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Abstract 
 

This paper focuses on function theory or representation theories in a very elegant and 
substantial way in geometry. It is very interesting to see how special functions enter into 
geometry. We like to point out that  Symmetric, Trigonometric and Theta- functions are 
representation theoretic formula, equivariant Euler classes, and the geometry of moduli 
spaces of stable maps. The boundary of these holomorphic discs lie in certain special 
Lagrangian sub-manifold, which have boundary in some vanishing cycle. 
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1.0 Introduction: 
 

Mirror principle is a general method developed in [15] and [16] to compute characteristic classes and characteristic numbers 
on moduli spaces of stable maps in terms of hypergeometric type series. The counting of the numbers of curves in Calabi- Yau 
manifolds from mirror symmetry corresponds to the computation of Euler numbers. This principle computes quite general 
Hirzebruch multiplicative classes such as the total Chern classes. 

Recall that a balloon manifold X is a projective manifold with torus action and isolated fixed points. For the purpose of our 
discussion, we define  

H = (H1, . . . , Hk) 
as our basis of equivariant Kahler classes. Then X is called a balloon manifold if the following holds:  
1. The restriction H(p) ≠ H(q) for any two fixed points p, q ε X. 
2. The tangent bundle TpX has linearly independent weights for any fixed point p ε X. 
The 1-dimensional orbits in X joining every two fixed points in X are called balloons which are copies of p1. The mirror 

principles are of the following: 
- Linear and non-linear sigma model; 
- Euler data; 
- Ballons and hypergeometric Euler data. 
Let X be a projective manifold in the model. 

In order to achieve our aims, it is very interesting to see how special functions enter into geometry. Such as Symmetric 
function, Trigonometric functions and hyper geometric series, we construct the following models 

a. Non-Linear sigma model In this model, we define the moduli space of stable maps of degree (1,d) by ( )g
dM X  and 

genus g into P1 x X: 

  ( )g
dM X ={(f, C) : f : C → P1 x X}       (1.1) 

with C a genus g (nodal) curve and 2 1( ) ( , )f C H P X Z∈ ×  has bi-degree (1,d), modulo the obvious equivalence. For 

convenience the degree d will also be used as integers by choosing a basis in H2(X, Z). 
b. Linear sigma model : In this model, we define the moduli space of stable maps of degree (1,d) by Wd for a toric manifold 

X which was first introduced by [23] and later by [20] for computations. It is a large toric manifold. (see [17])  
Example: Let X = Pn, with homogeneous coordinate [z0, . . . , zn]. Then the linear sigma model is given by the polynomial 

space Wd with projective coordinate 

  [f 0(w0, w1), . . . , fn(w0, w1)]       (1.2) 
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Where fj(w0, w1) are homogeneous polynomials of degree d. 
In the genus 0 case, Wd can beviewed as the simplest compactification of the spaces of degree d maps from P1 to X. The following 
basic Lemma connects this compactification with a stable map moduli space. A proof can be found in [18] 
Lemma:  
There exists an explicit equivariant map 

  : ( ) .g n
d dM P Wϕ →         (1.3) 

Here the equivariance is with respect to the induced actions from the torus actions on X and P1. 

Roughly speaking the computation should be on( )g
dM X . But in general ( )g

dM X  is very “singular” and complicated. But Wd is 

smooth and simple, our main strategy is to push-forward everything to Wd through the map !ϕ  The functorial localization 

formula below is one of the key tricks we used. 

Let , ( , )g kM d X be the moduli space of stable maps of genus g and degree d with k marked points into X. That is 

  , 1( , ) {( , ; ,..., ) : : }g k kM d X f C x x f C X= →      (1.4) 

with x1, . . . ,xk,. k points on the genus g (nodal) curve C . 
This modulli space may have higher dimension than expected, even worse, its different components may have different 

dimensions .To compute integrals on such space, we need to first define the integral. For this purpose, we have the notion of 
virtual cycles: the virtual fundamental class which is first given by [14] and later by [3]. Let us denote the modulli space by 

  ( ) ( ) ,g g
d d TLT X A M∗∈          (1.5) 

The equivariant analogue of the virtual fundamental cycle which is a class in the equivariant Chow group of cycles of 

( )g
dM X . Another virtual cycle will also be used: 

  , ,( , ) ( ( , ))g k g k TLT d X A M d X∗∈ .       (1.6) 

Now let us introduce the starting data of the argument. We let V→ X be an equivalent concavex bundle. The notion of 
concave bundles was introduced in [4], it represents a direct sum of appositive and a negative bundles on X. From a concavex 

bundle V, we can induce vector bundles ( )g
dV X  on , ( , )g kM d X  by taking either 0 1( , ) ( , )H C f V or H C f V∗ ∗ , or their 

direct sum. Let b be a multiplicative characteristic class. 
 
