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Abstract 
 

It is shown that the Holomorph of a C-loop is a C-loop if each element of the automorphism 
group of the loops is left nuclear. Condition under which an element of the Bryant-
Schneider group of a C-loop will form an automorphism is established. It is proved that 
elements of the  Bryant-Schneider group of a C-loop can be expressed a product of pseudo-
automorphisms and right translations of elements of the nucleus of the loop. The Bryant-
Schneider group of a C-loop is also shown to be a kind of generalized Holomorph of the 
loop. 
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1.0 Introduction: 
 

Central loops(C-loops) are loops which satisfy one of the identities called ‘Central identity’ as named by F. Fenyves [9], [10]. 
Closely related to the central identity are left central (LC) and right central (RC) identities. The expressions for the mentioned 
identities are as follows; 

         ��� · ��� � ��� · ���  central identity                                                             (1) 
         	. �� · �� � �� · ���� � 		. �� · ���� � ��� · ��� � 			. ��� · ��� � ��� · ���  LC-identities      (2) 

                	. �� · �� � ���� · �� � 		. ��� · ��� � ���� · �� � 			. ���. ��� � ��� · ���   RC-identities      (3)                                             
Recently Phillips and Vojtechovsky [20], found out that in addition to the identities above, LC and RC identities can also be 

defined respectively by, 
 �� · ���� � ��� · ��� and ��� · ��� � ���� · ��                                            (4) � 
 ����� are one of the least studied loops. Few publications that have considered C-loops include Fenyves [9], [10], 

Phillips and Vojtechovsky [18] [20] [19], Chein [5]. The difficulty in studying them is as a result of the nature of their identities 
when compared with other Bol-Moufang identities (the element occurring twice on both sides has no other element separating it 
from itself). 

1   Preliminaries 
Theorem 2.1 ([10], [20]) Let ��,·� be an LC-loop(RC-loop). Then : 

1. ��,·� is a left (right) alternative loop, 
2.  ��,·� is a left (right) inverse property loop, 
3. ��,·� is a left (right) nuclear square loop, 
4.  ��,·� is a left (right) power alternative loop, 
5. ��,·� is a middle square loop, 
6.  ��,·� is power associative loop. 

