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Abstract 

 
In a Hamiltonian system von Neumann Statistical Operator is used to tease out 

the quantum consequence of (classical) chaos engendered  by the nonlinear coupling 
of system to its environment.  An example of coupled oscillators is given.  Such an 
operator, at fixed energy of system and at a given Poincar�́ section is in a mixed state, 
inevitably. 

 
 

1.0  Introduction: 
To every mechanical system there is a Hamiltonian function ���, �� (classical) or operator ��	 
��� , �� (quantum), � � ��, � � ��, n� �.  Classically the Hamilton-Jacobi equations �����  � 	 �����                                                                                                            �1�� 

�����  � �����                                                                                                                �1��� 

� � 1,2, … , �,  degrees of freedom (dof) spell the dynamics or the time ��� evolution of the system from classical state ���0�, ��0�� to classical state �����, ����� in phase space ��, �� � � �.  For any attribute !��, �� of the system, we also 
have ��� ! �  " # �!���

����� $ �!���
����� %�

�&'     (!  not explicit in time  �� 

which by eq.(1) means that ��� ! � " # �!���
����� 	 �!���

�����% ( )!, �*                                                     �2��
�&'  

the Poisson Bracket, +, of A and H.  In particular ��/�� �  )�, �* � 0,  i.e.  �  is constant. 
Usually system has . functionally independent constants of motion (a.k.a. integrals of motion) /0��, �� �  10,      2 � 1,2, … , .                                                           (3) 
For these, 0 �  ��� 10 � ��� /0��, �� � )/0, �*                                                               �4�      
And since any  /���, �� can serve as ���, ��, 0 � ��4 /0 � 5/0, /�6.   Thus the . /’s must be (are said to be) in involution 5/���, ��, /0��, ��6 � 0,   �, 2 � 1,2, … , .                                       �5�  
 And the system is integrable (superintegrable) if . � �   �. 9 ��.   If . : �, system is not integrable or is nonintegrable; and 
if � is nonlinear and has bounded phase space, |�| : ∞,   |�| : ∞,  then system is (classically) chaotic.  That is, its trajectory 
(solution of eq. (1)) in phase space is sensitively dependent on initial conditions, and practically equivalently has Lyapunov 
exponent =>?�@.   Usually as a Hamiltonian system, ���, �� � constant  E  is necessarily a constant of motion (see above, �A�4 �  )�, �* � 0�.  Hence 1 B . : �, and, as explained in Section 4, � C 2. 
Nonintegrable systems are difficult analytically.  Invariably one resorts to numerical solutions (cf Henon and Heiles (1964)). 
A long time ago (1917) Einstein had remarked that Bohr’s quantization prescription is for integrable (Hamiltonian) systems 
only (cf Gutzuiller (1990) and Lanezos (1949)).  Similarly, under Schroedinger’s prescription, � D 	�� �/�� or � D$�� �/��, there is a great difficulty in dealing with non-integrable systems, quantum-mechanically, even conceptually 
because one does not have a complete set of observables. 
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1. Quantum Mechanical Analysis 
In quantum theory (cf Merzbacher, 1970) system is governed by ��	�� �� , ��, (i.e. �� ( 	�� �/���)  as system evolves 

from quantum state |E��, 0� 9 to quantum state |E��, �� 9, spelt by the time-dependent Schroedinger Equation ����� |E��, �� 9 � �|E��, �� 9                                                                                �6� 

in the pertinent Hilbert space G H |E��, �� 9.   In the dual space, we have 	�� ��� : E��, ��|�: E��, ��|�@ �: E��, ��|�                                          �6I� � being self-adjoint.  Given any relevant attribute !��, �� of the system, an observable, the expectation value of  A  in state |E��, �� 9 is : !��, �� 9J(: E��, ��|!��, ��|E��, �� 9                                                    �7� 
Usually there exists a basis )LM���*M&'N   of the pertinent Hilbert space with                        : LO���|LP��� C QOP                                                                 �8� 
so that 

|E��, �� 9 �  " SM���|LM��� 9; SM��� (: LM���|E��, �� 9        �9�N
M&'  

in which case : !��, �� 9J� " " SOV��� : WO���|!��, ��|LP��� 9 SP���OP  

                                      � " " SOV���SP���XOP���                                       �10�    OP  

where                       XOP��� (: LO���|!��, ��|LP��� 9                                           �11� 
Let us define density  matrix �Y Z Y�                       �[J�PO ( SP�\���� SO�\�V��� ( [PO�\�                                              �12� 
Then : !��, �� 9J(: ! 9�\�� " " [PO�\�XOP��� � ]^_[�\�X���`        �13�OP  

