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Abstract 
 

In this paper the generalization of the classical mode orthogonality and 
normalization relationships known for undamped systems to non – classical 
and non – viscously damped systems were established and investigated. 
Classical mode orthogonality relationships known for undamped systems were 
generalized to non – viscously damped systems. It was shown that there exists 
unique relationship which relates the system matrices to the natural 
frequencies and modes of non – viscously damped systems. These 
relationships, in return, enable us to reconstruct the system matrices from full 
set of modal analysis. 

The non – viscously damping model is such that the damping forces 
depends on the past history of motion via convolution integrals over some 
kernel functions. Classical modal analysis is extended to deal with general non 
– viscously damped of multiple degree- of-  freedom (MDOF) linear dynamic 
systems. The concept (complex) of non – viscous mode was introduced and 
further shown that the system response can be obtained exactly in terms of 
these modes. 
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1.0 INTRODUCTION 

 
In �1�, the eigenvalues, eigenvectors and transfer functions associated with multiple-degree-of-freedom non – 
viscously damped systems have been discussed. A method was outlined to obtain the eigenvectors and dynamic 
response of the system. Eventhough the method is analogous to classical modal analysis, unlike the classical 
mode, very little is known about qualitative properties of the modes of non – viscously damped systems. The 
objective of this paper is to develop some basic relationships which satisfied the eigensolutions and the system 
matrices of �2.3�. Specifically, we  have focused our attention to the normalization and orthogonality 
relationship of the eigenvectors. 
 

2.0 BASIC CONCEPTS OF EIGENVALUES AND EIGENVECTORS 
 
Modal analysis is the most popular and efficient method for solving engineering dynamic problems.The concept 
of modal analysis, as shown in �1� was originated from the linear dynamics of undamped systems. In �2�, the 
undamped modes or classical normal modes satisfy an orthogonality relationship over the mass and stiffness 
matrices and uncouple the equation of motion, i.e., if 	 
 ��� is the modal matrix then 	��	 and 	��	 are 
both diagonal matrices. This significantly simplifies the dynamic analysis because complex multiple-degree-of-
freedom system can be treated as a collection of SDOF oscillator. 
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Real-life systems are however, not undamped, but possess some kind of energy dissipation mechanism or 
damping. In order to apply modal analysis of undamped systems to damped systems, it is common to assume 
the proportional damping, a special case (see �3� for examples) of viscous damping. The proportional damping 
model expresses the damping matrix as a linear combination of the mass and stiffness matrices, that is 

 
� � ��� � ���                                                                       �2.1� 

 
where �� , �� are real scalars. 
 
 The equations of motion of free vibration of a viscous damping system �1� can be expressed by 

��� ��� � ��� ��� � ����� � 0                                                         �2.2� 

In this case the equation of motion are characterized by three real symmetric matrices which brings additional 
complication compared to the undamped systems where the equations of motion are characterized by two matrices. 
We require a non – zero matrix 	 
 ��� such that it simultaneously diagonalizes �, � ��  � under a congruence 
transformation. 
The concept of proportional damping was extended to non – viscously damped systems as in �1� and the conditions 
for existence of proportional damping in non – viscously damped systems were discussed. Thus, in general, non – 
viscously damped systems are non – proportionally damped. Adhikari �1� analyze non – viscously damped MDOF 
systems with non – proportional damping. We rewrite the equation of motion of force vibration of an N- degree-of-
freedom linear system with non – viscous damping as 
                                         

��� ��� � ! "�� # $�%
& �� �$� $ � ����� � '���                                                 �2.3� 

The initial conditions associated with the above equation are 
 

         ��0� � �( 
 �� and   �� �0� � �(� 
 ��                                                          �2.4� 
Considering the free vibration, that is '��� � �( � �(� � 0, and taking the Laplace transformation of the equation of 
motion �2.3�, one has 

