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Abstract 

 
We study the bound-state solutions of some molecular vibration 
potentials-harmonic oscillator, pseudoharmonic oscillator and the 
Kratzer-Fues - by solving the D-dimensional Schrödinger equation 
using the Asymptotic Iteration Method (AIM). The eigenvalues and 
the corresponding eigenfunctions are also obtained using the AIM. It 
was found that the asymptotic iteration method gives the eigenvalues 
directly by some transformation of the radial Schrödinger equation; 
likewise, the asymptotic iteration method yields exact analytical 
solutions for exactly solvable problems and provides the closed-forms 
for the energy eigenvalues as well as the corresponding 
eigenfunctions. 
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1. Introduction 
Since its introduction [1], the asymptotic iterative method (AIM) has been widely applied in solving many 
eigenvalue problems in both the relativistic [2-4] and non-relativistic [5-18] quantum mechanics. The AIM has been 
used in solving the Schrödinger equation for hydrogen-like atom[11] exponential-type potentials such as the Hulthén 
potential [13], the Morse Potential [10,14, 16], and some singular potentials like the generalized spiked harmonic 
potential [6]. Recently, an iterative treatment of the relativistic Dirac equation with the Coloumbic potential was 
presented using the AIM [3]. 
However, over the decades, a thorough research has been carried out on some molecular vibration potentials. For 
instance, some quantum mechanical properties of the Kratzer-Fues potential have been presented in N-dimensions 
by Oyewumi [22]. Likewise, the exact solutions of the Mie-type Potentials in D-dimension have been discussed by 
Ikhdair and Server [23]. Recently, Agboola [29] gave a D-dimensional study of the Hulthén potential using the 
Nikiforov-Uvarov method. 
The aim of this paper is to give the bound-state solutions of the Schrödinger equation with some molecular 
potentials in D-dimensions using the AIM. The paper is organized as follows: Section 2 gives a brief description of 
the AIM, while in the following three sections we obtain the eigenvalues and eigenfunctions of some molecular 
potentials using the AIM. Finally, we conclude in section 6 by discussing the various result obtained. 
 

2. The Asymptotic Iterative Method 
In this section, we give a brief description of the AIM; details of the method can be obtained in Refs [1, 18].  
Suppose we wish to solve the homogenous linear second-order differential equation 

                                               ,                                                 (1) 
( ) ( )0 0y f x y g x y′′ ′= + ( )0 0f x ≠
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Where    have sufficiently many continuous derivatives and defined in some interval which 
are not necessarily bounded. Due to the symmetric structure of the right hand side of Eq. (1), we can have the (n+1)th 
and (n+2)th derivatives of  (1) as follows:  

                                                                                                             (2) 
 
  

                                                                                                              (3) 
    with the relation 

                                                             (4) 
From the ratio of the (n+1) th and (n+2) th derivatives, we have 

                                                                               (5) 
For a sufficiently large n, we can have the following asymptotic expression 
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with the termination condition given as 
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We also note that the energy eigenvalues are obtained from the roots of the Eq. (7) if the problem is exactly 
solvable. However, for a specific n principal quantum number, we choose a suitable x0 point, determined generally 
as the maximum value of the asymptotic wave function or the minimum value of the potential [3, 18, 19, 20], and 
the approximate energy eigenvalues are obtained from the roots of this equation for sufficiently great values of k 
with iteration. 
Using Eq. (6), Equation (5) reduces to 

                                                                                                                        (8) 
which yields  

                               (9) 
Note that we have used the relations (4) and (6) in obtaining the right hand side of Eq. (9) and C1 is the integration 
constant. Substituting Eq. (9) into Eq. (2), we have the first order differential equation 

                                                                                                   (10)  
Solving Eq. (10), we have the general solution to Eq. (1) as follows: 

                                           (11) 
 
3.    The Harmonic Oscillator potential in D-Dimensions 

First, we start by studying the harmonic oscillator potential in D-dimensions [26]. The Schrödinger equation for the 
oscillator can be written as: 
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                                                                                         (12) 

where E is the energy eigenvalue, is the wave function and H  is the Hamiltonian given as: 

                                                                                      (13) 
where µ  is the mass and ω is the angular frequency.  Inserting Eq. (13) into Eq. (12) and separating the variables 

as follows 

                                          ,                                                                     (14)                           
 
 

 

Eq. (12) reduces to two separate equations namely: 

                                  (15) 
and 

                                                                                               (16) 
where β  is the separation constant given as  

                                                   ,                                                         (17) 
and l  is the angular momentum quantum number. 
However, with the behavior of the radial function at zero and infinity, we can have the asymptotic solution to Eq. 
(15) as follows 

                                                   .                                                  (18) 
With this, Eq. (15) becomes  

                                           (19) 

where 
h

µωγ =  and
2

2 2

h

Eµε =− .  

