { (X) induced by the ‘S action on Pare given by the components:

F ot = Mgl’l(r’x)x «M gz,l(d -1,X) 3.2)
With gi+g, =g andr =0, . . . d By considering the pull-back dg; (V,} ) through the projection:
T:MJ(X) - M,o(d, X) (3.3)

And its restriction toF,%'% , we have the important
4.0 Gluing identity:

by (V)b (V?) = B(\G") RO (4.1)
The collapsing mag , when restricted td:rgl’gz is just the evaluation magvinto X at the gluing point. The next step is td ge

the so-calleduler data from the above gluing identity. Let us write

g — i“br (V) LTy (d, X)
'% e\ﬁ[ er(ﬁjg‘O/Mg(X))v 1 (42)

which comes from the left hand side of thenctorial Localization FormulaHere we have actually used a virtual versiorhef t
functorial localization formula, which is proved hging the virtual Atiyah. Bott formula as genezati in[7]. The denominator

e (F° 1M (x)" denotes the virtual equivariant Euler class. (36gand [17]).
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Let us form the generating series:

A=Y A A=Y AE (4.3)
g d
From gluing identity and the functorial localizatiformula we can derive the following identity:
b, (V) O; A% = A% OA®, (4.4)

Wherei’ A¥% s the local term from the localization & (V.?) ontoF, %%  and A denotes the switch of sign:— -a. Here

a is the weight of the ‘Saction induced from the action oh. FFhis then gives us quadratic relations amongife (see [17]).
The right hand side of the functorial localizatfonmula is the localization of the push-forwardss by¢ :

$.[o: (V) n LTS( X1 0 ACW) (4.5)
This is a polynomial class in, Note that Aﬁ‘ is actually a rational class im. Through functorial localization formula and

localization oW, we derive, from the gluing identity, thaAdis an Euler data.

Here Euler data, roughly speaking, are the seqsewnf classes likéyy with properties like (4.4) and (4.5). The
connection between (4.4) and (4.5) is the functtozalization formula. From the above discussiwr,see that any tripleX,V,b)
induces an Euler data through the functorial laegion formula.

On the other hand, we know that knowivﬁ’gg is equivalent to knowintﬁ’ , as given by the following:
Lemma: We have the following
a9 (2- 29 - d [})K? :je-‘”“’” . (4.6)
X

So the problem is reducing to the computation effller dat#y. The next step in our approach is to approxirdgtey
restricting to “smooth part” or “generic part”bf ,, (d, X).

When the genus g = 0, by localization to smootiedi points, the multiple covers of the balloons,olhare those
complex 1- dimensional orbits in X. When restrigtihe A to those smooth fixed points i, (d, X), we get another clag

which is an explicit hypergeometric type and cohtwgg class. Here we just illustrate by a typicaheple:
Example: Let X = P, V = O(l) andb = Euler class. Then we have
— I—llr?w:o(IH -ma)
’ rldm:l(H _ma)nﬂ'
The general toric case is very similar, @&ds also read out from localization on the balladtere for general vector bundle V,
the splitting type comes in.
By applying localization formula on the isig modelMy; of X, we find thatB, is also an Euler data. And we know thgt=
By at the smooth points, which we called them linkEdgether with a Lagrange interpolation type argnineve derive the
following uniqueness lemma by using localizatioaiag

(4.7)

Lemma: If deg, (Aq=By)<-2, thenAq = B.

That is to say that Bdetermineddq up to degree -2. But in geneiy has higher degree is zero. Then we can alwaysafind
so-called mirror transformation to decrease itsreledo -2. Here is one typical example of the mifosmula as a corollary of
mirror principle:

Example: Let X be a toric manifold; consider the case &f @. LetD,, . . . ,[}y be the T-invariant divisors, and V the direct sum
of positive line bundlesv =[J, L;, ¢ (L )= 0 andc(X)=c(V).

Let b(V) = e(V) @(T) =3K4*", and
(6 (L),d) ~(Dg ,d)-1
_ MM(bg dy<o Mk=o” (Dg+k)  qm
B t - e HE ~ ] —- X (Dg ,d) k=0 é )
( ) ; ||_| _ (q( IT) IQ by .dy=0 I'If('iﬁ‘“(Da—k)
Then the mirror principle implies that there argleitly computable function§t), g(t), such that

[ By-e"T ¢y =20-% T2 (4.8)
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whereT =t + g(t). From this formula we can determideuniquely.

The whole argument is actually genus independesgpXindingBy. The problem is that for g > 0, the good fixedneiare
given by the Deligne-Mumford moduli space of statievesMg ;. And when localizing? to such fixed points, we get explicit
Hodge integrals o, ;, which are all explicitly computable. Our approawtrks well until the last step: we can not figorg a
simpleBy from the integral oM ;, which is again an Euler data, to approximaie

But the fact thaty is an Euler data already puts very strong resgtricon such sequences, and this determines it up to
certain degree. Such restrictions are all quadeatit compatible with mirror symmetry for higher gsrby [10]. Even if we take
X a single point in our non-linear sigma model, akeady get strong information on the Hodge intisgoa Mg 1[6,22] At this
point we are trying to design more refined local@mainvolving Mgto find some more refined relations among this A

Euler date is a general notion that can includeeggnGromov-Witten invariants. We can consider radrpoints to the
moduli spaces and add the pull-back classes té.{lse More precisely we can try to compute integlghe form:

K&= [ []eviw W) (4.9)

LTy (d,X) ]

wherecw, LJH I(X).

By introducing the generating series with summatimer k, we can still get Euler data. Thétimate Mirror we are
searching for is the following stateme@®ompute this series by explicit hypergeometricest@ur discussion above has reduced
this to the problem of finding the hypergeometride dataBy's.

Conclusion

Counting holomorphic discs:the boundary of these holomorphic discs lie inaierspecial Lagrangian sub-manifold, which is
some vanishing cycle, in X. We hope to extend mipanciple to deal with such problems. Nonlinegmnsa model has been

studied by Fukaya et al, and linear sigma modelbegen worked out in string theory. In this situatlmoth sigma models have

boundaries. The string theorists [10] have madersdinteresting conjectures. Some progressesthese made in [11] and [13].

The Gopakunar-Vafa formula: This formula [9] reinterpretes the rational numdérj’ in terms of certain integer valued

instanton numberﬂg , generalizing the multiple cover formula for raw#d curves. In particular, in the genus zero ctise gives

rise to integer series expansions for Yukawa coggli The question of integrality and divisibility these series expansions
were first studied in[19], as a special of integyatonjecture. Using the formula of [9] and thisngecture as a guide, we hope to
construct hypergeometric Euler data, which is lthkeA,.

Lastly, this paper shows the extent at which thecigp functions enter into geometry through the syatric, Trigonometric
functions and Hypergeometric series of modulli gsacf stable maps. The boundary of these holomomgikcs lie in certain
special Lagrangian sub-manifold, which have boupitasome vanishing cycle.
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