Problem: The main problem of mirror principle is to compute the integral  

, ( , )

( ).
g k

g g
d d

LT d X

K b V= ∫         (1.7) 

More precisely, let λ, q be two formal variables. We would like to compute the generating series, 

  
,

( , ) g g d
d

d g

F q K qλ λ=∑         (1.8) 

in terms of a certain natural explicit hyper geometric series. So far we have rather complete success for the case of balloon 
manifolds and genus g = 0. 
 
2.0 Rational curves:  
The mirror principle for the genus 0 case has been more or less fully developed, which implies almost all of the genus 0 
conjectural formulas from string theory [16], [17], [18]. The most famous corollary is possibly the Candelas formula (Cd). In this 
note we will briefly review our approach to the higher genus mirror principle, which is still under progress with partial successes 
as discussed in [17]. Roughly speaking we now have the following general theorem: 
 
Theorem: Assume g = 0. Mirror principle holds for balloon manifolds and any concavex bundles. 
Remarks:  
1. For toric manifolds, the above mirror principle implies almost all mirror conjectural formulas derived from string theory. 
2.In the above statement of mirror principle, we need to require splitting type on V when restricted onto each balloon  P1, and    

certain condition on the first Chern class c1(V) . (see [15,16]). 
There are many non-split bundle V with given splitting type, such as TPn; and many equivalent bundles over toric 

manifolds[19]. Such bundles will give non-complete intersection Calabi-Yau manifolds, such as Pfaffian variety; moduli space of 
rank 2 bundles over Riemann surface. 
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3.  The special case of Pn., with V the sum of positive line bundles, b the Euler class, a second approach can be found in [4],[21] 
following [8]; for V direct sum of positive and negative line bundles, (see [5]). A mirror formula was proved by using relative 
stable maps. 

Recently, Lee, the functorial localization formula [15] and deformations of normal cone were used to derived a mirror 
formula with V the sum of positive or negative line bundles,, and b the Euler class. However, it requires strong restrictions on the 
first Chern class of V, and it yields no information when V is the trivial bundle. 
One of the most interesting corollary of the mirror principle is when we take V to be the sum of negative bundles. This gives the 
so-called local mirror symmetry, which is called geometric engineering in [10]. The examples include: 

a).  Take X to be the de Pezzo surface, P1 x P1 or P2. Take V = KX, the canonical line bundle and b the Euler class. In this case 
, the corresponding hypergeometric series are periods of elliptic curves, which are called the Seiberg-Witten curves[10]. Indeed 
the total space of Kx is an open CY, its mirror is the elliptic curve, the Seiberg-Witten curve. 

b)  The simplest but very interesting example is when X = P1, ( 1) ( 1)V O O= − ⊕ −  and b the Euler class. In this case we 

have the multiple cover formula of Candelas et al: Kd = d-3. When X = P1,  ( 2)V O= −  and b the total Chern class, we get a 

similar multiple cover formula Kd = d-3. Another very interesting example is when X = P1,  ( 3)V O= −  and b the total Chern class 

[15]. 
 

3.0 Higher genus 
As one may notice that, almost all of the techniques for genus 0 case work well for higher genus, except the last step of finding 
the hypergeometric type series which is more difficult in higher genus due to the complicated fixed point moduli spaces. 

Functorial localization formula is one of the simple techniques used in the approach.  
Let X and Y be two manifolds with torus action. 
Lemma: Let :f X Y→  be an equivariant map. Let f Y⊂  be a fixed component, and s be the fixed components in X. Let f0 = 

f|E, then for an equivariant cohomology class ( )TH Xω ∗∈ , we have the identity on F:                                  

( )
0 ( / ) ( / )[ ] .E F

T T

i i f
e E X e F Yf ω ω∗ ∗

∗
∗ =         (3.1) 

It is interesting to note that this functorial localization formula is very much in the spirit of the Riemann- Roch formula. 
Functorial localization is one of the key ideas in [15] and [16]. This same idea was later used in [2] and [14]. Which apply this 
formula to ϕ , the collapsing map. Before that, let us first work out the fixed points in the nonlinear and linear sigma models with 

respect to the induced S1-action from P1, as well as some of its key properties. 