Definition 2.1 A triple  ��, �, �� of bijections is called an isotopism of loop  ��,·� onto a loop  ��, °� provided  �� � �� ��� · ��� � �, � � �. ��,�� is called an isotope of  ��,·�. The loops  ��,·� and  ��,�� are said to be isotope to each other. 
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Definition 2.2 Let  � and  � be a permutation of  � and let  	 denote identity map on  �. Then  ��, �, �� is a principal isotopism of 
a loop  ��,·� onto a loop  ��,�� which imply that  ��, �, �� is an isotopism of  ��,·� onto ��,��. 
Definition 2.3 An isotopism of ��,·� onto ��,·� is called an autotopism of ��,·�. The group of autotopism of � is denoted by ����. 
Remark 2.1 The components of isotopism are usually denoted by lower case Greek letters, thus if � � ��,  , !� is an autotopism 
of a loop ��,·�, then 
  �� · � � ����!, � �, � � �. 
The set of all autotopism of a loop is a group with the inverse of ��"# � ��,  , !�"# � ��"#,  "#, !"#�. The identity element 
of the group being �$, $, $� where $ is the identity map of �. If � � ��, �, ��, then � is called the automorphism of ��,·�. 
Definition 2.4 If %�,  , !& is autotopism of an inverse property loop ��,·�, then %!, ' ', �& and %'�', !,  & are autotopisms of �. 
Moreover if %�,  , !& � %(, ()*,()*& the S is called a pseudoautomorphism of � with companion c. The set of all 
pseudoautomorphisms of � is denoted by +(��,·�.  
Definition 2.5 Let ��,·� be an inverse property loop with the nucleus denoted by N. Then an automorphism � of ��,·� is left 
nuclear iff ,� · ,"# � - for all , � �. 
Definition 2.6 Let ��,·� be a loop and .(��,·� be the set of all permutations / of 0 such that 
  %/)1"#, /�2"#, /& 
  is an autotopism of ��,·� for some 3, 4 � �, then .(��,·� is called the Bryant-Schneider group of the loop. 
Definition 2.7 Let ��,·� be a loop, ���� a group of automorphisms of loop ��,·� and let �� � ���� 5 � and define 
  ��, �� � ��, �� � ���, �� · ��  ��, ��, ��, �� � �. Then the loop ��,�� is called the ���� 
 6���7�8�6 of ��,·� or simply holomorph of ��,·�. 9  Holomorphy 
Theorem 3.1 Let ��,·� be an LC-loop and ���� be a group of automorphism of ��,·�. Then the ���� 
 6���7�8�6 ��,�� of  
  ��,·� is an LC-loop if and only if 
  ��� · ���� � ���� · ���                                                                                             (5) 
  � �, �, � � � and � α �����. 
Proof. 
Suppose ���� 
 6���7�8�6 ��,�� of ��,·� is an LC-loop we have 
  :��, �� � ;��, �� � ��, ��<= � ��, �� � ��, �� � :��, �� � ;��, �� � ��, ��<=                  (6) 
  � �, �, � � � and  � �, �, � � ����. Thus  
  :��, �� � ���, �� · ��= � ��, �� � ��, �� � :��, �� � ���, �� · ��= 
  :� · ��, ��� · ��� · ��= � ��, �� � ��, �� � :�� · ��, ��� · ��� · �� 
  :�� · ����, ;��� · ��� · ��<� · �= � :��� · ���, �� · �� · ������ · ��= 
  � �, �, � � � and ��, �, � � ����. Therefore  
  :��� · ��� · ��=� · � � �� · �� · ������ · �� 
  � �, �, � � � and � �, �, � � ����. Therefore, 
  :�� · �� · ���� · ���= · � � �� · �� · ��� · ��� · �� 
putting > � ��, gives 
  :��> · ��> · ���=� � ��> · �>��� · �� 
Hence  :�� · �� · ��>"#�= · �>"# � :�� · ����>"# · �>"#�= � �, �, � � � and � �, �, � � ����. If we put �? � ��>"# and �@ � �>"#, we obtain ��� · ��?��@ � �� · �� · �?�@�  
And replacing �? and �@ by �  and  � respectively we have 
  ��� · ���� � ���� · ��� � �, �, � � � and � � � ����, which is equation (5). 
The converse is obtained by reversing the process. 
Corollary 3.1 Let �� ·� be a loop and ���� be the group of all automorphism of �, then � is an LC-loop if 
  . � %�A�AB , $, �A�AB&                                                                     (7) 	� an autotopism of �, � �, �, � � � and � � � ���� 
Proof. This is a consequence of (5) 
Theorem 3.2 Let �� ·� be a loop and ���� be a group of automorphism of �� ·�. Then the A(L)-holomorph ��,�� of �� ·� is an 
RC-loop if and only if 
  �C�� · ����D � ��� · ����                                                            (8) 
  � �, �, � � � and � � � ����. 
Proof. 
 The procedure for the proof is like that of Theorem 3.1 above hence it is omitted.  
Corollary 3.2 Let �� ·� be any loop and ���� be the group of all automorphisms of �, then � is an RC-loop if and only if  
  . � %$, )AB)A, )AB)A&                                                                    (9) 	� an autotopism of �, � �, �, � � � and � � � ���� 
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Proof. 
From (8) 
 �C�� · ����D � ��� · ���� 
 E � · �)AB)A � ��)AB)A                                                         
 � �, �, � � � and � � � ����. 
 F %$, )AB)A, )AB)A&                                                                  
 	� an autotopism of ��,·�  � �, �, � � � and � � � ���� 

Conversely, suppose (9) hold, then � �, � � � we have 
 �$ · �)AB)A � ��)AB)A 
 �C�� · ����D � ���� · ��� 
 � �, �, � � � and � � � ����. 
Theorem 3.3 Let ��,·� be a loop and ���� be the group of automorphism of �� ·�. Then the A(L)-holomorph ��,�� of �� ·� is a C-
loop if and only if 
              �� · ���� · � � ���� · ���                                                             (10) 
 � �, �, � � � and � � � ����. 
Proof. 
The procedure for the proof is like that of theorem 3.1 hence it is omitted. 
Corollary 3.3 Let ��,·� be a loop and ���� be the group of automorphism of �� ·�. Then L is a C-loop if and only if 
 . � %)AB)A, �AB"#�AGH , $&                                                                  (11) 
 	� an autotopism of ��,·�  � �, �, � � � and � � � ����. 

