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Abstract

In this paper the generalization of the classicaloate orthogonality and
normalization relationships known for undamped sggsts to non — classical
and non — viscously damped systems were established investigated.
Classical mode orthogonality relationships knownrfondamped systems were
generalized to non — viscously damped systems.alt shown that there exists
unique relationship which relates the system maésc to the natural
frequencies and modes of non - viscously dampedtesys. These
relationships, in return, enable us to reconstruitte system matrices from full
set of modal analysis.

The non — viscously damping model is such that tdemping forces
depends on the past history of motion via convabatiintegrals over some
kernel functions. Classical modal analysis is exterd to deal with general non
— viscously damped of multiple degree- of- freed@DOF) linear dynamic
systems. The concept (complex) of non — viscous enads introduced and
further shown that the system response can be oistei exactly in terms of
these modes.

Key words: Eigenvectors, eigenvalues, viscously undampedpgaihality, normalization.

1.0 INTRODUCTION

2.0

In [1], the eigenvalues, eigenvectors and transfer fomgtassociated with multiple-degree-of-freedom aon
viscously damped systems have been discussed. Wothetas outlined to obtain the eigenvectors anchdyo
response of the system. Eventhough the methodalegwus to classical modal analysis, unlike thesital
mode, very little is known about qualitative prapes of the modes of non — viscously damped systdims
objective of this paper is to develop some badatimmships which satisfied the eigensolutions Hrelsystem

matrices of (2.3). Specifically, we
relationship of the eigenvectors.

have focused our attention k@ thormalization and orthogonality

BASIC CONCEPTS OF EIGENVALUES AND EIGENVECTORS

Modal analysis is the most popular and efficienthud for solving engineering dynamic problems.Toeaept
of modal analysis, as shown [if] was originated from the linear dynamics of undagnggstems. 1§2], the
undamped modes or classical normal modes satisfyrtangonality relationship over the mass and ret$t
matrices and uncouple the equation of motion, if.&x,e R¥*" is the modal matrix theK” MX andX” KX are
both diagonal matrices. This significantly simm#ithe dynamic analysis because complex multipjgegeof-
freedom system can be treated as a collection @Fsscillator.
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Real-life systems are however, not undamped, basgas some kind of energy dissipation mechanism or
damping. In order to apply modal analysis of undathpystems to damped systems, it is common to &sum
the proportional damping, a special case (8&dor examples) of viscous damping. The proportiatahping
model expresses the damping matrix as a linear c@tibn of the mass and stiffness matrices, that is

C=o,M+a,K (2.1)
wherea, , a, are real scalars.
The equations of motion of free vibration of acags damping systefr] can be expressed by
Mg(t)+Cq(t) +Kq(t) =0 (2.2)

In this case the equation of motion are charaadriay three real symmetric matrices which bringditazhal
complication compared to the undamped systems wvtherequations of motion are characterized by tvatriges.
We require a non — zero matie RV*N such that it simultaneously diagonaliZdsC and K under a congruence
transformation.

The concept of proportional damping was extendeabto— viscously damped systems aglihand the conditions
for existence of proportional damping in non — visely damped systems were discussed. Thus, in@enen —
viscously damped systems are non — proportionaiypmed. Adhikar{1] analyze non — viscously damped MDOF
systems with non — proportional damping. We rewttite equation of motion of force vibration of an dégree-of-
freedom linear system with non — viscous damping as

Mi(0) + [ §(t — ) q(@dr + Kq(©) = f(©) 2.3)
The initial conditions associated with the abovaagipn are

q(0) = g0 € R" and q(0) = go € R" (2.4)
Considering the free vibration, thatfit) = q, = g, = 0, and taking the Laplace transformation of the eqoaif
motion (2.3), one has

s?Mq@ +sG(s)G+Kgqg=0 (2.5)

Here q(s) = L[q(t)] € CV, G(s) = L[G(t)] € C¥*N and L[+] denotes the Laplace transform. In the context of
structural dynamicss = iw, wherei = v/—1 and w € R* denotes frequency. It is assumed thatMI}exists and

2) all the eigenvalues 31K are distinct and positive. Becaugé) is a real functionG(s) is also a real function

of the parameters. For the linear viscoelastic dasan be shown that (sept] ), in general, the elements 6fs)

can be represented as

P (s)
q;jk(s)