Suppose system can be in any of several quantum states 5|E�\���, �� 96.  Then : ! 9J depends on b  and [J is described as [�\� , so that : ! 9J�: ! 9�\�� ]^_[�\�X���`                                                              �14� [PO�\� � SP�\� SO�\�V                                                 
In a collection of such similar systems, let c\ be the fraction of them that are in state |E�\���, �� 9, or the probability that 
system is in that state, 

                   c\ C 0, " c\ � 1                                                            �15�d
\&e  

the statistical average of attribute/observable !��, �� is given by f !��, �� g� " c\\ : ! 9�\�� " c\\ ]^_[�\�X���` 
� ]^h[X���i                             

where                                       [ � " c\\ [�\�, [PO � " c\[PO�\�                            �17�     \  

Rho [ is the (quantum), von Neumann statistical operator. 
 

2. Features of von Neumann Statistical Operator. 
(i)     [PO�\� � SP�\� SO�\�V �: LP���|E�\���, �� 9: E�\���, ��|LO���| 9  

That is [�\� � |E�\� 9: E�\�| 
Its adjoint [�\�@ � jE�\� 9: E�\�j � [�\� 
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  That is, [�\� is self-adjoint, and hence [ � ∑ c\\ [�\� is self-adjoint too. 

(ii)  Let =0 be an eigenvalue of [,  i.e. [|l09� =0| l09  in appropriate Hilbert space.  Then =0 � :l0 |[| l09  =0V � :l0 |[@|l09  �:l0|[| l09 �  =0                                                                         �16� 
That is, eigenvalue is real, as expected of a  self-adjoint operator.  Furthermore, =0 � :l0 |[| l09 � :l0|  ∑ c\\ [�\�| l09         �  " c\\ :l0 |E�\� 9: E�\�| l09  

     �  " c\\ :l0 |E�\� 9:  l0 |E�\� 9V 
       �  ∑ c\d\&e |:l0|E�\� 9 | C 0.                                                                                      �17� 
The eigenvalues are real and non-negative, and  
   ∑ =0 � ]^[ � ∑ c\\ ∑ : LO|ON0&' E�\� 9: E�\�|LO 9              � " c\   \ " : EO|O LO 9: LO|E�\� 9, "|LOmn|LO| � oO  

" =0
N

0&e " c\
d

\&e : E�\�|E�\� 9 � " c\\  1 � 1                                                             �18� 

(iii)  [�\� ( |E�\� 9: E�\�| ( p ( |E 9: E| p � pp � |E 9: E|E 9: E| � |E 9: E| � p                        
Thus, with p idempotent, p�p 	 o� � 0                                                                                                   �19� 
From eqs (17), (18), (19), we have the following: p is called a pure state, and has eigenvalues 1 and  �Y 	 1� zeros, 1, 0,0,0, … ,0.  That is if c\ �  Q\q, then [ �  [�q�  is a pure 
state, p.  Otherwise, the [ ( ∑ c\[�\�  is a mixed state and [ r [ , but of course its eigenvalues are real, non-negative and 
sum to 1. 

(iv) Dynamics 
(a)  The statistical operator has a time evolution.  Using eqs. �6� and �6I�, we obtain  �� ��� [ �  �� ��� |E 9: E| 	  �� sE 9 ��� : Es               � �|E 9: E| 	 |E 9: E|� � �[ 	 [� �� ��� [ �  	h[, �i                                                                                       �20� 

(b) The statistical average has dynamics also. 

