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Abstract

It is shown that the Holomorph of a C-loop isa C-loop if each element of the automorphism
group of the loops is left nuclear. Condition under which an element of the Bryant-
Schneider group of a C-loop will form an automorphism is established. It is proved that
elements of the Bryant-Schneider group of a C-loop can be expressed a product of pseudo-
automorphisms and right translations of elements of the nucleus of the loop. The Bryant-
Schneider group of a C-loop is also shown to be a kind of generalized Holomorph of the
loop.
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1.0 Introduction:

Central loops(C-loops) are loops which satisfy ofthe identities called ‘Central identity’ as naiiey F. Fenyves [9], [10].
Closely related to the central identity are lefttcal (LC) and right central (RC) identities. Thepeessions for the mentioned
identities are as follows;

(yx - x)z = y(x - xz) central identity (1)
ixx-yz=(x-xy)z=ii.(x xy)z =x(x-yz) = iii.(xx - y)z = x(x - yz) LC-identities (2)
i.yz-xx =y(zx-x) =ii.(yz - x)x = y(zx - x) = iii. (yz.x)x = y(z - xx) RC-identities 3)

Recently Phillips and Vojtechovsky [20], found aliét in addition to the identities above, LC and Réntities can also be
defined respectively by,

(v xx)z=y(x xz)and (yx - x)z = y(xx - 2) (4)

C — loops are one of the least studied loops. Few publipatithat have considered C-loops include Fenyves[{9],
Phillips and Vojtechovsky [18] [20] [19], Chein [5The difficulty in studying them is as a resulttbé nature of their identities
when compared with other Bol-Moufang identitiese(lement occurring twice on both sides has noraleenent separating it
from itself).

1 Preliminaries
Theorem 2.1([10], [20]) Let(L,:) be an LC-loop(RC-loop). Then :

(L,) is a left (right) alternative loop,

(L,") is a left (right) inverse property loop,

(L,) is a left (right) nuclear square loop,

(L,") is a left (right) power alternative loop,

(L,") is a middle square loop,

(L,") is power associative loop.