Proof. From (10) 
 �� · ���� · � � ���� · ���  
 F �)AB)A · � � � · �)A)AB 
               � �, �, � � � and � � � ����. 

substituting �@ � ��A�AB we have 
 �)AB)A · �@��AB�GH�AGH � ��@ 
 � �, �, � � � and � � � ����. 
 F %)AB)A, ��AB�GH�AGH , $& 
              	� an autotopism of ��,·�  � �, �, � � � and � � � ����. 
3.1   Nuclear Automorphism 
Theorem 3.4 Let ��,·� be a loop and ���� be the group of automorphism of �� ·�. Then the A(L)-holomorph ��,�� of �� ·� is a C-
loop if and only if  ��,·� is a C-loop and each � � ���� is a left nuclear automorphism of ��,·�. 
Proof. Suppose ��,�� is a C-loop. Since ��,·� is isomorphic to a subloop of ��,��, it follows that ��,·� must be a C-loop. From 
Theorem (3.1), equation (5) holds � �, �, � � � and � � � ����. Furthermore, by Theorem (3.1) and Corollary (3.3), 
 ���� � %)AI, �A"I, $& and .��� � %)A)AB , �A"#�AB"# , $&  
are autotopisms of ��,·�, � � � � and � � � ����. Therefore by Theorem (3.1) and we have  
              �J��� � %�A"I, $, �A"I&, �K"#��� � %$, )A"I, )A"I&, .J"#��� � %�AB�A , $, �AB�A& and .K��� � %$, )A)AB , )A)AB& are 
autotopisms of ��,·�, � � � � and � � � ����. If these are combined we have 
              �J���.J"#��� � %�A"I, $, �A"I&%�AB�A , $, �AB�A& 
              �J���.J"#��� � %�A"#�AB , $, �A"#�AB&                               (12)                                              
And .K����K"#��� � %$, )A)AB , )A)AB&%$, )A"I, )A"I& 
              .K����K"#��� � %$, )AB)A"#, )AB)A"#&                                   (13) 
as autotopisms of ��,·�, � � � � and � � � ����. Now if we apply (12) and (13) to  1 · M and , · 1 respectively, we have 
              1�A"#�AB · M � �1 · M��A"#�AB  
 ��� · �"#�M � M����"#�AB 
 M�AB·AGH � M�A"#�AB 
and , · 1)AB)A"# � �, · 1�)AB)A"# 
 ,��� · �"#� � ,)AB)A"# 
              ,)AB·AGH � ,)AB)A"# 
And respectively we have 
              �AB·AGH � �A"#�AB                                                     (14) 
              )AB·AGH � )AB)A"#                                                   (15) � � � � and � � � ����. If we put equations (14) and (15) into equations (12) and (13) respectively, we have 
             �J���.J"#��� � %�AB·AGH , $, �AB·AGH& 
and       .K����K"#��� � %$, )AB·AGH , )AB·AGH& 
             � � � � and � � � ����. These therefore imply that �� · �"# � -J(�) and �� · �"# � -N���.   
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Consequently, �� · �"# � -���  since ��,·� is an inverse property loop. Hence � � ����, is left nuclear. 
Conversely, suppose ��,·� is a C-loop and each � � ���� is left nuclear. Then for each � � ���� and each � � � the element            �� · �"# � -K���, thus 
 �� · � � ���� · �"#���� 
 �� · � � ��� · �"#��� 
               � � � �. 
              ��AB � ��A�AB·AGH E �A"#�AB � �AB·AGH 
 � � � � and � � � ����. But for � � � � and � � � ����, we know that �� · �"# � -J���. Hence,  
              � � %�B·AGH , $, �AB·AGH& � %�A"#�AB , $, �A"#�AB& 

is  an autotopism of ��,·�, � � � � and � � ����. But again, � � %�AI , $, �AI & is an autotopism of ��,·�, � � � �. Therefore,  �� � %�A�AB , $, �A�AB&  
is an autotopism of ��,·�, � � � � and � � � ����. So also is ����J"# � %)AB)A, �AB"#�A"#, $&. Therefore of ��, � �, � � �, we have      �)AB)A · ��AB"#�A"# � �� 
if we put �@ � ��AB"#�A"#, in this we have 
 �)AB)A · �@ � � · �@�A�AB 
 C�� · ����D�@ � ���� · ��@� 
 � �, �, �@ � � and � � � ����. Replacing �@ by �, � �, �, � � � and � � ���� and we a central identity. Hence, ��,�� is          

a C-loop. 
Theorem 3.5 The set (��� of all left nuclear automorphism of a C-loop ��,·�, is a normal subgroup of the automorphism group of ��,·�. 
Proof. (��� O >, from the Theorem 3.4 it was shown that �PB·PGH � �P"#�PB � Q � � and � � � (��� (since for an inverse property loop �,  �PGH � �P"# � Q � ��. Then Q� · Q"# �-J��,·�, � Q � � and � � � (���. It follows then that ���, Q� � %�PB·PGH , $, �PB·PGH& � %�P"#�PB , $, �P"#�PB& � Q � � and for all � � �. Hence if �, � � (���, we have ���, Q����, Q�� � %�P"#�PB , $, �P"#�PB&%�PB"# �PBR , $, �PB"# �PBR& 