        �� ��4 f !��, �� g � �� ��4  X���  
         � �� ���  ]^�![� �  ��]^ t�!�� [u $ �� t! ��� [u 

           � �� : : vwv4 9 9  	 ]^_!h[, �i`  
  ]^!h[, �i � ]^h![�i 	 ]^h!�[i � ]^h[�! 	 !�[i  
      Thus, 

            �� ��4 f !��, �� g � �� :: vwv4 99 $:: h!, �i 99                                                              �21� 

 
(v) Entropy 

Whenever a statistical model is used, there is entropy. x/2 ( 	]^h[ ln [i       �� 0, if  [  is p �pure�� 
where  2  is Boltzmann constant.  This one seeks to extremize, subject to relevant constraints such as f � g � ]^h�[i ( {.  
Let us maximize xVh[i �  	]^h[ ln [ $ [=�i 
where  = is Lagrange multiplier.  We set the functional derivative  QxV/Q[ � 0, which means  lim~�e)]^h�[ $ ��� ln�[ $ ���i 	 ]^h[ ln [i $ =]^h�[ $ ����i 	 =]^h[ �*/� � 0      (22) 
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where  ]^ � � 0  (i.e.  [ $ ��  is a ‘’nearby’’ statistical operator.)  Thus by careful inspection of eq. (22), one requires ]^h� $ ����[ $ =��i �  ]^h�ln [ $ =���i                                                �23� 
to be zero for any  � that obeys ]^ � � 0.  Therefore, the rho that achieves this is given by �ln [ $ =�� � 0 or  [ � , exp�	=�� ( exp�	=��/�                                                           �24� 
where  1/, or  � ( ]^hexp�	=��i is a normalization factor.  The Lagrange multiplier =  is �2���' in usual cases, where � 
is the kinetic temperature of the collection of the similar systems.  Each collection of systems will have its own in-built 
meaning of =,  but as it stands in eq. (24) it has dimension of inverse energy. 

3. Practical Aspect and Usefulness of Statistical Operator. 
As an axiom, there is no isolated material body (except the Universe, of course).  Every system has an environment.  Let the 
system have Hamiltonian ���, �� and its environment���+, ��.  The two are coupled, usually nonlinearly so that overall 
Hamiltonian is �e��, +, �, �� �  ���+, �� $ ���, �� $ 1��, �� 
Since each has at least one degree of freedom, the overall degree of freedom is no less than two,  � C 2.   This coupling term 1��, �� also makes �e nonintegrable.  It is this coupling that makes analysis so difficult unless one makes the approximation 
or idealization that 1 is very weak or nil.  Note that the feature of non-integrability is that the sharing of total energy � ��e��, +, �, �� between ��   and �  is random, unpredictable and hence chaos. 
Quantum mechanically, operator ���, �� operates on Hilbert space G and ���+, �� on G� .    The coupled system, with 
Hamiltonian �e operates on direct product space Ge  ( G�  � G.    The overall statistical operator [e  is not necessarily a 
direct product,  [e r [��[, in general.  However, [ is the partial trace on G� of [e, [ � ] Ĝ�[e     and    [� � ] Ĝ[e 
      [Think of  [e as a joint probability density  ce��, ��  and [�, [  as partial probability densities c����, c���  respectively;  c���� �  � ce��, ����,   c��� �  � ce��, ����,   ce��, �� r c��� ·  c����i. 
The expectation value of an observable  !��, �� on G  is given by the density matrix [�\�  : !��, �� 9J( : E|!|E 9 � ]^_![�\�`, [�\�  ( |E 9: E|. 
But the presence of  �� makes pure density matrix [�\�  inadequate as it influences and makes  �  to be in several states |E 9V’s,  so that instead of pure [�\�  we have mixed [.    The statistical averaging f ! g ( ]^h![i, [ ( " c\[�\�, c\ C 0, " c\ � 1     \  

is an averaging over the influence of ��,  the environment.  This influence is nill in cases where in spite of ��  , [  remains 
pure or �� and  �  are uncoupled and therefore H  isolated.  In simple cases like the one that we shall use as an example,  �  
and  �� are harmonic oscillators coupled together nonlinearly. 
 We should also note the proposition (Ruelle 1969), ]^h[e ln [ei  C ]^h[ ln [i $ ]^h[� ln [�i. 
Defining entropy  xh[ i (  	2]^h[ ln [i,  we have xe B x $ x� . 
 