Definition 2.1 A triple (a,B,y) of bijections is called an isotopism of loofl,) onto a loop (H,°) provided xa o yp =
(x-y)yVx,ye€L.(Hp)is called an isotope ofL,'). The loops(L,") and (H,°) are said to be isotope to each other.
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Definition 2.2 Let a« and g be a permutation of. and let i denote identity map ork. Then (a, 8,t) is a principal isotopism of
a loop (L,") onto a loop(L,°) which imply that (a, 8, ¢) is an isotopism of(L,-) onto(L,°).
Definition 2.3 An isotopism of(L,-) onto(L,-) is called an autotopism 6f,-). The group of autotopism @fis denoted byl (L).
Remark 2.1 The components of isotopism are usually denoteldlgr case Greek letters, thug'it= (U,V, W) is an autotopism
of a loop(L,), then
xU -yV = (xy)W,V x,y € L.
The set of all autotopism of a loop is a group wita inverse of T~t = (U,V, W)™t = (UL, V~1,W~1). The identity element
of the group beingl, I, 1) wherel is the identity map of. If T = (U, U, U), thenT is called the automorphism @f,.).
Definition 2.4 If (U, V, W) is autotopism of an inverse property lodp), then(W,JV],U) and (JUJ, W, V) are autotopisms df.
Moreover if (U,V,W) =(S,SR.SR.) the S is called a pseudoautomorphism Lofwith companion c. The set of all
pseudoautomorphisms bfis denoted byS(L,-).
Definition 2.5 Let (L,-) be an inverse property loop with the nucleus dethdty N. Then an automorphismof (L,) is left
nuclear iffaa - a™* € N for all a € L.
Definition 2.6 Let (L,) be a loop an®S(L,-) be the set of all permutatioAsf Q such that
(RS, 0L, 6)
is an autotopism dfL,-) for somef, g € L, thenBS(L,") is called the Bryant-Schneider group of the loop.
Definition 2.7 Let (L,-) be a loopA(L) a group of automorphisms of logp,-) and letHH = A(L) x L and define
(a,x)° (B,y) = (af,xp -y)
V(a,x),(B,y) € H. Then the looH,°) is called thed(L) — holomorph of (L,-) or simply holomorph ofL,).
3 Holomorphy
Theorem 3.1Let (L,-) be an LC-loop and (L) be a group of automorphism @f,:). Then thed(L) — holomorph (H,°) of
(L,") is an LC-loop if and only if
(xa - xy)z = xa(x - yz) (5)
Vx,y,z€ LandV a €A(L).
Proof.
Supposed(L) — holomorph (H,°) of (L,) is an LC-loop we have
{(a,x) o [(a,x) o (B, )} e (,2) = (a,x) o {(a,x) o [(B,y) ° (v,2)]} (6)
Vx,y,z€Land Va,B,y € A(L). Thus
{(a,x) o (aB,xB - ¥)} o (v,2) = (a,x) o {(a,x) o (By,yy - 2)}
{a-ap,xap - (xB-y)}e(v,2) = (a,x) e {(a- By, xBy - vy -2)
{(a-a)y, [xaB - (xB - Y]y - 2z} = {a(a - By),xa - By - xBy (yy - 2)}
vV x,y,z € LandVa,B,y € A(L). Therefore
xap - (xB - y)}y -z = xa - By - xBy (yy - 2)
Vx,y,z€LandV a,f,y € A(L). Therefore,
{xa - By - By - yy)} -z = xa - By - xBy - (yy - 2)
putting @ = Sy, gives
{xa® - (x@ - yy)}z = xa@ - x@(yy - 2)
Hence {xa-:(x-yy® )} z07! = {xa - x(yy0~1 z071)}
