Journal of the Nigerian Association of Mathematical Physics
Volume 18 (May, 2011),pp 1 -6
© J. of NAMP
Quantum Statistical Operator and Classically Chaotic Hamiltonian System
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Abstract

In a Hamiltonian system von Neumann Statistical Operator is used to tease out
the quantum consequence of (classical) chaos engendered by the nonlinear coupling
of system to its environment. An example of coupled oscillators is given. Such an
operator, at fixed energy of system and at a given Poincare section isin a mixed state,
inevitably.

1.0 Introduction:
To every mechanical system there is a Hamiltonianction H (p, q) (classical) or operatdd(—il—;,q) (quantum)p € R",
q € R™, ne N. Classically the Hamilton-Jacobi equations

dp; _ _OH (1)
E = 6_p] (111)

j=12,..,n, degrees of freedorfdof) spell the dynamics or the timg) evolution of the system from classical state
(r(0), q(0)) to classical statép(t), q(t)) in phase spacép,q) c R?*. For any attributei(p, q) of the system, we also

have
dA—zn: 04 04; , OA9P}) (4 ot explicit in time ¢
A= oq, dt T ap; dt (A not explicit in time t)

which by eq.(1) means that )
dA_z":(aA OH A 6H>_{A 0 @
dt < dq;0p; 0p;0q;)

the Poisson BrackePB of A andH. In particulardH /dt = {H,H} = 0, i.e. H is constant.
Usually system has functionally independent constants of motion @.ktegrals of motion)

F.(p,q) = C, k=12,..,v ©)

For these,
O_dC_dF( ) = {F, H} 4
_dt k_dt kD, q) = k» ()

And since anyF;(p, q) can serve aH (p,q), 0 = %Fk = {F. F}. Thus they
F’s must be (are said to be) in involution

Fo.a,  F@a}=0 jk=12.v )
And the system is integrable (superintegrable)# n (v > n). If v <n, system is nointegrable or is nonintegrable; and
if H is nonlinear and has bounded phase sgate; «, |g| < oo, then system is (classically) chaotic. Thattstrajectory
(solution of eq. (1)) in phase space is sensitigkdgendent on initial conditions, and practicaliyi@alently has Lyapunov

exponenti, eR,. Usually as a Hamiltonian systemi(p, q) = constant E is necessarily a constant of motiee @bove,
dH

b {H,H} = 0). Hencel <v < n, and, as explained in Sectiond> 2.
Nonintegrable systems are difficult analyticallpvariably one resorts to numerical solutions (efnidn and Heiles (1964)).
A long time ago (1917) Einstein had remarked thalt® quantization prescription is for integrabléamiltonian) systems
only (cf Gutzuiller (1990) and Lanezos (1949)). mirly, under Schroedinger’s prescription,» —ih d/dq or q -
+ih d/dp, there is a great difficulty in dealing with namegrable systems, quantum-mechanically, even gounaky

because one does not have a complete set of obkgva
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1. Quantum Mechanical Analysis
In quantum theory (cf Merzbacher, 1970) systemagegned byH (— zh ,q) (i.e.p; = —ih d/dq;) as system evolves
from quantum stathp(q, 0) > to quantum statg)(q, t) >, spelt by the t|me -dependent Schroedinger Equation

Ill}(q. t) >=Hly(q,t) > (6)
in the pertinent Hilbert spad&f 3 |¢Y(q,t) >. Inthe dual space, we have
0
—iho <$(q,O1=<Y(q, OIHT =<y(q, OIH (6"

H being self-adjoint. Given any relevant attribdtgy, t) of the system, an observable, the expectatiorevaluA in state

[Y(q,t) >is

< A(q, t) >y=<y(q,)IA(g, DIY(q,t) > 7
Usually there exists a badig,,(¢)}_, of the pertinent Hilbert space with
< @r(@Dles(q) = &5 ®
so that
M
(g, t) >= Z Em(ONPm(q) >; cn(O) =< en(@lP(g,t) > (9)
m=1

in which case

<A@ >y= D ) GO < @IAG O10s@) > e(0)

=) GO®as© (10)
where c7
ars(t) =< o ()|A(q, Olos(q) > (11)
Let us define densitymatrix (M x M)
(Pp)sr = ¢ (®) " (6) = p” (12)
Then

< A(q,t) >p=< A>W= ZZp(”)ars(t) =Tr[pWa()]  (13)

Suppose system can be in any of several quantuasﬁnﬁ(”) (q,t) >}. Then< A >,, depends op andp,, is described as
p® | so that
<A>y=<A>W=Tr[pWa(t)] (14)

