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Abstract

In this work, we present Dijkstra’s model as it atés to Richard Bellman
equation. This model finds the routes by cost preerce. It is numerically
illustrated using the model to obtain the overallpimal policy that
minimizes the total cost. We also describe an apgio for exploiting
structure in Markov decision processes with contous state variables.
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1.0 Introduction

Dijkstra’s algorithm is one of the most popularaithms in computer science and operations resedith model
was strongly inspired by Bellman’s principle of iopality and both conceptually and technically cang a
dynamic programming successive approximation praeeder excellence. Gass and Harris [5] in the Elopedia
of Operations research and management sciencelabthis model as a “node labeling greedy algoritland a
greedy algorithm described as “a heuristic algatitthat at every step selects the best choiceadblaibt each step
without regard to future consequences”.

The objective of this paper is to present DijKstraodel and its relationship to the methods actingues
of dynamic programming as presented by [3]. Rial@] proposed the stochastic production planning ehéar
multi-period, multi-product system, where the I¢iade to produce a product may be random. The mobelelrmines
release times for products that guarantee the nrements in each time period are met with desirebabilities at a
minimum cost. Riano et al (2003) further describexlv an advanced planning model (stochastic proofucti
planning) can be integrated with discrete eventuktion model to make the simulations more realistnd
informative and compared the performance of Sta@hpsoduction planning model with the material uggments
planning model in a simulation study. Graves [@nitified a set of tactical decisions that are @aitifor handling
uncertainty in production planning and describew libese tactics can be incorporated into produgpiamning
systems as a proactive counter measures to ada@mgsss forms of uncertainty.

Dynamic programming is a recursive method for sgvsequential decision problems SDP. SDP can
assume two types: discrete time and stochastistypi#ferent researchers have discovered backwatdction as a
way to solve sequential decision problems involviigk and uncertainty ([1] and [4]). They used baakd
induction to find optimal decision rules in gamegiast nature and subgame perfect equilibrium ofdyic multi-
agent games. Dynamic programming techniques canskd to develop a model for production planning and
inventory control problem. Smith and Pass [13] stigated the problem of finding the best potergeitner from a
fixed number of potential partners using dynamisgoamming approach. Dijkstra’s algorithm is a cleseethod
for solving dynamic programming functional equatifon the shortest path problem given that the angths are
non negative. Meyn [9] applied this technique itviey complex networks problem. We are going to lgppto
production planning problem.
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2. Dijkstra’s Model

Dijkstra’s algorithm can be described as an iteeaprocedure that repeatedly attempts to imprave a
initial approximation {F(j)} of the exact values §f(j)}. The initial approximation is F(i)=0 and RE « for j=2, 3,
e N

The method was designed for minimum cost path lpmhwhere negative distances are not allowed but
cycles are
permitted. It finds the route by cost precedentat, is, by selecting option with minimum F(j) value

If F(1)<wo, then

U=u\{k} 1)
F() = min{f(j), D(k , j) + F(K)} ,jin ws(k) (2
K = arg min {f(j): j in u} 3)

Where U is the set of cities that are not yet pseed. S(j) denote the set of immediate succes$arisyg. The
computation ends if either the destination citg méxt to be processed, that is, k=n or F(k). T his implies that at
this iteration F(j) =o for all the cities j that are yet to be procesard the conclusion is that these cities cannot be
reached from city 1. Therefore, when city k is mssed, the {F(j)} values of its immediate successbat have not
yet been processed are updated in accordance wAtite? that, the next city to be processed is whese F(j) value

is the Smallest over all the unprocessed citiesgué). After city k is processed, it is immedigteleleted from
being used. The above formulation does not exiaim tours are constructed. It only updates thetten§tours.

2.1 Bellman equation

A Bellman equation is a necessary condition faimoglity associated with the mathematical optinizat
method known as dynamic programming. The princggeerts that if the policy function is optimal foe infinite
summation, then it must be the case that whatdwerirtitial state and decision, the remaining deaisi must
constitute an optimal policy with regard to thetstaesulting from that first decision. In additioa, Bellman
equation refers to a recursion for expected retreward). Richard Bellman is widely accredited widtognizing
the common structured dynamic problem and showmg backward induction can be applied to solve htiges
of sequential decision problems (SDP) under ris#t ancertainty. The term SDP was later change tcaghn
problem.

Given an appropriate initial condition

X,UX, the canonical infinite horizon dynamic programmprgblem is

Max 3B (x, %) =V (x)

Xis1ft=0 t=0
Subject te tonstraints
{x..}Or(x),0t=0412, (4)
x is a vector of state and control variables, indexed by distnetet. 0< £ <1 is the discount factor [2]. Equation
(4) is known as Bellman equation. The recursive restateofi¢f) equation is

V(x) = max [F(x,y)+ Bv(y)OxO X (5)
yar (x
The function V that solves the Bellman equation is calledviiiee function. The value function describes the
optimized value of the problem as a function of state varsablée function V(y) that describes the optimal choice
as a function of the state is called the policy function. Tipeeted reward for being in a particular state s following
some fixed policyr is related as reward

V" (s)=R(s)+ ) P(s/s, M (s " (s) (6)

R(s) is the return function. (6) describes the etgukreward for taking the action prescribed by sqaiicymn.
Relating equations (3) and (4) , we have

F(y) = min f (.1, %) + R (%)

KYra
Subject to

{x..}0Or(),0t=022.....n 7)
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F(y,x) is the function of the state variable whiteis the return function. For a deterministic SD#Pg, transition
probabilities are usually degenerate. We can reptabe state variables by deterministic function

x..= f.ls.s) ®

2.2 Continuity property: For eachj in Dijkstra’s model, ifS}-1—s-1in S-1, andy’j— y; in Y,, asn—, where
Y — Yj(s'-1), for alln, theny, — Yj(s-1).