Gir(s) = (2.6)

whereP;, (s) andgjy (s) are finite — order polynomials i Here, we do not assume any specific functionahfof
Gjr(s) but assume thzthjk (s)| < o0 whens — oo. Thus in turn implies that the elements@{t) are at the most of

orderi in s or constant, as in the case of viscous damping.€igenvaluess;; associated with equatiqi2.5) are

roots of the characteristic equation
det[s’M + sG(s) + K] = 0 2.7)

If the element ofG(s) have simple forms, for example — as in equali@®) then the characteristic equation
becomes a polynomial equation of finite order. Hesve for practical purposes as [i8] the Taylor expansion of
G(s) can be truncated to a finite series to make tlaadheristic equation a polynomial equation ofténorder.
Suppose the order of the characteristic polynonsiak. In generalm > 2N, that ism = 2N + p;p = 0. Thus,
although the system ha¥ degree-of-freedom, the number of eigenvalues isentban2N. This is a major
difference between the non-viscously damped systgh®ee the number of eigenvalues is exa2thy; including
any multiplicities. It is assumed ali eigenvalues are distinct.
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For convenience the eigenvalues are as

51,52, s S Ny SaN+1s s S (2.8)

where ()* denotes complex conjugation. The eigenvalue pmldssociated with equatidi2.3) can be defined
from (2.5) as
D(sj)zj =0, forj=1,.. m. (2.9)

where

D(s;) = s°M +5;G(s;) + K (2.10)

is the dynamic stiffness matrix corresponding tejth- th eigenvalue and; is thej — th eigenvectors. Heré)"
denotes the matrix transpose.

3.0 NATURE OF THE EIGENSOLUTIONS

The eigenvalue problem associated with equat®) can be defined as
[ssz + s]-G(s]-) + K]zj =0 or D(s]-)z]- =0, forallk=1,..,m (3.1)

where the dynamic stiffness matrix
D(s) = s?M + sG(s) + K e CVXV (3.2)

Herez; is thej — th eigenvector ang} is thej — th eigenvalue. In general the number of eigenvalues;, 2N +

p; p = 0. Itis assumed that ath eigenvalues are distinct. We consider the damfgirige ‘non-proportional’, that
is, the mass and stiffness matrices as well amttex of the kernel function cannot be simultargpuliagonalized

by any linear transformation (see numerical eXampn [1]). It is assumed théﬁjk(s) < | whens - . This
in turn implies that the elements 6{s) are at the most of ordér in s or constant, as in the case of viscous

damping. Now, we construct the diagonal matrix aonihg the eigenvalues as
S =diag|sq,S3, ., Sy] € C™™ 3.3)

and the matrix containing the eigenvectors (the ahamhtrix) as
Z =|z,,2,,..,2,] € CN™ (3.4)

4.0 NORMALIZATION OF THE EIGENVECTORS

We now considered the normalization relationshigigénvectors as if4]. Pre-multiplying equatio3.1) by zZ%,
applying equatior§3.1) for k — th the set and post-multiplying kzy and subtracting one from the other we obtain

z[(s? — s2)M + 5;G(s;) — 5,.G(s,)]z; = 0 (4.1)

Sinces; ands; are distinct for differentj and k are, the above equation can be divided (l@y— sk) to
obtain

zp [(sj +5)M + %SS:G(S")] z;=0, foralljk; j+k (4.2)

J
This equation may be regarded as the ortmdy relationship of the eigenvectors. It éasy to verify
that, in the undamped limit equati¢#.2) degenerates to the familiar mass orthoggnadlationship of the

undamped eigenvectors. However, this orthoggnaklationship is not very useful becauseisi expressed
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in terms of natural frequencies. A frequenyependent orthogonality relationship of th&genvector is
derived later in this paper. Assumidg= s; — s, we rewrite (4.2) as

(Sk+5S)G(Sk+6S)—SkG(Sk)
8s

27 [(55 +25)M + ]z, =0 (4.3)

Consider the case whe — sy, that is,§; » 0. For this limiting case, equatiof.3) reads