*��� + � *,�*��+ � ��� � 0                                   �2.5�  

Here  �+�*� � .������  
 / �, ,�*� � .�"���� 
 /00 and .�•� denotes the Laplace transform. In the context of 
structural dynamics, * � 23, where 2 � √#1 and  3 
 �5 denotes frequency. It is assumed that: 1) �67892*�* and 
2) all the eigenvalues of �67� are distinct and positive. Because "��� is a real function, ,�*� is also a real function 
of the parameters. For the linear viscoelastic case it can be shown that (see  �4� ), in general, the elements of ,�*� 
can be represented as 

:;<�*� � =>?�@�
A>?�@�                                                                                   �2.6� 

 
where C;<�*� and D;<�*� are finite – order polynomials in *. Here, we do not assume any specific functional form of 
 :;<�*�  but assume that E:;<�*�E F ∞ when * G ∞. Thus in turn implies that the elements of ,�*� are at the most of 

order 
�
@  in * or constant, as in the case of viscous damping. The eigenvalues, *;; associated with equation �2.5� are 

roots of the characteristic equation 
     8��*�� � *,�*� � �� � 0                �2.7� 

 
If the element of :�*� have simple forms, for example – as in equation �2.6� then the characteristic equation 
becomes a polynomial equation of finite order. However, for practical purposes as in �8� the Taylor expansion of 
:�*� can be truncated to a finite series to make the characteristic equation a polynomial equation of finite order. 
Suppose the order of the characteristic polynomial is J. In general J K 2L, that is J � 2L � M; M O 0. Thus, 
although the system has L degree-of-freedom, the number of eigenvalues is more than 2L. This is a major 
difference between the non-viscously damped systems where the number of eigenvalues is exactly 2L, including 
any multiplicities. It is assumed all J   eigenvalues are distinct. 
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For convenience the eigenvalues are as 
 

*�, *�, … , *Q� , *��5�, … , *R                                                                     �2.8� 
 
where �•�Q denotes complex conjugation. The eigenvalue problem associated with equation �2.3� can be defined 
from �2.5� as 

ST*;UV; � 0,     WXY Z � 1, … , J.                                                           �2.9�    
 
where    

 
 

 
 ST*;U �  *;�� � *;,T*;U � �                          �2.10� 

 
is the dynamic stiffness matrix corresponding to the Z # �\ eigenvalue and ]; is the Z # �\ eigenvectors. Here �•�^ 
denotes the matrix transpose. 
 
3.0 NATURE OF THE EIGENSOLUTIONS 

 

The eigenvalue problem associated with equation �2.3� can be defined as 
_*;�� � *;,T*;U � �`V; � 0   or   ST*;UV; � 0, WXY �aa b � 1, … , J      �3.1� 

   
where the dynamic stiffness matrix 
             S�*� � *�� � *,�*� � �    c  /��                   �3.2� 
 
Here V; is the Z # �\ eigenvector and *; is the Z # �\ eigenvalue. In general the number of eigenvalues, J � 2L �
M;   M O 0. It is assumed that all J eigenvalues are distinct. We consider the damping to be ‘non-proportional’, that 
is, the mass and stiffness matrices as well as the matrix of the kernel function cannot be simultaneously diagonalized 
by any linear transformation (see  numerical  examples  in  �1� ). It is assumed that E:;<�*� F ∞E when * G ∞. This 

in turn implies that the elements of ,�*� are at the most of order 
�
@  in  * or constant, as in the case of viscous 

damping. Now, we construct the diagonal matrix containing the eigenvalues as 
d �  2�e�*�, *�, … , *R�   
   /RR                                                                �3.3� 

 
and the matrix containing the eigenvectors (the modal matrix) as 

f � �V�, V�, … , VR�   
  /�R                                                                     �3.4� 
 
4.0 NORMALIZATION  OF  THE  EIGENVECTORS 

 
We now considered the normalization relationship of eigenvectors  as  in  �4�. Pre-multiplying equation �3.1� by V<̂, 
applying equation �3.1� for b # �\ the set and post-multiplying by V; and subtracting one from the other we obtain 
 