W _ W W
psf SH CTH

In a collection of such similar systems, fgtbe the fraction of them that are in statét)(q,t) >, or the probability that
system is in that state,

fiz0, qu-1 (15)
the statistical average of attribute/observaiye, t) |s given by

K A(g,t) »= Zf” <A>W= Zf# Tr[p™a(t)]
uw

u
= Tr[pa(t)]

p=> fup®, Z fupd (17)

u
Rhop is the (quantum), von Neumann statistical operator

where

2. Features of von Neumann Statistical Operator.
(i) p) = e " =< g (@™ (g, ) >< PP (q, Dl (9)] >
That is
N p(u) - |¢(u) >< l,l)(")l
Its adjoint
p(u)+ — |¢(u) >< ¢(u)| — p(u)
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That is,o™ is self-adjoint, and henge= ¥, f, p is self-adjoint too.

(i) Let 1, be an eigenvalue @f, i.e.p|A,>= A;| A,> in appropriate Hilbert space. Then
e = <A |p| N>
ke = <N lpTIne> =<nelpl Ae>= Ay (16)

That is, eigenvalue is real, as expected of a-ashliint operator. Furthermore,
A = <A lp| N> = <Ayl X fu P N>

= D fu <A >< P A

u
= Zf# <Ay hb(ll—) >< Ay hl}(ll) >*

u
n=0 fu |<Aklp®@ > 2 = 0. 17)
The eigenvalues are real and non-negative, and
ZkM=1/1k =Trp = Zufu Zr < @ l,lJ(”) >< llJ(”)|(pr >

= quz <Pyl pr >< @[ >.Zl<pr><l<prl =1
ZAka AUACES ny 1=1 (18)

k=0 u=

(i)  p®W=p® >< w(")l =0 =P >< wl
ol=0o =Y ><yPly ><y| =Y ><y| =0
Thus, withg idempotent,
oc(c—-01N=0 (19)
From eqs (17), (18), (19), we have the following:
o is called a purstate and has eigenvalues 1 aiitf — 1) zeros,1,0,0,0, ...,0. Thatis iff, = §,., thenp = p® is apure
state,o. Otherwise, the = qup(”) is a_mixedstateandp # p?, but of course its eigenvalues are real, non-negaind
sumto 1.

(iv) Dynamics

(a) The statistical operator has a time evqutioningJeqs (6) and(6'), we obtain

0
lhatp_ lh |1,l}><1,[;| lh|ll}> <1,b|
=HI¢ ><YP| - >< le Hp — pH

G
thorp = ~lp,HI (20)

(b) The statistical average has dynamics also.
ih% K A(g,t) »= ih% a(t)

. d ) 0A ] 0
= lhd— Tr(Ap) = ihTr [6_ ] +ih [A Ep]
=ih < <—>> — Tr|Alp, H]]
TrAlp,H] = Tr[ApH] Tr[AHp] = Tr[pHA — AHp]
Thus,

ih% K A(g,t) » = ih << ‘;—‘: >> +<< [4,H] >> (21)

(v) Entropy
Whenever a statistical model is used, there iopgptr
S/k =-Tr[plnp] (=0,if p is o (pure))
where k is Boltzmann constant. This one seeks to exrensiubject to relevant constraints suckkal >» = Tr[Hp] = U
Let us maximize
S*[pl = =Tr[plnp + pAH]
where 1 is Lagrange multiplier. We set the functionalidative
6S*/8p = 0, which means
lim,o{Tr[(p + en) In(p + en)] — Tr[pInp] + ATr[(p + en)H] — ATr[p H}/e = 0 (22)
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whereTrn =0 (i.e. p + en is a "nearby” statistical operator.) Thus bareful inspection of eq. (22), one requires

Trn +n(lnp + AH)] = Tr[(Inp + AH)n] (23)
to be zero for any that obeyd'r n = 0. Therefore, the rho that achieves this is giveiilbp + AH) = 0 or
p = Bexp(—AH) = exp(—AH)/Z (24)

where 1/B or Z = Tr[exp(—AH)] is a normalization factor. The Lagrange multipfieis (k8)~?! in usual cases, whete
is the kinetic temperature of the collection of #imilar systems. Each collection of systems Widle its own in-built
meaning ofd, but as it stands in eq. (24) it has dimensioimedrse energy.