���, Q����, Q�� � %�P"#�PBR , $, �P"#�PBR&                             (16) 
is an autotopism of ��,·�, � Q � �. Therefore � � � � we have 1�P"#�PBR · � � �1 · ���P"#�PBR  
�Q�� · Q"#� · � � ��P"#�PBR 
��PBR·PGH � ��P"#�PBR 
 F �PBR·PGH � �PGH�PBR                                (17) 
Thus, (17) into (16) gives ���, Q����, Q�� � %�PBR·PGH , $, �PBR·PGH&                             (18) 
From equation (18), Q�� · Q"# � -J���, � Q � �, hence Q�� · Q"# � -, Q � � so also �� � (���,  since ��,·� is 
an inverse property loop. 
If � � (���,  then  ���, Q� is an autotopism of ��,·� � Q � �, and so is ���, Q�"#�"# � Q �  �, i.e. 
 ���, Q�"#�"# � %�PBGH"# �PBGH·B , $, �PBGH"# �BGH·B&"# 
� %�PBGH"# �P, $, �PBGH"# �P&"# 
� %�P"#�PBGH , $, �P"#�PB"# & � %��Q�"# · Q"#�, $, ��Q�"# · Q"#�& 
Hence it follows that �"# � (���. Thus (��� is a subgroup of the automorphism group of ��,·�. 
Let � � (���, then Q� · �"# � -J��,·�, � Q � and �Q� · Q"#��� � �Q� · Q"#�� · � � Q, �, � � �, if � is an automorphism of ��,·�, then we have :Q�� · �Q��"#=��� · ��� � :Q�� · �Q��"#=�� · �� � Q, �, � � �, and if we replace Q by Q�"# in the last expression, we have �Q�"#�� · Q"#���� · ��� � �Q�"#�� · Q"#��� · �� 
Thus, Q�"#�� · Q"# � -J��,·� and since � is an inverse property loop, the three nuclei coincide, then Q�"#�� ·Q"# � -��,·� for all Q � � and all automorphism � of ��,·�. Hence �"#�� � (��� for all � � (��� and all 
automorphism  � of ��,·�. So  (��� is indeed normal in the automorphism group of  ���� of ��,·�. 

2 Bryant-Schneider group 
Theorem 4.1 Let  ��,·� be a C-loop, an element  / of the Bryant-Schneider group of  �  is an automorphism of  � 
provided %/)1GH , /�2GH , /& 
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is an autotopism of  ��,·� if  3 and 4 are elements of the nucleus of  ��,·�. 
Proof: Let ��,·� be a C-loop then %)SGH )SGH , �S�S , $& 

is an autotopism for all  � � �. / � .(��,·� imply that %/)1GH , /�2GH , /& is also an autotopism for some  4, 3 �
��,·�. Hence %/)1GH , /�2GH , /&%)SGH )SGH , �S�S , $& � %/)1GH )SGH)SGH , /�2GH�S�S , /& is an autotopism of ��,·� 
for all � � � and some 4, 3 � �. Since ��,·� is an alternative property loop, then  )SGH )SGH � )�SGH�T � )�ST�GH 
and �S�S � �ST therefore %/)1GH )SGH)SGH , /�2GH�S�S , /& � %/)1GH )�ST�GH , /�2GH�ST , /&. If 4 � ��I�"# and 
3 � �I implies that3 � 4"# � �I. Then it follows that 3 and 4 are elements of -��,·� the nucleus of ��,·� since 
the square of every element � � � belongs to -��,·�. 