Vx,y,z€LandV a,B,y € A(L). If we puty = yy@~'and Z = z0~*, we obtain(xa - xj)z = xa - (x - yZ)
And replacingy andz by y and z respectively we have
(xa - xy)z = xa(x - yz)
Vx,y,z€ LandV a € A(L), which is equation (5).
The converse is obtained by reversing the process.
Corollary 3.1 Let (L -) be a loop and (L) be the group of all automorphism igfthenL is an LC-loop if
B = (LyLyq, 1, LyLyq) (7)
is an autotopism of, V x,y,z € LandV a € A(L)
Proof. This is a consequence of (5)
Theorem 3.2Let (L -) be a loop andi(L) be a group of automorphism @f -). Then the A(L)-holomorpliH,o) of (L-) is an
RC-loop if and only if
y((z - xa)x) = (yz - xa)x (8)
Vx,y,z€LandV a € A(L).
Proof.
The procedure for the proof is like that of Thenré.1 above hence it is omitted.
Corollary 3.2 Let (L -) be any loop and (L) be the group of all automorphismsigfthenL is an RC-loop if and only if
B = (I, RyqRy, RxaRy) (9)
is an autotopism of, V x,y,z € LandV a € A(L)
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Proof.
From (8)
y((z - xa)x) = (yz - xa)x
=Y ZRy Ry = yZRyoRy
Vx,y,z€LandV a € A(L).
= (I' RX(ZRX’ RX(ZRX)
is an autotopism ofL,”) Vx,y,z€ LandV a € A(L)
Conversely, suppose (9) hold, thery, z € L we have
VI zRy Ry = YZRyqRy
y((z . xa’)x) = y(xa - xz)
Vx,y,z€LandV a € A(L).
Theorem 3.3Let (L,-) be a loop and (L) be the group of automorphism @f-). Then the A(L)-holomorpliH,0) of (L -) isa C-
loop if and only if
Y xa)x -z =y(xa - xz) (10)
Vx,y,z€LandV a € A(L).
Proof.
The procedure for the proof is like that of theor&rh hence it is omitted.
Corollary 3.3 Let (L,) be a loop and (L) be the group of automorphism@f-). Then L is a C-loop if and only if
B = (Ryq Ry, LJ_a:?LLLx_li 1) (11)
is an autotopism ofL,’) Vx,y,z€ LandV a € A(L).
Proof. From (10)
(y-xa)x -z =y(xa - xz)
= YRyaRx 2z =y ZRyRyqy
Vx,y,z€LandV a € A(L).
substitutingz = zL, L,, we have
YRxaRyx * ZL(yq)-1Ly-1 = yZ
Vx,y,z€LandV a € A(L).
= (Ryq Ry Lixay-1Lyx-1,1)
is an autotopism ofL,’) Vx,y,z€ LandV a € A(L).
3.1 Nuclear Automorphism
Theorem 3.4Let (L,-) be a loop and (L) be the group of automorphism@f-). Then the A(L)-holomorpiiH,o) of (L -) is a C-
loop if and only if (L, ) is a C-loop and eaah € A(L) is a left nuclear automorphism @f,-).
Proof. SupposéH,o) is a C-loop. SincéL,:) is isomorphic to a subloop ¢fi,°), it follows that(L,-) must be a C-loop. From
Theorem (3.1), equation (5) holdst,y,z € L and V a € A(L). Furthermore, by Theorem (3.1) and Corollary (3.3)
A(x) = (R, Ly 1) and B(x) = (RyRyq, Ly Lya, I)
are autotopisms df.,-), V x € L and V @ € A(L). Therefore by Theorem (3.1) and we have
A () = (L2 1 L3%), Apt (x) = (I, RZ%, R:?), By (x) = (LyaLy, I, LyaLy) and B, (x) = (I, RyRyq, RxRya) are
autotopisms ofL,"),V x € Land V a € A(L). If these are combined we have
AA(X)B}L_l(x) = (L;Z’ I, LJ_CZ)(anLx' I, LygLy)