0[sG(s)]

as

z! [ZSkM +

Sk] — (4.4)

or zL[2s,M + G(sy) + 5,G'(Sk)]z = Ok, forallk= 1,..,m 4.5)

for some non-zerd,e C. Equation (4.5) is the normalization relationship for the erigectors of the non-
viscously damped systeni2.3). From the expression of the dynamic stiffnematrix in (3.2), the
normalization condition in equatioft.5) can be expressed as

zID (s;)z, = 0y, forall k=1,..,m (4.6)

Equation (4.5) and (4.6), can be regarded as the generalizationhef mass normalization relationship used
in structural dynamics (see], [7] and [8]). In the undamped limit whe@(s) is a null matrix, equation
(4.5) reduces to the familiar mass normalizatietationship for the undamped eigenvectors: ¥scously
damped system (see section 7.0 for detaitdptionship analogous t¢4.5) was obtained using state-space
approach by[5] and using second order equation of motign(7) and (8). We define the normalization
matrix, @, as

0 = diag[6,,0,, ...,6,,] € C"™ (4.7)

Numerical value of9, can be selected in various ways:

Choosefl;, — Zsp, fur uil k that is@ — 25. This reduces taiMz; =1, for all k when the damping
is zero. This is consistent with the unitgjodal mass convention, often used in experiate modal
analysis and FEM.

Choose #;, =1 +10li, far all & that is® =TI, Theoretical analysis becomes easiest with this
normalization. However, as pointed out Bll. [?] and [3] in the context of viscously damped systems,
this normalization is inconsistent with undaihper classically damped modal theories.

5.0 ORTHOGONALITY OF THE EIGENVECTORS

Equation (+.2) is the orthogonality relationship of thegesivector and is not very useful becausés it

expressed in terms of the eigenvalues systemthis section, we developed an orthogbnalelationship
that is independent of the eigenvalues. Esgioms equivalent to the orthogonality relssitp of undamped
eigenvectors with respect to mass and stffnenatrices are also established. We derihede results by
first recalling the expression of the transfenction matrix.

The transfer function (matrix) of a systerompletely defines its input-output relationship steady-state.

For any linear system, if the force functida harmonic, that isf(t) = fexpls¢t] with s =iw and
amplitude vectorf € B¥, the steady-state response will also bembaic at frequencyw £ R¥. Now, we
find a solution of the formqlt) = garpl=tl, where g ¥ is the response vector in the frequency
domain. Substitutingg(#} and f(t} in equation{?.3]} yields

s’Mg+sGls)g+ Kg=F or Dg=F (0.1)

Here the dynamic stiffness matrix
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From equation(5.1} the response vector can be obtained as
g=D"Ys)F=H(E)F (3.3)

where

)

()

=D1(5) g OV (5.4)

is the transfer function matrix. From thiguation, it is implies that

__ adjlp(s]
HGs) = det[p ()] *

Ln
L}
L

The poles ofH(s), denoted bys; are the eigenvalues system. Each pole ssmple pole because it is

assumed that all th# eigenvalues are distinct. From the resitheorem ( sed1l ), it is known that
any complex function can be expressed imgepf the poles and residues, that is tthasfer function

now has the form
B

H(s) =¥m L (5.6)
AT g
Here, we have
& o 1x i
R; = -:=:; [H(s)] = llm_g_m‘l.{s—sj-}[H{s:]] £5.70

is the residue of the transfer function matt the poles;. It may be noted that equatidb.6) is

equivalent to expressing the right - hand sideequation{3.Z} in the partial-fraction form. Here we tty
obtain the residues, that is the coefficieimtsthe partial-fraction form, in terms tfie systems
eigenvectors.

In the pole-residue form the inverse of thgmamic stiffness matrix (transfer functioratnix) can be
expressed as

D-1(s) _ adjlbl&d] o By (5.8)

der[Diz)] — =iy 55

HereR;, the residue o@~*(s) at the poles; is obtained by using the normalizing coiodi$ and
I'Hospital rule (seell]) as

izt
= —L— e (5.9)
I i o) 1
I as; !
Now using equationd4.6) and (5.8 one finally obtained the residue as
75 (5.10)

R; = :
THEOREM 5.1 The modal matrix of a non-viscously dammadtem,Z e CV*™  satisfy the orthogonality

relationship Z8~*Z7 =0,

Proof. From equatior(5.8) and (5.10) one obtains
T
x_,'x-

adjlDia] - 1 |
2] Lty gy (5.11)