The fixed points in ( )g
dM X  induced by the S1- action on P1 are given by the components: 

   1 2

1 2

,
,1 ,1( , ) ( , )g g

r g X gF M r X M d r X= × −       (3.2) 

With g1+g2 = g and r = 0, . . . d. By considering the pull-back of ( )g
T db V through the projection: 

   ,0: ( ) ( , )g
d gM X M d Xπ →        (3.3) 

And its restriction to 1 2,g g
rF , we have the important 

4.0  Gluing identity: 

   1 2( ) ( ) ( ) ( ).g gg
T T d T d T d rb V b V b V b V−=       (4.1) 

The collapsing map ϕ , when restricted to 1 2,g g
rF is just the evaluation map ev into X at the gluing point. The next step is to get 

the so-called Euler data from the above gluing identity. Let us write 

   ,1

,0

( ) ( , )

( / ( ))
[ ]

g
T gd

g g v
T d d

i b V LT d Xg
d e F M X

A ev
π∗ ∗ ∩

∗=        (4.2) 

which comes from the left hand side of the Functorial Localization Formula. Here we have actually used a virtual version of the 
functorial localization formula, which is proved by using the virtual Atiyah. Bott formula as generalized in[7]. The denominator  

,0
( / ( ))

g g v

T d d
e F M X  denotes the virtual equivariant Euler class. (See [16] and [17]). 
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Let us form the generating series: 

   ,g g dt
d d d

g d

A A A A eλ= =∑ ∑       (4.3) 

From gluing identity and the functorial localization formula we can derive the following identity: 

   1 2 1 2,*( ) g g g g
T r d r d rb V i A A A−⋅ = ⋅       (4.4) 

Where 1 2,* g g
r di A is the local term from the localization of ( )g

T db V  onto 1 2,g g
rF , and rA denotes the switch of sign: α → -α. Here 

α is the weight of the S1-action induced from the action on P1. This then gives us quadratic relations among the Ad’s. (see [17]). 
 The right hand side of the functorial localization formula is the localization of the push-forward class by ϕ : 

   * *[ ( ) ( )] ( )g g
T d d d Tb V LT X A Wϕ ∩ ∈      (4.5) 

This is a polynomial class in α, Note that g
dA is actually a rational class in α. Through functorial localization formula and 

localization on Wd, we derive, from the gluing identity, that {Ad}is an Euler data. 
 Here Euler data, roughly speaking, are the sequences of classes like Ad with properties like (4.4) and (4.5). The 
connection between (4.4) and (4.5) is the functorial localization formula. From the above discussion, we see that any triple (X,V,b) 
induces an Euler data through the functorial localization formula. 

On the other hand, we know that knowing gdA is equivalent to knowing g
dK , as given by the following: 

Lemma: We have the following 
   3 /(2 2 ) .g g t H g

d d

X

g d t K e Aαα − − ⋅− − ⋅ = ∫      (4.6) 

So the problem is reducing to the computation of the Euler data Ad. The next step in our approach is to approximate Ad by 

restricting to “smooth part” or “generic part” of , ( , )g kM d X . 

 When the genus g = 0, by localization to smooth fixed points, the multiple covers of the balloons, which are those 

complex 1- dimensional orbits in X. When restricting the Ad to those smooth fixed points in0,1( , )M d X , we get another class Bd 

which is an explicit hypergeometric type and cohomology class. Here we just illustrate by a typical example: 
Example: Let X = Pn, V = O(l) and b = Euler class. Then we have  

   0
1

1

( )
.

( )

ld
m

d d n
m

lH m
B

H m

α
α

=
+

=

∏ −
=

∏ −
       (4.7) 

The general toric case is very similar, and Bd is also read out from localization on the balloons. Here for general vector bundle V, 
the splitting type comes in.   
        By applying localization formula on the sigma model Wd of X, we find that Bd is also an Euler data. And we know that Ad = 
Bd at the smooth points, which we called them linked. Together with a Lagrange interpolation type argument, we derive the 
following uniqueness lemma by using localization again: 

 
Lemma: If  degα (Ad = Bd ) ≤ -2, then Ad = Bd. 