Al(x)Bll_l(x) = (L}leaJ, L;lea) (12)
And B, (x)A; (x) = (I, RxRyq, RxRyo I, RZ%, R )
B, (x)A;*(x) = (I, Ry Rx", Ry Ry ™) (13)

as autotopisms afL,-), Vx € L and V @ € A(L). Now if we apply (12) and (13) td - b and a - 1 respectively, we have
1Lz Ly b = (1 - b)L3 Lyq
(xa - x )b = bL(x) 1L,
bL,g-1 = bL Lyq
and a-1R,R;' = (a- DR, R;*
a(xa - x™1) = aR, Rt

ARy qx-1 = ARyoR:?

And respectively we have
Lygy—1 = L;lea (14)
Ryax—1 = RxaR;l (15)

Vx € LandV a € A(L). If we put equations (14) and (15) into equati¢k®) and (13) respectively, we have
Ay()Br (%) = (Lygox-1, 1, Lygy-1)
and  B,(x)A;"(x) = (I,R g1, Rygx—1)
Vx € LandV a € A(L). These therefore imply thatr - x~' € Ny(L) and xar - x™* € N, (L).
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Consequentlyxa - x~1 € N(L) since (L,") is an inverse property loop. Heneee A(L), is left nuclear.
Conversely, suppos@.,-) is a C-loop and eact € A(L) is left nuclear. Then for eaah € A(L) and eachx € L the element
xa-x~" € N,(L), thus
xa -y = ((xa-x")x)y
xa -y = (xa-x Dxy
Vy€eL.
YLlva = YLyLygx-1 = L'l = Lygx—1
Vx€LandVa € A(L). Butforvx € LandV a € A(L), we know thata - x~* € N,(L). Hence,
C = Loyt 1, Lyqy1) = (Lx Lyg, [, L3 Lq)
is an autotopism dofL,),V x € L anda € A(L). But againA = (I2,1,12) is an autotopism ofL,), ¥ x € L. Therefore,
AC = (Lxan' I Lxan)
is an autotopism ofL,"), V x € Land V a € A(L). S0 also i{AC);* = (RyqRy, LriLyt, I). Therefore ofyz, Vy,z € L, we have
YRyoRy - 2Ly L3 = yz
if we putz = zL;1L;1, in this we have
YRxaRx+Z =y ZLyLy,
((y . xa)x)z_ =y(xa - x2)
Vx,y,Z€ LandV a € A(L). Replacingzbyz,V x,y,z € Land @ € A(L) and we a central identity. Henc@H,°) is
a C-loop.
Theorem 3.5The setS(L) of all left nuclear automorphism of a C-lo@h-), is a normal subgroup of the automorphism group of
LY.
I(Droof. S(L) # @, from the Theorem 3.4 it was shown that
Lygu—t = Ly'Lua
Vu€LandV a € S(L) (since for an inverse property lobpL,-1 =L;'Vu€L). Then ua-u™!e€
N(L,),Vu € LandV a € S(L). It follows then that
Ala,w) = (Lygy-1, 1, Lyga-1) = (L3 Lyas I, Ly Lyyg )
Vu € L and for all @ € L. Hence ifa, B € S(L), we have
A, WA, u@) = Ly Lug I, Lg* LugM Lk Luag. |, Lk Lup)
A((X, u)A (B' ua) = (Ll_tlLuaﬁ' I, Ll_tlLuocﬁ) (16)
is an autotopism dfL,-),V u € L. Thereforev y € L we have
1L;1Luaﬁ y=(1- y)LalLuaB
(ua.[; : u_l) Yy = yLalLuaB
yLuaﬁ‘u_l = yLﬂlLuaﬁ