V<̂_T*g� # *<�U� � *;,T*;U # *<,�*<�`V; � 0                                                      �4.1� 
 
Since *; and *< are distinct for different  Z and  b  are,  the  above  equation  can  be  divided  by  T*; # *<U  to  
obtain 
 

V<̂ hT*; � *<U� � ij,T@>U 6 @?,�@?�
@>6@?

k V; � 0,   WXY �aa Z, b;   Z l b                             �4.2� 

 
This  equation  may  be  regarded  as  the  orthogonality  relationship  of  the  eigenvectors. It  is  easy  to verify  
that,  in  the  undamped  limit  equation  �4.2�  degenerates  to  the  familiar  mass  orthogonality relationship  of  the  
undamped  eigenvectors.  However,  this  orthogonality  relationship  is  not  very useful  because  it  is  expressed  
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in  terms  of  natural  frequencies.  A  frequency-independent  orthogonality  relationship  of  the  eigenvector  is  
derived  later  in  this  paper.  Assuming  m@ � *; # *<,  we  rewrite  �4.2�  as 
 

V<̂ n�m@ � 2*<�� � �@?5op�,�@?5op�6@?,�@?�
op

q Vg � 0                                                 �4.3� 

 
Consider  the  case  when  *; G *<,  that  is,  m@ G 0.  For  this  limiting  case,  equation  �4.3�  reads 
 

V<̂ h2*<� � rs�@,�@��
s@ t@?

k V< � u<                                                               �4.4� 

 
or  V<̂�2*<� � ,�*<� � *<,′�dv��V< � u<,   WXY �aa b �  1, … , J                        �4.5� 

 
 

 
for  some  non-zero  u<c /.  Equation  �4.5�  is the normalization  relationship  for  the  eigenvectors  of  the  non-
viscously  damped  system  �2.3�.  From  the  expression  of  the  dynamic  stiffness  matrix  in  �3.2�,  the  
normalization  condition  in  equation  �4.5�  can  be  expressed  as 

Vŵ S′�*<�V< � u<, WXY �aa  b � 1, … , J                                         �4.6� 
 
Equation  �4.5�  and  �4.6�,  can  be  regarded  as  the  generalization  of  the  mass  normalization  relationship  used  
in  structural  dynamics  (see  �6�, �7�  ��   �8��.  In  the  undamped  limit  when  ,�*�  is  a  null  matrix,  equation  
�4.5�  reduces  to  the  familiar  mass  normalization  relationship  for  the  undamped  eigenvectors.  For  viscously  
damped  system  (see  section  7.0  for  details),  relationship  analogous  to  �4.5�  was  obtained  using  state-space  
approach  by  �5�  and  using  second  order  equation  of  motion  by  �7�  and  �8�.  We  define  the  normalization  
matrix,  x,  as  
  

x �  2�e�u�, u�, … , uR� 
 /RR                                                             �4.7� 
 
Numerical  value  of  u<  can  be  selected  in  various  ways: 

  Choose    that  is .  This  reduces  to    when  the  damping  
is  zero.  This  is  consistent  with  the  unity  modal  mass  convention,  often  used  in  experimental  modal  
analysis  and  FEM. 

  Choose    that  is, .  Theoretical  analysis  becomes  easiest  with  this  

normalization.  However,  as  pointed  out  by    and    in  the  context  of  viscously  damped  systems,  
this  normalization is  inconsistent  with  undamped  or  classically  damped  modal  theories. 
 