Multiplying both sides of the above equatiby = and taking limit ass —+ = we obtain
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ad;j D]
det[Di=1]

T
2B 225 - -
£ A }":1# i5.12)
-z B 8j

lim, .5 = lim,_ . X%,
It is easier to observe that the ordertte element ofadj[D(s}] is at mostim —2) in 5. Since the
order of the determinantjet[D(s)] is m, after taking the limit every element dfetleft-hand side of
equation(5.12) reduces to zero. Thus, in the limit, fleét-hand side of equatiof5.12) approaches to an
N % N null matrix. Finally, writing equatior{3.12) in the matrix form we obtained

e =0, (5.13)

and the theorem is proved.
THEOREM 5.2 The modal matrix of a non-viscously dammadtemZ = £¥*™, satisfy the relationship

o T a1

Proof. First we considered the functieB~*{s} and using the residue theorem one obtains
sDi(s) =T, L (5.14)

F=1g g
Here the residuef);: can be obtained as
i
SJEJ'

Q; = lims_,sj{s—sj-} [sD~t(s)] = S €3.13)
Using the expression of the dynamic stiffn@satrix in equationt3.2) we can deduce

. e Gl | K] _

llm_g_,x_g—: = lim, o [M'+ - -I—S:] =M (5.16)
Taking the inverse of the above equatiorultes

Hm, . [s°D~*(s)] = M~* i(5.17)
Now multiplying equation(3.14} by = and taking the limit ag == we obtain

. 2 - . . = g . EE]

lim,_.[s2D"*(s)] = llmeE?:ls—_sj s-i'ﬂ_‘,- = E_’i-;j_sja—j (5.18)

Putting the right-hand side of the above atign in matrix form and equating it wil#3.17) results
Z0'S§IT=M"" (5.19)
and the theorem is proved.

REMARK : Since® and S are diagonal matrices, they commute in prod&or this reason the above
result can also be expressedZ$8~*Z7 = M1,

By considering the normalization matré as the identity matrix. It might be thotighat by taking the
inverse of equatior(5.19} and rearranging the conventional mass-orthalify relationship

I"MZ =5%@ (5.20)

could be obtained. We now emphasized that rigpresentation of equatidt.19) in the form of equation
(5.20) is not always possible. To show this, premultiply equation(3.20} by Z@~* to obtain

Ie-'ZI'MZ =105 '@ =751 (5.21)
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ooy

Due to theorem 5.1, the left-hand side ofiadign i3.7%F is a null matrix, while its right-hand eids not.
Thus, {5.28} cannot be a valid equation. However, fospecial case, when the system is undamibed,
modal matrixZ can be expressed by a square matrix @pgtien (5.1} can be represented by the

classical mass-orthogonality relationship {m28}. Thus, theorem 5.2 provide the results \ejent to the

classical mass-orthogonality relationship fangral cases.

Like the mass-orthogonality relationship o tkigenvectors, the orthogonality relationshiph respect to
the stiffness mass can also be obtainedundisgy that K~* exists we have the following results:

THEOREM 5.3 The modal matrix of a non-viscously dammdtem,Z e C¥*™, satisfy the relationship
Za@isiET = K7L
Proof. Using the expression of the dynantiffness matrix in equationiﬁ.-_-'} we can easily deduce
lim, ., D(x) — K {5.22)

Taking the inverse of the above equatiorultes

= N w1 o oaah
lim,_ D'z} = K% {5.23)

From the equations(3.8) and (5.10) one obtains
Z'ET o e
Di(s) =¥m L1 (5.24)

AT he-g By
Taking the limit ass = 0 in equation{5.24} we obtain

. 1 L 2T {5 75)
lim,_,D~*(s) = KL, ——— Lda)

-z 8

Now, putting the right-hand side of the miog equation in the matrix form and eqatit with (5.23)
results

267'S7S' =-K™ (1.26)
and the theorem is proved.
6.0 EIGENSOLUTIONS AND DAMPING RELATIONSHIP
Some direct relationships have been estallliskéveen the mass and stiffness matrices edgeinsolutions

in the last section. In this section, tledationships between the damping matrix amggresolutions are
established. However, a major difficulty ihist regards is that, unlike the mass ariffinsss matrices, the

damping matrix,G(S), is a function ofs. To simplify the problem we have considettee limiting
cases, (@) wherg - o (b) when S - 0. Suppose

lim__ . G(s)=G,OR"™ (6.1
and

lim,_,G(s)=G,0R™™ (6.2)
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were G, |G| <o