3. Practical Aspect and Usefulness of Statistical Opator.
As an axiom, there is no isolated material bodygépx the Universe, of course). Every system hasn@ironment. Let the
system have HamiltoniaH (p,q) and its environme#t, (P, Q). The two are coupled, usually nonlinearly so tinagrall
Hamiltonian is

Ho(p,P,q,Q) = H.(P,Q) + H(p,q) + C(q,Q)
Since each has at least one degree of freedoroyérall degree of freedom is no less than twoz 2. This coupling term
C(q, Q) also makedi, nonintegrable. It is this coupling that makeslgsia so difficult unless one makes the approxiorati
or idealization that is very weak or nil. Note that the feature of fiotegrability is that the sharing of total enerfy=
Hy(p,P,q,Q) betweerH, andH is random, unpredictable and hence chaos.
Quantum mechanically, operat#i(p, q) operates on Hilbert spadé andH,(P,Q) onH,. The coupled system, with
HamiltonianH, operates on direct product spadg = H, ® H. The overall statistical operatog is not necessarily a
direct product,p, # p.®p, in general. Howevep is the partial trace oft, of p,,
p =Try,pp and p, =Trypy

[Think of p, as a joint probability density,(x,y) andp,, p as partial probability densitigs(y), f(x) respectively;
fe(Y) = ffo(x:}’)dx' f(X) = ffo(x:}’)dy' fo(x‘J’) * f(X) : fe(y)]
The expectation value of an observaldlgg, t) onH is given by the density matrpd#)

<A(g, ) >y=<yPlAlY >=Tr[Ap®],  p® =y ><y|.

But the presence off, makes pure density matrp{®) inadequate as it influences and makiésto be in several states
[p >.’s, so that instead of pupé®) we have mixeg. The statistical averaging

K A>»=Tr[Ap), p= Zf#p("),f# >0, Zf” =1
u

is an averaging over the influenceyf, the environment. This influence is nill in casehere in spite off, , p remains
pure orH, and H are uncoupled and therefore H isolated. In Bropses like the one that we shall use as an dgarfip
and H, are harmonic oscillators coupled together nontigea
We should also note the proposition (Ruelle 1969),
TrlpoInpy] = Tr[plnp] + Tr[p. Inp,].
Defining entropyS[p | = —kTr[pInp], we have
So <SS+ S,.

5. Quantum Statistical Analysis of Chaotic Hamiltoran : Nonlinearly Coupled Oscillators.

What is the quantum signature of a Hamiltonian esysivhich is classically chaotic? A system has mpgiete set of
observables, at least in principle if it is intdglea For instance, the well-known hydrogenic atehich has threen degrees
of freedom has three constants of motior(y = n)
Hlp > = Elyp >; L[ > = 1(£ + D[P >; Lalip >= mhlp >.
It is therefore integrable, like many a quantunmesyswe see in text books.
If v<n, andH is not explicit in timet then by eq. (24) statistical operator
p =p(H), H= constant, E
even though system is niotegrable.
We consider two identical linear oscillators, ea€lfrequencyw, nonlinearly coupled,
2Hy = pf + w?qf +p; + 0?qF + Cqiqs (25)
known to be classically chaotic, as we examinePiténcare Sectio’S{q; =0, p, =0}, C € R being the coupling
constant. OPS(q, =0, p; = 0),

A
p=Bexp(-AH) =B ) ep- @i +pi+e’ad)  (26)
p1>0
Let f(p,) be the fraction of systems that are in quantute stafined by(q, , p,), with ¥, . f(p,) =1 and

B f(p) exp(~2p}/2) = B,

Pi1zo0
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so that

p = B exp(—A(p; + w?*q3)/2) (25)

Let %p% = _Thz d?/dx?; %wzqﬁ = %wzx2
The observable
W = (—h?d?/dx? + w?x?)/2
has eigenfunctionfe,, (x)exp (—x?/2)} = {@,,(x)} where He,, (x) is Hermite polynomial of degres

He,,(x) = Z b.x"
r=0

and with eigenvalue@n + %)hw (cf Merzbacher, 1970).

One easily shows that
K p, »=Tr[—ihd/dx exp (—AW )]
=0=Kq, » (26)
by mutual orthogonality amorg,,, (x)}.
Furthermore,
U= W >»=Tr[Wexp—AW]/Tr{exp (—AW)}
N N

= D <on@Il Nen@ >/ ) <onll Hom>
m=0

m=0

where N is finite sincgq,| = |x| < c0. Thus

U= ; (m + %) R exp (—A (m + %) hw) /Z exp (—,1 (m + %) hw) @7

m

Define
S 1
Z= ;O exp (—/1 (m + E) hw)
= exp (—Ahw/2) - [1 — exp(—Ahw (N + 1))]/[1 — exp(—Ahw)]
Leta = Ahw.