We now apply the AIM in solving Eq. (19). Comparing Eqs. (1) and (19), we have  

                        and                                           (20) 

with the use for the relation (4), we have the following derivatives: 
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…… etc.                                                                                                           (21) 
Employing the terminating condition (7), we arrive at the following eigenvalue expression: 

( )Dfgfgfor +=⇒=−= l2-              0  :1k 2
01001 γε  

( )22-              0  :2k 2
12112 ++=⇒=−= Dfgfgfor lγε  

( )42-              0  :3k 2
23223 ++=⇒=−= Dfgfgfor lγε  

….. etc.                               (22) 
Generalizing the above expressions and using the identities in Eq. (19), we have the energy eigenvalues as follows: 

                            ( )2,
D

n nE ++= lh
l

ω     Kl ,3,2,1,0, =n                                              (23) 

With 0=l and 1=D  , the energy values becomes  
                                    
 

      ( )2
1+= nEn ωh                      K,3,2,1,0=n                                           (24) 

which is in agreement with the  values obtained for s-state [28]. 
Furthermore, we obtain the eigenfunctions using the AIM. Generally speaking, to obtain the eigenfunctions using 
AIM, the differential equation we wish to solve is of the form [19]: 
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where a and b are constants and w  can be determined from the condition (6) for k = 0, 1, 2, 3, ... and N=-
1,0,1,2,3,...the general solution of (25) is  given as 
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Comparing Eqs. (19) and (25) we have 0=N , γ=a , 0=b  and ( ) 232 −+= Dt l . Therefore, we find 
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Note that we have use the following limit expression of the hypergeometric function: 
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Eqs. (18) and (28) give the eigenfunctions as  
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Where 
l,nC is the normalization constant. 

 
4.    The Pseudoharmonic Potential in D-Dimensions 
In this section, we study the bound state solution of the pseudoharmonic potential given as [29-32]: 
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where er  is the equilibrium bond length andκ is the force constant. The hyperradial part of the Schrödinger 

equation with the pseudoharmonic oscillator in D-dimensions can be written as: 
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where µ is the reduced mass,
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According to the asymptotic behaviors of the wave function as 0→r and ∞→r  , one can express the solution 
as 
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With the use of Eq. (33), Eq. (32) becomes 
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We now solve Equation (34) using the AIM. Comparing Eqs. (1) and (34), and using the recursion relation (4), we 
obtain the following: 
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……etc.                   (35) 
In similar fashion with the previous section, using the termination condition (7), gives the following expressions: 
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Generalizing the above expression and using the identities in Eq. (32), we have the energy eigenvalues for the 
Pseudoharmonic potential  
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By comparing Eqs. (25) and (34), we have the relations: 0=N , 0=b , 
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Using of Eqs. (26), (27) and (29), we have  
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Eqs. (33) with (39) give the unnormalized eigenfunctions 
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where 
l,nC is the normalization constant. 

 
5.      The Kratzer-Fues Potential in D-Dimensions. 
We now turn our attention to the Mie-type potential-the Kratzer-Fues potential [33]. Although the bound state of this 
potential has been discuss in D-dimensions using the polynomial method [22, 23] and the Nikiforov-Uvarov method 
[24]. However, in this section, we wish to obtain the eigenvalues and eigenfunctions of the potential using the AIM. 
Following the notations in [22], we write the Kratzer-Fues potential as: 
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Where 02 rDA e=  and 2
0rDB e= , eD is the interaction energy between two atoms in a molecular system at 

distance 0rr = . The eigenvalue equation for the potential in                       D-dimension is given as: 
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Eq. (42) becomes  
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Comparing Eqs. (1) and (44), and using the relation (4) we have the following: 
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The termination condition (7) therefore yields  
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Generalizing Eq. (46) and with the use of 
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 Following the argument presented in the previous sections, if we comparing Eqs. (25) and (44), we can define
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Finally, Eq. (43) with (49) gives the wavefunction of the Kratzer-Fues potential   
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lnC is the normalization constant. 
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6.   Conclusion 
 
In this paper, some quantum mechanical potentials describing the vibrations in a molecular system has been 
discussed in D-dimensions within the work frame of the asymptotic iteration method. The energy eigenvalues were 
found to be in good agreement with those obtained using the direct integration method and the Nikiforov-Uvarov 
method.  The eigenfunctions were also obtained in terms of the hypergeometric function using the AIM.  
It is pertinent to note that the asymptotic iteration method gives the eigenvalues directly by transforming the radial 

Schrödinger equation into a form of ( ) ( )yxgyxfy 00 +′=′′ . 

In comparison, the asymptotic iteration method yields exact analytical solutions for exactly solvable problems and 
provides the closed-forms for the energy eigenvalues as well as the corresponding eigenfunctions. However, where 
there is no such a solution, the energy eigenvalues are obtained by using an iterative approach [34-37].  
 
Moreover, AIM puts no constraint on the potential parameter values involved and it is easy to implement. The 
results are sufficiently accurate for practical purposes.  
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