5. Quantum Statistical Analysis of Chaotic Hamiltonian : Nonlinearly Coupled  Oscillators. 
 
What is the quantum signature of a Hamiltonian system which is classically chaotic?  A system has a complete set of 
observables, at least in principle if it is integrable.  For instance, the well-known hydrogenic atom which has three  �  degrees 
of freedom has three . constants of motion, �. � ��  �|E 9 � �|E 9; � |E 9 �  ��ℓ $ 1�� |E 9;  ��|E 9 �  �ℓ�|E 9. 
It is therefore integrable, like many a quantum system we see in text books. 
If  . : �,  and  �  is not explicit in time  � then by eq. (24) statistical operator [ � [���,   � �  constant, � 
even though system is not integrable. 
 We consider two identical linear oscillators, each of frequency �, nonlinearly coupled, 2�e �  �' $ � �' $ �  $ � �  $ 1�' �                                              �25� 
known to be classically chaotic, as we examine its Poincare Section +x)�' � 0, �' C 0*,   1 � �  being the coupling 
constant.  On +x��' � 0, �' C 0�, [ � ,I exp�	= �� � ,� " ��� 	 =2 ��' $ �  $ � �  ��            �26���me  

Let c��'� be the fraction of systems that are in quantum state defined by ��  , � �,  with ∑ c��'� � 1����   and ,I " c��'� exp�	=�' /2� � ,,����
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so that                                     [ � , ����	=��  $ � �  �/2�                                  �25’� 
 

Let     
' �  � ���

  � /�� ;  ' � �  ( ' � �  

The observable � � �	� � /�� $ � � �/2 
has eigenfunctions )��M���exp �	� /2�* ( )LM���* where  ��M��� is Hermite polynomial of degree  �   

��M��� ( "  O�OM
O&e  

and  with eigenvalues �� $ ' ��� (cf Merzbacher, 1970). 

One easily shows that f � g � ]^h	�� �/�� exp �	=� �i                                                         � 0 � f � g                                                        �26� 
by  mutual orthogonality among )LM���*. 
Furthermore, { ( f � g � ]^h� exp 	=�i/]^)exp �	=��* 

�  " : LM���|h         i|LM��� 9/ " : LM|)     *|LM 9d
M&e

d
M&e  

where  ¡  is finite since |� | ( |�| : ∞.   Thus { � " ¢� $ 12£M �� exp ¢	= ¢� $ 12£ ��£ / " exp ¢	= ¢� $ 12£ ��£        �27�¤  

Define   

� �  " ��� ¢	= ¢� $ 12£ ��£                                                                 d
M&e  

� exp �	=��/2� · h1 	 exp¥	=���¡ $ 1�¦i/h1 	 exp�	=���i 
Let § ( =��. � � exp�	§/2� · h1 	 exp �	�¡ $ 1�§i/h1 	 exp�	§�i                     �28�           { �  	 §=  ��§ ln � 

                �  ©̈  )' 	 h�¡ $ 1� exp�	�¡ $ 1�§�i/h1 	 exp�	�¡ $ 1�§�i   
                 $ exp�	§� /h1 	 exp�	§�i* 
               � ©̈  )' 	 �¡ $ 1�/hexp¥�¡ $ 1�§¦ 	 1i $ 1/hexp�§� 	 1i*                  � ��)' 	 �¡ $ 1�/hexp¥�¡ $ 1�§¦ 	 1i $ hexp�§� 	 1i�'*                     (29)      lim��e { � �0 	 0 $ 1�/= � =�'                                                                                            �29��  
This is as expected classically for a linear oscillator, by the principle of partition of energy (assuming = � �2���', ª  being 
the kinetic temperature).. 
With [ ( exp �	=��/�,  entropy is f 	��[ g �  	]^[��[ � ]^h�=�� $ ����[i                      � ]^h�=� $ ����exp �	=��/�i                       � ={ $ ��� ( x/2.               x2 � § «12 	 �¡ $ 1�hexp¥�¡ $ 1�§¦ 	 1i�' $ hexp�§� 	 1¬i�'* $ 	 §2¬ $ln h1 	 exp �	�¡ $ 1�§i 	 lnh1 	 exp�	§�i      � 	�¡ $ 1�§hexp��¡ $ 1�§ 	 1i�' $ §hexp�§� 	 1i�' 
                           lnh1 	 exp�	�¡ $ 1�§�i 	 lnh1 	 ����	§�i                                                    �30� lim¨�e

x2 �  	1 $ 1 $ ln�¡ $ 1� � ln�¡ $ 1� ,          ¡ � 0, 1, 2, …                    �30I� 

as expected by principle of equiprobability of states. 
 