Z=exp(—a/2):[1—exp (—(N + Da]/[1— exp(—a)] (28)
a d
U= —II%IHZ
= L~ [N+ Dexp(=(N + Da)]/[1 ~ exp(—=(N + Da)]
+exp(—a) /[1 — exp(—a)]}
=2 &= (N +1)/[exp((N + Da) — 1] + 1/[exp(a) — 1]}
= ho{; — (N +1)/[exp((N + Da) — 1] + [exp(a) — 1]} (29)
;Lilrgl U=(0-0+1)/A=2""1 (29"
This is as expected classically for a linear ostill, by the principle of partition of energy (assng A = (k6)™1, 9 being
the kinetic temperature)..
With p = exp (—AH)/Z, entropy is
& =Inp » = —Trplnp = Tr[(A1H) + InZ)p]
=Tr[(AH + InZ)exp (—AH)/Z]
=AU + InZ = S/k.

s (1 o T, @
P a{z —(N+ 1)[exp((N + 1)a) — 117 + [exp(a) — 1]71} + — >

+In[1 —exp (—(N + Da] — In[1 — exp(—a)]
=—(N + Dalexp((N + Da — 1]7* + afexp(a) — 1]
In[1 — exp(—(N + Da)] — In[1 — exp(—a)] (30)

S
li£r01E = —-14+14+In(N+1)=In(N+1), N=01,2,.. (309
as expected by principle of equiprobability of etat

In the foregoing the effect of coupliis not obvious. Let us tease out its effectbysidering Poincér section(q; > 0,
p1=0)
H = pi/2 +0%q3/2, 0* = (Cqi + 0?)
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p= Z exp(—AH) = TrH,p,

OnPgl(q;l =0, p; >0 we have
(=h?*/2m d?/dqi +0) Y(q1) = &p(q1), &=h’k?/2> 0.
(Note, g, =0 # d/dq, =0).
where the energy in the secoddf is E — e < E, E being the total energy of whole system. ®f(q; =0, p, =0 we
have
(—h?*/2 w? d?/dqf +0) p(p) = ep(p), &= h*y*w?/2> 0.
In this case,
p= ) exp(~A0’g}/2) exp (~AWy)
q120
where W, = d?/dx? + 0%/2(q)x?, 02 = (Cq? + w?).
In the final analysis, in the lim& - 0, we haveQ? - w?, and the same results as the foregoing.
6. Conclusion and Remarks
For the nonlinearly coupled oscillators
Hy = (pf + 0?q7)/2 + (pF + w*q3)/2 + Cqiq3/2
=H, +H+1/,Cqq3 = E
at Poincat section(q; =0, p;, > 0) or (g, >0, p; = 0) the von Neumann statistical operaprdepends on p; >
0 or g; > 0, which dependence depicts its mixedness and padlgtibe effect of the environmerti, on H. The features
of p are a glimpse of quantum effects in a (classiyalaotic Hamiltonian system.
The example used is quite simple but it embodiedtsic concepts, at least in a two-degree-of-ieeslystem; thagd is not
in a pure state even for fixed energy E andgiven Poincar section.
One of the postulates of quantum mechanics istteatommutatof of two observables and the Poisson Bracket
PB of their classical counterparts are related by
C = ih PB. But the supposition of quantum mechanics thatstem has a complete set of mutually commutirsgtables
{F;} which obey the commutators
[F;, ] = in{F,F,} 0, j,k=1,2,..,n
is false in a nonintegrable system. For sucle, lnes_incomplet&nowledge of its dynamical states and hence onst mu
employ statistical operator to convey the incomgaiess (Dicke and Wittke, 1960).

Appendix: H, is chaotic
We may show that
2Hy = (pf + w?q}) + (p; + *q5) + Cqiq3 ,C ER
is (classically) chaotic by numerically exhibitiitg behavior on PoincérSectiong; = 0, p; > 0 or on(q; >0, p; = 0).
Or by calculating its Lyapunov Exponeit, The potential part FH, is 2V(q;,q,) = 0?(q?+q2) + Cq?q2.
The  equilibrium points are given by aV/dq, =0dV/aq, =0, i.e. at P(0,0) and at
Q(—w?/C, —w?/C), (Solutions ofw? + Cq% = w? + Cq? = 0).
The Hessian oV at Q is

_ 0%V /dq10q, 0%V /dq,0q2
V= V” = =

(w2+Cq§ 2Cq% >
BZV/aqzach 62V/6q26q2

2Cq3 w? + Cq?

Q
The stability matrixA4 is

0 0 1 0
0 Ih_(0 0 0 1 — 2 — :
(_[7 0)_<0 0 0), r = 2w, [ =2X2 unit.

r 0 0 0
A has eigenvalues-iv2w, ++2w. The largest positive reali&w, which is the Lyapunov Exponeht. That is, the
separation of two nearby trajectories in timé(s) = §(0) exp(vV2w) (¢). 4, = limt_,oomz/‘s(o)I =V2w € R,
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