That is to say that Bd determines Ad up to degree -2. But in general Bd has higher degree is zero. Then we can always find a 
so-called mirror transformation to decrease its degree to -2. Here is one typical example of the mirror formula as a corollary of 
mirror principle: 
Example: Let X be a toric manifold; consider the case of g = 0. Let D1, . . . ,DN be the T-invariant divisors, and V the direct sum 

of positive line bundles: 1, ( ) 0i i iV L c L= ⊕ ≥  and ci(X)= ci(V). 

Let  b(V) = e(V),   Φ(T) = ƩKde
d.T, and 

  
, 1

, 0 0

,
, 0 1

( ),
( )

( )
0

( ) ( ( ) ) .
i i D d

D d k

D d
D d k

c L d
D kH t d t

i i D k
d i k

B t e c L k e
α

αα
α

αα

−〈 〉−
〈 〉< =

〈 〉
〈 〉≥ =

〈 〉
∏ ∏ +− ⋅ ⋅

∏ ∏ −
=

= − ×∑∏ ∏     

Then the mirror principle implies that there are explicitly computable functions f(t), g(t), such that 

   ( ( ) ( )) 2
i

f H T
i T

X

e B t e e V T− ⋅ ∂Φ
∂− = Φ −∑∫      (4.8) 
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where T = t + g(t). From this formula we can determine Φ uniquely. 
The whole argument is actually genus independent except finding Bd. The problem is that for g > 0, the good fixed points are 

given by the Deligne-Mumford moduli space of stable curves Mg,1. And when localizing Ad to such fixed points, we get explicit 
Hodge integrals on Mg,1, which are all explicitly computable. Our approach works well until the last step: we can not figure out a 
simple Bd from the integral on Mg,1, which is again an Euler data, to approximate Ad. 

But the fact that Ad is an Euler data already puts very strong restriction on such sequences, and this determines it up to 
certain degree. Such restrictions are all quadratic and compatible with mirror symmetry for higher genus by [10]. Even if we take 
X a single point in our non-linear sigma model, we already get strong information on the Hodge integrals on Mg,1.[6,22] At this 
point we are trying to design more refined localization involving Mg to find some more refined relations among the Ad’s. 

Euler date is a general notion that can include general Gromov-Witten invariants. We can consider marked points to the 
moduli spaces and add the pull-back classes to the Ad’s. More precisely we can try to compute integrals of the form: 

   

,

,

( , )

( )
g k

g g
d k j j d

jLT d X

K ev b Vω∗= ⋅∏∫      (4.9) 

where ( )j H Xω ∗∈ . 

By introducing the generating series with summation over k, we can still get Euler data. The Ultimate Mirror we are 
searching for is the following statement: Compute this series by explicit hypergeometric series! Our discussion above has reduced 
this to the problem of finding the hypergeometric Euler data Bd’s. 
Conclusion 
Counting holomorphic discs: the boundary of these holomorphic discs lie in certain special Lagrangian sub-manifold, which is 
some vanishing cycle, in X. We hope to extend mirror principle to deal with such problems. Nonlinear sigma model has been 
studied by Fukaya et al, and linear sigma model has been worked out in string theory. In this situation both sigma models have 
boundaries. The string theorists [10] have made several interesting conjectures. Some progresses have been made in [11] and [13]. 

The Gopakunar-Vafa formula: This formula [9] reinterpretes the rational number g
dK  in terms of certain integer valued 

instanton numbers gdn , generalizing the multiple cover formula for rational curves. In particular, in the genus zero case, this gives 

rise to integer series expansions for Yukawa couplings.  The question of integrality and divisibility of these series expansions 
were first studied in[19], as a special of integrality conjecture. Using the formula of [9] and this conjecture as a guide, we hope to 
construct hypergeometric Euler data, which is linked to Ad. 
Lastly, this paper shows the extent at which the special functions enter into geometry through the symmetric, Trigonometric 
functions and Hypergeometric series of modulli spaces of stable maps. The boundary of these holomorphic discs lie in certain 
special Lagrangian sub-manifold, which have boundary in some vanishing cycle. 
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