5.0 ORTHOGONALITY  OF  THE  EIGENVECTORS 
 
Equation    is  the  orthogonality  relationship  of  the  eigenvector  and  is  not  very  useful  because  it  is  
expressed  in  terms  of  the  eigenvalues  system.  In  this  section,  we  developed  an  orthogonality  relationship  
that  is  independent  of  the  eigenvalues.  Expressions  equivalent  to  the  orthogonality  relationship  of  undamped  
eigenvectors  with  respect  to  mass  and  stiffness  matrices  are  also  established.  We  derived  these  results  by  
first  recalling  the  expression  of  the  transfer  function  matrix. 
The  transfer  function  (matrix)  of  a  system  completely  defines  its  input-output  relationship  in  steady-state.  
For  any  linear  system,  if  the  force  function  is  harmonic,  that is    with    and  

amplitude  vector  ,  the  steady-state  response  will  also  be  harmonic  at frequency  .  Now,  we  

find  a  solution  of  the  form  ,  where    is  the  response  vector  in  the  frequency  

domain.  Substituting    and    in  equation    yields 
 

      or                                                     

Here  the  dynamic  stiffness  matrix 
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From  equation    the  response  vector  can  be  obtained  as 

                                                                                

where 

                                                                              

is  the  transfer  function  matrix.  From  this  equation,  it  is  implies  that 

                                                                                             

 
 
 

 The  poles of    denoted  by    are  the  eigenvalues  system.  Each  pole  is a  simple  pole  because  it  is  

assumed  that  all  the    eigenvalues  are  distinct.  From  the  residue  theorem  (  see  ),  it  is  known  that  
any  complex  function  can  be  expressed  in  terms  of  the  poles  and  residues,  that  is  the  transfer  function  
now  has  the  form 

                                                                                            

Here,  we  have 
                                                

is  the  residue  of  the  transfer  function  matrix  at  the  pole  .  It  may  be  noted  that  equation    is  

equivalent  to  expressing  the  right - hand  side  of  equation    in  the  partial-fraction  form.  Here  we  try  to  
obtain  the  residues,  that  is  the  coefficients  in  the  partial-fraction  form,  in  terms  of  the  systems  
eigenvectors. 
In  the  pole-residue  form  the  inverse  of  the  dynamic  stiffness  matrix  (transfer  function  matrix)  can be  
expressed  as 

                                                                   

Here ,  the  residue  of    at  the  pole    is  obtained  by  using  the  normalizing  conditions  and  

l’Hospital  rule  (see  )  as 

                                                                                 

Now  using  equations    and    one  finally  obtained  the  residue  as 

                                                                                                      

THEOREM 5.1  The  modal  matrix  of  a  non-viscously  damped  system,  ,  satisfy  the  orthogonality  

relationship    

Proof.  From  equation    and    one  obtains                                                                                            

                                                                           

Multiplying  both  sides  of  the  above  equation  by    and  taking  limit  as    we  obtain 
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It  is  easier  to  observe  that  the  order  of  the  element  of    is  at  most    in  .  Since  the  

order  of  the  determinant,    is  ,  after  taking  the  limit  every  element  of  the  left-hand  side  of  

equation    reduces  to  zero.  Thus,  in  the  limit,  the  left-hand  side  of  equation    approaches  to  an  

  null  matrix.  Finally,  writing  equation    in  the  matrix  form  we  obtained 

                                                                                     

and  the  theorem  is  proved. 
THEOREM 5.2  The  modal  matrix  of  a  non-viscously  damped  system, ,  satisfy  the  relationship

. 

Proof.  First  we  considered  the  function    and  using  the  residue  theorem  one  obtains  

                                                                         

Here  the  residues    can  be  obtained  as 

                                                   

Using  the  expression  of  the  dynamic  stiffness  matrix  in  equation    we  can  deduce 

 

                                                 

Taking  the  inverse  of  the  above  equation  results 

                                                                               

Now  multiplying  equation    by    and  taking  the  limit  as    we  obtain 

                                

Putting  the  right-hand  side  of  the  above  equation  in  matrix  form  and  equating  it  with    results 

                                                                                                                         

and  the  theorem  is  proved. 

REMARK :  Since  yyyy  and  S  are  diagonal  matrices,  they  commute  in  product.  For  this  reason  the  above  
result  can  also  be  expressed  as . 