In this case, eadh is the closed (hence, compact) graph of the seedainapping

§-1 into Yj(5-1) in the compact spa& ; x Y;. We require tha§ = f ;(F;) for allj =

1, 2,. . .,n so that, in particula§, = f,(F;), whereF; = {sO}XYl(sé). Thus, eacl§ consists of the set of feasible
points, that is, attainable states in pejjidcity) j.

2.3 Efficiency (finite optimality). Let x ¢ X. Thenx is efficient(relative toa) if, for eachy in X and for eactN
such thatsy(y) = Su(X), we haveCy(x|e) < CN(y|a). Also known adinite optimality this criterion was originally
introduced in a special case by [8], who calldihite horizon clamped endpoint optimality

Let X%(a) denote the subset &f consisting of efficient strategies. Then the éffi¢ strategies exists, that is, @
CX%a) L X provided each of the spacesanid $.; is discrete (Although [12] assumed that the period costs were
uniformly bounded, which has no effect on the dgéin of efficient strategy.) Before continuing Witour
comparisons of optimality criteria, given a sufict condition for efficient solutions to exist inetcase ofY; and
S-1. Fix N, and for eaclsL] S, let Xy(s) denote the set dfi-horizon feasible strategies which attain st the
end of periodN, that is,

Xu(9) = {x U Xy =s} = s(9).
Sinces, is continuous, we thus obtain a partitioty(s) : s L1 Sy} of Xy consisting of compact sets, as well as a set-
valued mapping—Xy(s) of Sy into Xy with compact, nonempty values. Now, for eAtands L1 S, consider the
optimization problem MinCy x/a )

XOXy ()

If we let X' (Sl) denote the set of optimal solutions to this peafl then this set is a closed, nonempty subset of
Xx. We thus obtain another compact-valued set mapgiig into Xy given byseX y (sla). If we define

(@) =X\ (sla),
oS,

so that Yy, (a) are nonempty and nested downward apdy, (@) = N5 X n

then it is not difficult to see that the efficiesblutions are precisely the elements 9(:\, (a) that is,X%(a) =

xla)

The following gives a sufficient condition for te&istence of efficient solutions—in the continusteste case.

2.4 Theorem :If, for each N, the set-valued mapping-sXy(S) is continuous , then efficient solutions existf tha
is, X(a)) #@, and X(«) is compact, for alD < a < 1.
Proof. It follows from our hypothesis and [6], that the-salued mapping [1X'y (sl is upper semi-continuous .
Consequently, the spa¥é(«) is compact for eacN. Hence X' () is the intersection of a descending sequence of
compact, nonempty sets, and is thus, compact amehmaty.
This generalizes the existence result for efficgmiutions established in [12] for the discretdestase.
3.0 Let MJ be a Bakery Outfit with its productiofapning period for one year broken into 4 quartéet the
expected sale on quarterly basis be estimatedeasmqeds in the table below:

Table 1: Annual Estimate

Quarter No| Estimated sales units ~ Cumulative saiés U
1 600 600

2 700 1300

3 500 1800

4 1200 3000
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The cost of producing,, units is 50X nairaandstoragecostsareestimatecat 2.00 naira per unit per quarter. The
planning problem consist of determining quartentgductions X and inventory to meet the sales requirement at
minimum total cost.

Solution
Xn = production in the n-quarter, % inventory at the end of the n-quarter. Let eagartgr represent a stage. For
any period, inventory at the end of the perigiby
Y n =¥Yn1tXn-S, Thus, the return function of thd guarter with respect to tablel is
R(Yn-1,Xn) = 50% + 2yh1

For stage 4
F1 =50x% + 2y; Subjectto, y=ys +x4,— 1200

= 60000 — 48y
For stage 3
F,=50x3 + 2y2 +60000 -48y3 , subject to , y3 =y23+x500> 0, x3> 0

= -46y + 94000
For stage 2
F3=50% + 2y; — 94y, +94000, subject to ¥ y; + X,— 700

= -48y +35000
For stage 1
F, = 50x% + 2y, — 48y + 35000 subject toy= yp + X, — 600

=2x% - 46y + 63800.
Now using backward substitution, we have that 800 implies that that;y= y, = 0. i, = 63800 — 1200 = #62,600

Y,=0, =300, y=0. %x=600, % =700 %-800 and x= 9000
Conclusion

Uncertainty in production sector is a major profl&he optimal pattern of production, storage aaldssin
a company guarantees growth and sustainable deweltupn any environment. Dijkstra’s model finds tbetes by
cost precedence obtaining the F(j) value with mimmcost. There are two important variables in dyioam
programming problem, the state variables and teeside variables which act as the control variablee reward or
payoff function depends on the realized state awistbn from that period. The idea of this moddbased on the
fact that for every minimum route, all costs ar@sidered as positive humbers and that is why negalistances
are not considered.

One major limitation of this modil that it can not be used in cases where the mktwader
consideration is cyclic negative. For such caseleast one pair of distinct city (i, j) using e¢joa (2), one cannot
compute the F(j) value before one computes thevigfi)e neither can the F(i) value be computed leefoe F(j)
value. However, this model is instructive in thiastiggests that the solution of equation (2) canadrded out not
just by the order dictated by the constraints htlier in an order dictated by the values of {{(f}at is, equation

3).
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