In the foregoing the effect of coupling 1 is not obvious.    Let us tease out its effect by considering Poincar�́  section ��' 9 0,�' � 0� � �  �  /2 $ Ω �  /2, Ω (  �Cq' $ ω �  
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On +x��' � 0, �' 9 0  we have �	� /2�  � /��' $ 0� E��'� �  �E��'�,       � � � 2 /2 9  0. 
(Note,  �' � 0 ± �/��'  � 0�. 
where the energy in the second �²c is � 	 � B �,   � being the total energy of whole system.  On  +x��' C 0, �' � 0  we 
have �	� /2 �   � /��' $ 0� W��� �  �W���,      � � � ³ � /2 9  0. 
In this case, [ � " exp �	=� �' /2� ��� �	=� � �´e  

where  � � ' � /�� $ Ω /2��'�� ,   Ω � �1�' $ � �. 
In the final analysis, in the limit 1 D 0,  we have Ω D µ ,  and the same results as the foregoing. 
6.     Conclusion and Remarks 
For the nonlinearly coupled oscillators �e � ��' $ � �' �/2 $ ��  $ � �  �/2  $ 1�' �  /2 ( �� $ � $ 1 2¶ 1�' �  � � 
at Poincaré section ��' � 0, �' 9 0�  or  ��' 9 0, �' � 0� the von Neumann statistical operator [ depends on   �' 90  or  �' 9 0,   which dependence depicts its mixedness and practically the effect of the environment  �� on  �.   The features 
of [ are a glimpse of quantum effects in a (classically) chaotic Hamiltonian system. 
The example used is quite simple but it embodies the basic concepts, at least in a two-degree-of-freedom system; that [ is not 
in a pure state even for  fixed energy  E  and at a given Poincaré section. 
 One of the postulates of quantum mechanics is that the commutator 1 of two observables and the Poisson Bracket +, of their classical counterparts are related by  1 � �� +,.   But the supposition of quantum mechanics that a system has a complete set of mutually commuting observables 5/·�6  which obey the commutators _/·�,  /·0` � ��)/̧ , /0*  0,    �, 2 � 1, 2, … , � 
is  false in a nonintegrable system.   For such, one has incomplete knowledge of its dynamical states and hence one must 
employ statistical operator to convey the incompleteness (Dicke and Wittke, 1960). 
 
Appendix:  ¹º  is chaotic 
We may show that 2�e  ( ��' $ � �' � $  ��  $ � �  � $  1�' �   , 1 � � 
is (classically) chaotic by numerically exhibiting its behavior on Poincaré  Section �' � 0, �' 9 0  or  on  ��' 9 0, �' � 0�.     
Or by calculating its Lyapunov Exponent, =>.  The potential part of 2�e   is  2»��', � �  (  � ��' $�  � $ 1�' �  . 
The equilibrium points are given by  �»/��'  � �»/�� � 0,  i.e. at +�0,0� and at ��	� /1,   	 � /1�,  (Solutions of  � $ 1�  �  � $ 1�' � 0�. 
The Hessian of  »  at  �  is 

»¼ (  »
� ( ¬½� »/��'��' � »/��'��  
� »/�� ��' � »/�� �� ¾¿

À
� ½� $ 1�  21�  

21�  � $ 1�' ¾       
The stability matrix  !  is 

Á 0 o	»¼ 0Â � Ã0  0  0 00 ^^ 0     1 00 10 00 0 Ä  ,        ^ (  2� ,    o � 2 Z 2   unit. 
!  has eigenvalues  Å�√2�,   Å √2�.   The largest positive real is √2�,  which is the Lyapunov Exponent => .    That is,  the 

separation of two nearby trajectories in time is Q��� � Q�0� exp¥√2�¦ ���.  => �  lim4D∞ ÇÈ |É�4�/É�e�|4 � √2�  �  �@ 
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