By   considering  the  normalization  matrix  y  as  the  identity  matrix.  It  might  be  thought  that  by  taking  the  
inverse  of  equation    and  rearranging  the  conventional  mass-orthogonality  relationship 

                                                                               

could  be  obtained.  We  now  emphasized  that  the  representation  of  equation    in  the  form  of  equation  

  is  not  always  possible.  To  show  this,  we  premultiply  equation    by    to  obtain 
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Due  to  theorem 5.1,  the  left-hand  side  of  equation    is  a  null  matrix,  while  its  right-hand  side  is  not.  

Thus,    cannot  be  a  valid  equation.  However,  for  a  special  case,  when  the  system  is  undamped,  the  

modal  matrix    can  be  expressed  by  a  square  matrix  and  equation    can  be  represented  by  the  

classical  mass-orthogonality  relationship  in  .  Thus,  theorem  5.2  provide  the  results  equivalent  to  the  
classical  mass-orthogonality  relationship  for  general  cases. 

Like  the  mass-orthogonality  relationship  of  the  eigenvectors,  the  orthogonality  relationship  with  respect  to  
the  stiffness  mass  can  also  be  obtained.  Assuming  that   exists  we  have  the  following  results: 

THEOREM 5.3  The  modal  matrix  of  a  non-viscously  damped  system,  ,  satisfy  the  relationship     

. 

Proof.  Using  the  expression  of  the  dynamic  stiffness  matrix  in  equation    we  can  easily  deduce 

                                                                                              

Taking  the  inverse  of  the  above  equation  results 
                                                              
                                                                                              

From  the  equations     and    one  obtains 

                                                                               

Taking  the  limit  as    in  equation    we  obtain 

                                                                    

Now,  putting  the  right-hand  side  of  the  preceding  equation  in  the  matrix  form  and  equating  it  with    
results 

111 −−− −= KSSZ Tθ                                                                                   

and  the  theorem  is  proved. 

6.0 EIGENSOLUTIONS  AND  DAMPING  RELATIONSHIP 
 

Some  direct  relationships  have  been  established between  the  mass  and  stiffness  matrices  and  eigensolutions  
in  the  last  section.  In  this  section,  the  relationships  between  the  damping  matrix  and  eigensolutions  are  
established.  However,  a  major  difficulty  in  this  regards  is  that,  unlike  the  mass  and  stiffness  matrices,  the  

damping  matrix, ( )sG ,  is  a  function  of  s .  To  simplify  the  problem  we  have  considered  two  limiting  

cases, (a)  when  ∞→s  (b) when  0→s .  Suppose 

( ) NN
s RGsG ×

∞∞→ ∈=lim                                                                      

and 

( ) NN
s RGsG ×
→ ∈= 00lim                                                                         



Corresponding author: E-mail;  linkfasky@yahoo.com ; darlingtondee@yahoo.com,  1Tel. +2348030686454 
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 457 – 468  

On Some Generalization of the Eigenvectors Properties     Fatigun  and  David      

where  ∞<∞ 0, GG . 

6.1 RELATIONSHIP  IN  TERMS  OF   1−M  
Putting  equation    into matrix  form  one  obtains 

( ) ( ) T
m ZSsIZsD 111 −−− −= θ                                                                

The  proceding  equation  can  be  expressed  as 

( ) ( ) ( ) ( ) ( ) ...
4

1

3

1

3

111 312111
1

11 ++++=






 −= −−−−−
−

−− T

S

T

S

T

S

TT
m ZSZZSZSZZSZZ

s
z

s

S
IZ

s
sD θθθθθ

                                                                                         

Now,  we  rewrite  the  expression  of  the  dynamic  stiffness  matrix  in  equation    as 

( ) ( ) 














 ++=
−

s

K
sG

s

M
IMssD N

1
2

                                           

Taking  the  inverse  of  the  preceding  equation  and  expanding  the  right-hand  side  one  obtains 

( ) ( ) ( )
2

1211
1 ...

s

M

s

K
sG

s

M

s

K
sG

s

M
IsD N

−−−
−














−
















 ++






 +−=                  

Equation    can  be  further  simplified  to  obtain 

( ) ( )( ) ( ) ( )[ ]( ) ...
4

1
3

1 11111
2

1
1 +−+−+= −−−−−

−
− MKsGMsGMMsGM

s

M
sD

SS

           