6.1 RELATIONSHIP IN TERMS OF M ™

D*(s)=z67(d,-S)"Z" {6.5)
The proceding equation can be expressed as

D'l(s):éze'l[l . —3_1 7" = é(ze'lszT) + %(ze'lszT) + L (zorsiz7)+ i4 (z6s°27)+...
S S S
(6.4)

Now, we rewrite the expression of the dymarsiiffness matrix in equatiof.2J as

D(s) = s°M {lN M2 (G(s) +5ﬂ (6.5)

S S

Taking the inverse of the preceding equatod expanding the right-hand side one obtain

p(s)=|1, -M" (G(s)+5j+{M_l (G(s)+5j}2—... M~ 6.5)

S S S S S

=
(=

Equation (£.6] can be further simplified to obtain

o

[

a 3 (-MmG(sm )+ i (M2[clgMG(s)-K]M2)+.. @7

Comparing equationds.<) and {£.7) it is clear that their right-hand sides aqual. Theorems 5.1 and 5.2

can be alternatively proved by multiplying skeequations bys and s? respectively and taking the limit
as S —» o . Observe that, the coefficients associatéth whe corresponding (negative) powers ®fin the

series expansionkf.4] and (6.7) cannot be equated becau&(S) is also a function ofs. However, in
the limit when S — o the variation ofG(S) becomes negligible as by equatiff /) it approaches to

G, Considering the second term of the righehaside of equation(6./), equating it with the

9]

corresponding terms of equatidf.4) and taking the limit as — o one obtains
207's’z2T=-M _1GWM - (6.8)

Were the system viscously dampeﬁ(s) would be a constant matrix and equating toefficients

associated with different powers &f one could obtain several relationships betwéhe eigensolutions and
the system matrices.

6.2 RELATIONSHIP IN TERMS OF K™
Now, rewriting equatiorf£.7} as
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D*(s)=-z6"s* (1, -ss)* 7 (6.9)
Expanding equatiorié.7} one obtains
D*(s)=-267S7Z" -s(z67s?27)-5? (2615327 ) -s° (267527 )-... (6.10)
The expression of the dynamic stiffness matjuation{3.2) can be rearranged as
D(s)=K |1y +s(sK *M +K*G(s)) (6.11)

Taking the inverse of equatid?&!ﬂ and expanding the right-hand side one obtai

D™(s)= lIN +s(sK M +K 1G(s)) + {s(sk M + K‘lG(s))}Z—...] K (6.12)
The preceding equation can further be singglifto obtain
D(s)=K ™ +s(-KG(s)K ) + s?(K|G(s)K *G(s) - M |K %) +...  (6.13)

Comparing the right-hand side of equatiff/) and (£.77), theorem 5.3 can be proved alternatively by
taking the limit asS — 0. Considering the second term of the rigiesof equation{£.73), equating it
with the second term of equatidf./) and taking the limit ass — O one obtains

ZO7'STPZT =K TG,K™ (f.14)
Theorem 5.2, 5.3 and equatio(‘ﬁs&l (6.14) allowed us to represent the system properagrices explicitly
in terms of eigensolutions. This might beefus in system identification problems whetee eigensolutions

of a structure can be measured from experisneUsing the eigensolutions we defined twatrices as
follows:

R=z26"" (6.12)

and

P,=207Z" (6.16)

Using the equations, from equatiéi/¥)} one obtains the mass matrix as

M=PR" (6.17)
Similarly from equation(i.2¢) the stiffness matrix can be obtained as

K=-pP" (6.18)

The damping matrix in the Laplace doma@(s) can be obtained only at the two limitimglues when
S - 0 and S > 0. From equationdé.8) and (6./4) one obtains

G, =-R*[zos’z7|R™ (6.19)

and
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G, =-P,*|z67s?Z2"|R, (6.20)

7.0 EIGENRELATIONSHIPS FOR VISCOUSLY DAMPED SYSTEMS
Viscously damped systems arise as a speeaisd of the more general non-viscously dampedems when
the damping matrix become a constant matthat is