== Lua/3‘~u_1 = Lu—lLuaB (17)
Thus, (17) into (16) gives
Ala, w)A(B,ua) = (Luaﬁ‘u_l' I Luaﬁ-u_l) (18)

From equation (18)uapf -u~! € Ny(L),V u € L, hence uaf - u™! € N,u € L so also aff € S(L), since (L,") is
an inverse property loop.
If @ € S(L), then A(a,u) is an autotopism dfL,-) Vu € L, and so isA(a,ua )"t vu € L, ie.
Al ua™) ™t = (L -1Lyg-1.0 1, Lo -1Lg-1.4)7"
= (L h-1Ly, I, L h-1L,) ™
=Ly Lyg-1, 1, L3 Lyg)
={Lua ™t -u™,I,Lua"t-u1))
Hence it follows thatr=* € S(L). ThusS(L) is a subgroup of the automorphism grougiof).
Leta € S(L), thenua - a~* € N;(L,),V u € and
(wa-uVHxy=@wa-uHx-y
VY u,x,y € L, if y is an automorphism dt.,-), then we have
{uay - (wy) ey - yy) = {uay - (uy) " xy - yy
Y u,x,y € L, and if we replace byuy ! in the last expression, we have
(uy tay - u™)(xy - yy) = (uwytay - uTDxy - yy
Thus,uytay -u~ € N;(L,") and sincd. is an inverse property loop, the three nuclei cidie, thenuy ay -
u "l € N(L,") for all u € L and all automorphisny of (L,-). Hencey~tay € S(L) for all « € S(L) and all
automorphismy of (L,"). So S(L) is indeed normal in the automorphism groupdgt.) of (L,).
2 Bryant-Schneider group
Theorem 4.1 Let(L,) be a C-loop, an elemertt of the Bryant-Schneider group @f is an automorphism of
provided
(0R9—1 , 9Lf—1, 6)
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is an autotopism ofL,) if f and g are elements of the nucleus @f,-).
Proof: Let (L,) be a C-loop then
(Ry—l Ry—l, LyLy, I)
is an autotopism for alk € L.6 € BS(L,") imply that(6R,-1,0L,-1,0) is also an autotopism for somg f €
(L,). Hence(OR -1,0Ls-1,0)(Ry-1 R,-1, Ly, Ly, I} = (ORy-1 Ry-1R,-1,0L,-1L, Ly, 0) is an autotopism ofL,-)
forally € L and somgy, f € L. Since(L,) is an alternative property loop, then
Ry—l Ry—l = R(y—1)z = R(yz)—1
and L, L, = Lyz therefore(@Rg-l Ry—lRy—l,HLf—lLyLy,H) = (9Rg—1 R(yz)—1,9Lf—1Ly2,9). If g=@?*»"1 and
f = y? implies thaf = g=! = y2. Then it follows thaff and g are elements a¥ (L,") the nucleus ofL,") since
the square of every elemene L belongs tav(L,).
Theorem 4.2Let (L,-) be a C-loop and le® € S(L,") (the symmetric group df). Thenf € BS(L,") if there is a unique
a € P(L,) (the set pseudo-automorphismgbf)) and a uniqugf € N(L,) such thab = aRy(a = BRf‘l).
Proof:
Let (L,-) be a C-loop then
A=(R,-1Ry-1,L,L,I)
An autotopism of L,-) for all x € L.
B =(l,Ry2,R,2) = (Ry2,pR,2,,1) is also an autotopism for all€ L. Therefore by Bruck[4]
BA = (R2,pRy2,, I)(Ry-1 Ry=1, Ly Ly, 1) = (I, pR,2pLyc Ly, 1)
is an autotopism for allx € L.6 € BS (L,) implies that C = (9R;-1,0L,-1,60) is an autotopism for some
f,g€eL
CBA = (OR;-1,0Ly-1,0)1, pRy2pLyLy, 1) = (ORp-1,0L4-1pR,2pLy Ly, 0)
which implies thata, 6L -1pR,2pLyL,, aRy) is autotopism ofL,-) for somef, g € @ and allx € L. Now if
(@, 0Ly-1pR2pLyLy, aRy)
is an autotopism we havesa - tf = (s - t)aRy forall s, t € L where f = 0Lg-1pR,2pLyL,.
If sis set to be e in the last autotopism and noting tleat = e6R.y = e we get f = aR; therefore{a, aRy, aRy)
is an autotopism ofL,-) for somef € L hencex is a pseudo-automorphism with companforé = aR, implies
that the elements of the Bryant-Schneider groupa dE-loop (L,) can be expressed in terms of pseudo-
automorphismsP(L,”) and right translations of elements of the nuclefigL,)). To show uniqueness, let
aiRy, = a;R,, where aj,a, € P(L,) and x1,x, € N(L,-). Then a;'a; =R, R;! which implies that
ea;'a; = eR,,Ry!. Then we observe that= x,x; " and thereforer; = x,. It follows that a; = a,.
Remark 4.1 Robinson[12] considered the Bryant-Siclenegroup of a Bol loop and found out that thep te
expressed as a product of pseudo-automorphismgigimidtranslations. Theorem 2.2 above shows that th
Bryant-Schneider group of a C-loop can also beesgmd as in the same way. This further emphasfat¢héhat
C-loops are analogous to Moufang loops since Maufaaps satisfies the Bol identities (right and)lef
Theorem 4.3 Let (L) be a C-loop . Ifx,y€Q, let® be a binary operation defined on the pseudo-
automorphismS(L,-) by
a OfF = aRyfRyRp.9y-1 forall aff € PS(L,). Let H = PS(L,") X Q and for
(a,x) e (B,y) = (aOB, xB - y)
Then(H,°) a group which is isomorphic ®S(L,").
Proof:
Let a,B8 € PS(L,-) and let x,y € N(L,) the nucleus of(L,). Then we know from the immediate preceding
theorem that there exist unigdes PS(L,") and uniquez € N(L,") such thaR, SR, = SR,. Thus we observe
that
(ua-x)By =ué -z
For allu € L. If we setu = e we obtainxf - y = z. ThereforexR, SR, = R ,p.,)-1 and so
8 = aRyBfRyR1p5,)-1 = aOP
Hence @ is a closed binary operation ¢tS(L,-). It is also obvious now thdtr, x) - aR, providedx € N(L,-)
gives an isomorphism d#,0) onto theBS(L,) of a C-loop. Hence the Bryant-Schneider group Gflaop is a
form generalized holomorph of the loop.
Theorem 4.4 A finite C-loop is isomorphic to all its loop ispes if
whereA(L) is the automorphism group @f,-)
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Proof:
By Theorem 4.2 it is clear th&BS(L,")| = |L Il PS(L,")|. By Bryant & Schneider[2]L,:) is isomorphic to all its loop
isotopes if
ILIP|A(L)] = IBS(L,)I|N, (L,
But in a C-loop the nuclei coincide hen|d‘e,(L,-)| = |N(L,")|. Now by Theorem 4.2BS(L,")| = |PS(L,))||N(L,)| and
therefore we have
ILI*IACL,)| = IPS(LIIN(LI?
which implies that
|L| ]2 _|PS(L)]
IN(L,) |ACL,)]
which is the same as
[L: N(L,)]? = [PS(L,"): A(L,)]
As required.
Corollary 4.1 let(L,) be a C-loop then
[PS(L,) : A(L,)] # 4
Proof:
The proof follows directly from lemmad2of [20] and Theorem 4.4
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