Comparing  equations    and    it  is  clear  that  their  right-hand  sides  are  equal.  Theorems 5.1  and  5.2  

can  be  alternatively  proved by  multiplying  these  equations  by  s   and  2s   respectively  and  taking  the  limit  
as  ∞→s .  Observe  that,  the  coefficients  associated  with  the  corresponding (negative)  powers  of  s   in  the  

series  expansions    and    cannot  be  equated  because  ( )sG   is  also  a  function  of  s .  However,  in  

the  limit  when  ∞→s   the  variation  of  ( )sG   becomes  negligible  as  by  equation    it  approaches  to  

∞G   Considering  the  second  term  of  the  right-hand  side  of  equation  ,  equating  it  with  the  

corresponding  terms  of  equation    and  taking  the  limit  as  ∞→s   one  obtains 

1121 −
∞

−− −= MGMZSZ Tθ                                                                                

Were  the  system  viscously  damped  ( )sG   would  be  a  constant  matrix  and  equating  the  coefficients  

associated  with  different  powers  of  s   one  could  obtain  several  relationships  between  the  eigensolutions  and  
the  system  matrices. 

6.2 RELATIONSHIP  IN  TERMS  OF  1−K  
Now,  rewriting  equation    as 
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( ) ( ) T
m zsSISZsD

11111 −−−−− −−= θ                                                                   

Expanding  equation    one  obtains 

( ) ( ) ( ) ( ) ...41331221111 −−−−−= −−−−−−−−− TTTT ZSZsZSZsZSZsZSZsD θθθθ    

The  expression  of  the  dynamic  stiffness  matrix  equation    can  be  rearranged  as 

( ) ( )( )[ ]sGKMsKsIKsD N
11 −− ++=                                                             

Taking  the  inverse  of  equation    and  expanding  the  right-hand  side  one  obtains 

( ) ( )( ) ( )( ){ }[ ] 1211111 ... −−−−−− −++++= KsGKMsKssGKMsKsIsD N       

The  preceding  equation  can  further  be  simplified  to  obtain 

( ) ( )( ) ( ) ( )[ ]( ) ...11121111 +−+−+= −−−−−−− KMsGKsGKsKsGKsKsD        

Comparing  the  right-hand  side  of  equation    and  ,  theorem 5.3  can  be  proved  alternatively  by  

taking  the limit  as  0→s .  Considering  the  second  term  of  the  right-side  of  equation  ,  equating  it  

with  the  second  term  of  equation    and  taking  the limit  as  0→s   one  obtains 

1
0

121 −−−− = KGKZSZ Tθ                                                                       

Theorem 5.2,  5.3  and  equations  ,    allowed  us  to  represent  the  system  property  matrices  explicitly  
in  terms  of  eigensolutions.  This  might  be  useful  in  system  identification  problems  where  the  eigensolutions  
of  a  structure  can  be  measured  from  experiments.  Using  the  eigensolutions  we  defined  two  matrices  as  
follows: 

TSZZP 1
1

−= θ                                                                                            

and 
 

TSZZP 1
2

−= θ                                                                                        

Using  the  equations,  from  equation    one  obtains  the  mass  matrix  as 

1
1

−= PM                                                                                                     

Similarly  from  equation    the  stiffness  matrix  can  be  obtained  as 

1
2

−−= PK                                                                                                   

The  damping  matrix  in  the  Laplace  domain,  ( )sG   can  be  obtained  only  at  the  two  limiting  values  when  

0s →   and  0→s .  From  equations    and    one  obtains 

[ ] 1
1

211
1

−−−
∞ −= PZSZPG Tθ                                                                             

and 



Corresponding author: E-mail;  linkfasky@yahoo.com ; darlingtondee@yahoo.com,  1Tel. +2348030686454 
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 457 – 468  