Theorem 4.2 Let ��,·� be a C-loop and let / � (��,·� (the symmetric group of �). Then / � .(��,·� if there is a unique � � +��,·� (the set pseudo-automorphisms of ��,·�) and a unique 3 � -��,·� such that / � �)2�� � /)2"#�. 
Proof: 

Let ��,·� be a C-loop then 
 � � %)AGH )AGH , �A�A, $& 
An autotopism of ��,·� for all � � �. . � %$, )AT , )AT& � %)AT , U)ATN, $& is also an autotopism for all � � �. Therefore by Bruck[4] 
.� � %)AT , U)ATN, $&%)AGH )AGH , �A�A , $& � %$, U)ATU�A�A , $& 
is an autotopism for all  � � �. / � .( ��,·� implies that  � � %/)2GH , /�1GH , /& is an autotopism for some  
3, 4 � � 
 �.� � %/)2GH , /�1GH , /&%$, U)ATU�A�A , $& � %/)2GH , /�1GHU)ATU�A�A , /&  
which implies that %�, /�1GHU)ATU�A�A , �)2& is autotopism of ��,·� for some 3, 4 � 0 and all � � �. Now if 
%�, /�1GHU)ATU�A�A , �)2& 
is an autotopism we have     �� · V� � �� · V��)2 for all �, V � � where � � /�1GHU)ATU�A�A. 
If � is set to be W in the last autotopism and noting that W� � W/)XY � W we get � � �)2 therefore %�, �)2 , �)2& 
is an autotopism of ��,·� for some 3 � � hence � is a pseudo-automorphism with companion 3.  / � �)2 implies 
that the elements of the Bryant-Schneider group of a C-loop ��,·� can be expressed in terms of pseudo-
automorphisms +��,·� and right translations of elements of the nucleus of ��,·�. To show uniqueness, let �#)AH � �I)AT  where  �#, �I � +��,·� and �#, �I � -��,·�. Then �I"#�# � )AT)AH"# which implies that 
W�I"#�# � W)AT)AH"#. Then we observe that W � �I�#"# and therefore �# � �I. It follows that  �# � �I. 
Remark 4.1 Robinson[12] considered the Bryant-Schneider group of a Bol loop and found out that they can be 
expressed as a product of pseudo-automorphisms and right translations. Theorem 2.2 above shows that the 
Bryant-Schneider group of a C-loop can also be expressed as in the same way. This further emphasis the fact that 
C-loops are analogous to Moufang loops since Moufang loops satisfies the Bol identities (right and left). 

Theorem 4.3 Let ��,·� be a C-loop . If �, � � 0,  let Z be a binary operation defined on the pseudo- 
automorphism+(��,·� by 
 � Z � � �)A�)S)�AR·S�GH  3�8 ,�� �� � +(��,·�. Let � � +(��,·� 5 0 and for 
��, �� � ��, �� � ��Z�, �� · �� 
Then ��,�� a group which is isomorphic to .(��,·�. 

Proof: 
Let �, � � +(��,·� and let �, � � -��,·� the nucleus of ��,·�. Then we know from the immediate preceding 
theorem that there exist unique [ � +(��,·� and unique � � -��,·� such that �)A�)S � [)\. Thus we observe 
that �Q� · ���� � Q[ · � 
For all Q � �. If we set Q � W we obtain �� · � � �. Therefore �)A�)S � [)�AR·S�GH and so 
[ � �)A�)S)�AR·S�GH � �Z� 
Hence  Z is a closed binary operation of  +(��,·�. It is also obvious now that ��, �� ] �)A provided � � -��,·� 
gives an isomorphism of ��,�� onto the .(��,·� of a C-loop. Hence the Bryant-Schneider group of a C-loop is a 
form generalized holomorph of the loop. 

Theorem 4.4   A finite C-loop is isomorphic to all its loop isotopes if ;��,·�: -��,·�<I � ;+(��,·�: ����< 
where ���� is the automorphism group of ��,·� 
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Proof: 

By Theorem 4.2 it is clear that |.(��,·�| � |� ` +(��,·�|. By Bryant & Schneider[2] ��,·� is isomorphic to all its loop 
isotopes if |�|I|���,·�| � |.(��,·�|a-K��,·�a 
But in a C-loop the nuclei coincide hence a-K��,·�a � |-��,·�|. Now by Theorem 4.2 |.(��,·�| � |+(��,·�||-��,·�| and 
therefore we have  |�|I|���,·�| � |+(��,·�||-��,·�|I 
which implies that 

b |�|
|-��,·�|c

I
� |+(��,·�|

|���,·�|  

which is the same as ;�: -��,·�<I � ;+(��,·�: ���,·�< 
As required. 
Corollary 4.1 let ��,·� be a C-loop then ;+(��,·� d ���,·�< O 4 

Proof: 
            The proof follows directly from lemma 2.9 of [20] and Theorem 4.4 
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