G(S)=CD RM*N for all s. For viscously damped systems the orderthef characteristic polynomial

m=2N, and consequently the modal matr& OC"**N and the diagonal matriceS,80C?N*2N .
From equation{<.5}, the normalization relationships reads
27 [2sM +C]z, =6,, for all k=1,...,2N (7.0)

Now, considering the series expansion f_l(s) given by 5.4} and {£.7). Equating the coefficients of

— we obtain the mode orthogonality relatiopshi
Qc

Z67Z" =0, {(7.2)

Also, equating the coefficients e%,...,i in the right-hand sides of equatif§4) and (5.7}, several

S S

relationships involving the eigensolutions aMi_l, C and K may be obtained:
267" =M (7.3)
207's’zT=—-Mm'C™M ! (7.4}
767's’z" =M cMtCc-K|m .5)

and
267s'Z" =M KM *C+K -CM *CcM ic|m (/.6)

This procedure can be extended to obtaithdurhigher order terms involvin®. Similarly, equating the
coefficients of S°,...,S% in the right-hand sides of equatioffs/t) and (6./5), several relationships

involving the eigensolutions an& ™,C and M may be obtained:

267S7'z2T=-K™ (7.7
267s?2" =K 'cK (7.6)
267z = KM -cK *c[K * (7.9)

and
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267577 =K *|cM *CK*C - MK *C+CK *M |K (7.16)

This procedure can be extended to obtaithdurlower order terms involving (see
[1], [2] and [3] for numerical examples.

8.0 CONCLUSION

In this paper we have developed several negdations for non-viscously damped MDOF linedynamic

systems. It has been assumed that, in derttm mass and stiffness matrices as wasllthe matrix of the
kernel function cannot be simultaneously diedzed by any linear transformation. The lgsia is,

however, restricted to systems with non-regettigenvalues and non-singular mass matrices.

Relationship regarding the normalization ar torthogonality of the (complex) eigenvectdrave been
established (theorem 5.1). Expressions equivatenthe orthogonality of the undamped modeer the
mass and stiffness matrices have been prop@desbrems 5.2 and 5.3). It was shown ttie classical
relationships can be obtained as a spedsk cof these general results. Based on thesdts, we have
shown that the mass and stiffness matrices loe uniquely expressed in terms of thgeresolutions. The

damping matrix,G(S), cannot be reconstructed using this approbebause it is not a constant matrix.
However, we have provided expressions whielate the damping matrix to the eigensold#idar the case

when S - co and s — 0. Whenever applicable, viscously damped copatés of the newly developed
results were also provided.

NOMENCLATURE
C  Viscously damping matrix

M  Mass matrix

K Stiffness matrix

Iy Identity matrix of size N

N  Degree -of- freedom of the system
S Diagonal matrix containing,
O, Null matrix of size N
D(S) Dynamic stiffness matrix
G(S) Damping function in the Laplace domain
'(S)Damping function in the Laplace domain ire tmodal coordinates

G
H(S) Transfer function matrix in the Laplace dama
Z Matrix of the eigenvectors

P

Number of non-viscous modef = m—2N

Laplace transformation of the system

R; Residue matrix corresponding to theeps|

Q, Residue matrix, Q-FACTOR
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f(t) Force vector

i Unit imaginary numbei,=+/-1

q t) Vector of the generalized coordinates

X Matrices of the eigenvectors

yt) Modal coordinates

G(t) Damping function in the time domain

W, , Wy j-th and k-th undamped natural frequencies
t Time

0, Vector initial displacements

g, Vector initial velocities

m Order of the characteristic polynomial

()]

Laplace domain parameter

Z j-th eigenvector of the system
S; j-th eigenvalue of the system
X j-th undamped vector

CD(S) Matrix of the eigenvectors oD(S)
©  Normalization matrix

(°)e Elastic modes

(°)n Non-viscous modes

Absolute value ofs)

C Coefficient matrix associated with then-viscous damping function
6 Characteristic time constant

det(-) Determinant of(e)
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adj (+) Adjoint of (=)

diag (-) A diagonal matrix

DOF  Degree of freedom

FEM Finite Element Method

MDOF Multiple-Degree-of-freedom System
DOF  Single-Degree-of-freedom System
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