On Some Generalization of the Eigenvectors Properties     Fatigun  and  David      

[ ] 1
2

211
20

−−−−−= PZSZPG Tθ                                                                              

7.0 EIGENRELATIONSHIPS  FOR  VISCOUSLY  DAMPED  SYSTEMS  
Viscously  damped  systems  arise  as  a  special  case  of  the  more  general  non-viscously  damped  systems  when  
the  damping  matrix  become  a  constant  matrix,  that  is  

 ( ) sallforRCsG NN ,×∈= .  For  viscously  damped  systems  the  order  of  the  characteristic  polynomial 

Nm 2= ,  and  consequently  the  modal  matrix  NNCZ 2×∈   and  the  diagonal  matrices  NNCS 22, ×∈θ .  

From  equation  ,  the  normalization  relationships  reads 

[ ] NkallforzCMsz kkk
T
k 2...,,1,2 ==+ θ                                                 

Now, considering  the  series  expansion  of  ( )sD 1−   given  by    and  .  Equating  the  coefficients  of  

s

1
  we  obtain  the  mode  orthogonality  relationship 

N
T OZZ =−1θ                                                                                                         

Also,  equating  the  coefficients  of 
5

1
...,,

2

1

SS

  in  the  right-hand  sides  of  equating    and  ,  several  

relationships  involving  the  eigensolutions  and KandCM ,1−   may  be  obtained: 

11 −− = MSZZ Tθ                                                                                                    

1121 −−− −= CMMZSZ Tθ                                                                                   

[ ] 11131 −−−− −= MKCCMMZSZ Tθ                                                              

and 

[ ] 1111141 −−−−−− −+= MCCMCMKCKMMZSZ Tθ                                

 
This  procedure  can  be  extended  to  obtain  further  higher  order  terms  involving  S .  Similarly,  equating  the  

coefficients  of  30 ,...,ss   in  the  right-hand  sides  of  equations    and  ,  several  relationships  

involving  the  eigensolutions  and  MandCK ,1−  may  be  obtained: 

111 −−− −= KZSZ Tθ                                                                                              

1121 −−−− = CKKZSZ Tθ                                                                                       

[ ] 11131 −−−−− −= KCCKMKZSZ Tθ                                                               

and 
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[ ] 11111141 −−−−−−−− +−= KMCKCMKCCKCMKZSZ Tθ                      

This  procedure  can  be  extended  to  obtain  further  lower  order  terms  involving  s   (see  

[ ] [ ] [ ] examplesnumericalforand 32,1 . 

8.0 CONCLUSION 
In  this  paper  we  have  developed  several  eigenrelations  for  non-viscously  damped  MDOF  linear  dynamic  
systems.  It  has  been  assumed  that,  in  general,  the  mass  and  stiffness  matrices  as  well  as  the  matrix  of  the  
kernel  function  cannot  be  simultaneously  diagonalized  by  any  linear  transformation.  The  analysis  is,  
however,  restricted  to  systems  with  non-repetive  eigenvalues  and  non-singular  mass  matrices. 

Relationship  regarding  the  normalization  and  the  orthogonality  of  the  (complex)  eigenvectors  have  been 
established  (theorem 5.1).  Expressions  equivalent  to  the  orthogonality  of  the  undamped  modes  over  the  
mass  and  stiffness  matrices  have  been proposed  (theorems 5.2  and  5.3).  It  was  shown  that  the  classical  
relationships  can  be  obtained  as  a  special  case  of  these  general  results.  Based  on  these  results,  we  have  
shown  that  the  mass  and  stiffness  matrices  can  be  uniquely  expressed  in  terms  of  the  eigensolutions.  The  

damping  matrix, ( )sG ,  cannot  be  reconstructed  using  this  approach  because  it  is  not  a  constant  matrix.  

However,  we  have  provided  expressions  which  relate  the  damping  matrix  to  the  eigensolutions  for  the  case  
when  0→∞→ sands .  Whenever  applicable,  viscously  damped  counterparts  of  the  newly  developed  

results  were  also  provided. 

NOMENCLATURE 

C      Viscously  damping  matrix 

M     Mass  matrix 

K     Stiffness  matrix 

NI     Identity  matrix of  size  N 

N     Degree -of- freedom of the system 

S      Diagonal  matrix  containing  ks  

NO   Null  matrix  of  size  N 

( )sD   Dynamic  stiffness  matrix 

( )sG  Damping  function  in  the  Laplace  domain 

( )sG' Damping  function  in  the  Laplace  domain  in  the  modal  coordinates 

( )sH  Transfer  function  matrix  in  the  Laplace  domain 

Z          Matrix  of  the  eigenvectors 

p         Number  of  non-viscous  modes,  Nmp 2−=    

        Laplace  transformation  of  the  system  

jR        Residue  matrix  corresponding  to  the  pole  js  

jQ       Residue  matrix, Q-FACTOR 
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( )tf   Force  vector 

i          Unit  imaginary  number, 1−=i  

( )tq   Vector  of  the  generalized  coordinates 

 X       Matrices  of  the  eigenvectors 

 ( )ty  Modal  coordinates 

( )tG   Damping  function  in  the  time  domain 

kj ww ,   j-th  and  k-th  undamped  natural  frequencies 

t         Time 

0q       Vector  initial  displacements 

0q&       Vector  initial  velocities   

m       Order  of  the  characteristic  polynomial 

s         Laplace  domain  parameter 

jz        j-th  eigenvector  of  the  system 

js        j-th  eigenvalue  of  the  system 

jx       j-th  undamped  vector 

( )sΦ  Matrix  of  the  eigenvectors  of  ( )sD  

Θ        Normalization  matrix 

( )e•   Elastic  modes 

 ( )n•  Non-viscous  modes 

( )′•    Derivative  of    with  respect  to  s 

( )T•   Matrix  transpose  of     

( ) 1−•  Matrix  inverse  of   

( ) T−•  Inverse  transpose  of   

( )*•    Complex  conjugate  of   

•       Absolute  value  of   

C        Coefficient  matrix  associated  with  the  non-viscous  damping  function 

θ        Characteristic  time  constant 

( )•det   Determinant  of   
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( )•adj   Adjoint  of   

( )•diag      A  diagonal  matrix 

DOF      Degree  of  freedom 

FEM      Finite  Element  Method 

MDOF  Multiple-Degree-of-freedom  System 

SDOF    Single-Degree-of-freedom  System  

REFERENCES 

  Adhikari, S. (2001). Dynamics  of  Non-Viscously  Damped  Linear  Systems. ASCE  Journal  of  
Engineering  Mechanics. 

   Adhikari,  S.  (2001).  Classical  normed  modes  in  non-viscously  damped  linear  systems. AIAA 
Journal, Vol.  39, No. 5, pp 978-980. 

   Adhikari,  S.  (1999).  Rates  of  Change  of  eigenvalues  and  eigenvectors  in  damped  dynamics  
systems. AIAA Journal, 37(11) pp 1152-1158. 

   Cromin,  D.L.  (1990).  Eigenvalue  and  Eigenvector  determination  of  non-classically  damped  dynamic  
systems.  Computer  and  Structures, 36(1), pp133-138. 

   Maria, N.S., Silva, J.M.M. and Ribeiro, A.M.R. (1998). On  a  general  model  for  damping: Journal  of  
Sound  and  Vibration, 218(5), PP749-767. 

  Nashif, H.D., Jones, D.I.G.  and  Hendersen, J.P. (1985). Vibration  Damping, John  Wisley, New  York. 

   Nelson, N.M.  and  Glasgow, D.A. (1979). Eigenrelatives  for  general  second-order  systems. AIAA 
Journal, 17(7) pp795-797. 

   Woodhouse, J. (1998). Linear  damping  models  for  Structural  Vibration. Journal  of  Sound  and  
Vibration, 215(3)pp 547-569. 

 
 
 

 


