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Abstract 
 

In this work, we present Dijkstra’s model as it relates to Richard Bellman 
equation. This model finds the routes by cost precedence. It is numerically 
illustrated using the model to obtain the overall optimal policy that 
minimizes the total cost. We also describe an approach for exploiting 
structure in Markov decision processes with continuous state variables. 
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1.0 Introduction  
 
Dijkstra’s algorithm is one of the most popular algorithms in computer science and operations research. This model 
was strongly inspired by Bellman’s principle of optimality and both conceptually and technically constitute a 
dynamic programming successive approximation procedure per excellence. Gass and Harris [5] in the Encyclopedia 
of Operations research and management science described this model as a “node labeling greedy algorithm” and a 
greedy algorithm described as “a heuristic algorithm, that at every step selects the best choice available at each step 
without regard to future consequences”. 
 The objective of this paper is to present Dijkstra’s model and its relationship to the methods and techniques 
of dynamic programming as presented by [3]. Riano [10] proposed the stochastic production planning model for 
multi-period, multi-product system, where the lead time to produce a product may be random. The model determines 
release times for products that guarantee the requirements in each time period are met with  desired probabilities at a 
minimum cost. Riano et al (2003) further described how an advanced planning model (stochastic production 
planning) can be integrated with discrete event simulation model to make the simulations more realistic and 
informative and compared the performance of Stochastic production planning model with the material requirements 
planning model in a simulation study. Graves [7] identified a set of tactical decisions that are critical for handling 
uncertainty in production planning and described how these tactics can be incorporated into production planning 
systems as a proactive counter measures to address various forms of uncertainty. 
 Dynamic programming is a recursive method for solving sequential decision problems SDP. SDP can 
assume two types: discrete time and stochastic types. Different researchers have discovered backward induction as a 
way to solve sequential decision problems involving risk and uncertainty ([1] and [4]). They used backward 
induction to find optimal decision rules in games against nature and subgame perfect equilibrium of dynamic multi-
agent games. Dynamic programming techniques can be used to develop a model for production planning and 
inventory control problem. Smith and Pass [13] investigated the problem of finding the best potential partner from a 
fixed number of potential partners using dynamic programming approach. Dijkstra’s algorithm is a clever method 
for solving dynamic programming functional equation for the shortest path problem given that the arc lengths are 
non negative. Meyn [9] applied this technique in solving complex networks problem. We are going to apply it to 
production planning problem. 
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2. Dijkstra’s Model 
 Dijkstra’s algorithm can be described as an iterative procedure that repeatedly attempts to improve an 
initial approximation {F(j)} of the exact values of {f(j)}. The initial approximation is F(i)=0 and F(j)= ∞ for j=2, 3, 
…, n 
 The method was designed for minimum cost path problem where negative distances are not allowed but 
cycles are  
permitted. It finds the route by cost precedence, that is, by selecting option with minimum F(j) value.   

If  F(1)<∞, then 
   U=u\{k}                           (1)                                                                         

 

       
      F(j) = min{f(j), D(k , j) + F(k)}   , j in u∩s(k)          (2)                                                                                         
            K = arg min {f(j): j in u}                 (3)                                                                                                                        

Where U is the set of cities that are not yet processed. S(j) denote the set of immediate successors of city j. The 
computation ends if either the destination city n is next to be processed, that is, k=n or F(k) = ∞. This implies that  at 
this iteration F(j) = ∞ for all the cities j that are yet to be processed and the conclusion is that these cities cannot be 
reached from city 1. Therefore, when city k is processed, the {F(j)} values of its immediate successors that have not 
yet been processed are updated in accordance with 2. After that, the next city to be processed is one whose F(j) value 
is the Smallest over all the unprocessed cities using (3). After city k is processed, it is immediately deleted from 
being used. The above formulation does not explain how tours are constructed. It only updates the length of tours. 
 
2.1 Bellman equation  
 A Bellman equation is a necessary condition for optimality associated with the mathematical optimization 
method known as dynamic programming. The principle asserts that if the policy function is optimal for the infinite 
summation, then it must be the case that whatever the initial state and decision, the remaining decisions must 
constitute an optimal policy with regard to the state resulting from that first decision. In addition, a Bellman 
equation refers to a recursion for expected return (reward). Richard Bellman is widely accredited with recognizing 
the common structured dynamic problem and showing how backward induction can be applied to solve huge class 
of sequential decision problems (SDP) under risk and uncertainty. The term SDP was later change to dynamic 
problem.   
 Given an appropriate initial condition 

                          ,0 Xx ∈  the canonical infinite horizon dynamic programming problem is  
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x is a vector of state and control variables, indexed by discrete time t. 10 ≤≤ β  is the discount factor [2]. Equation 

(4) is known as Bellman equation. The recursive restatement of (4) equation is  
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The function V that solves the Bellman equation is called the value function. The value function describes the 
optimized value of the problem as a function of state variable x. The function V(y) that describes the optimal choice 
as a function of the state is called the policy function. The expected reward for being in a particular state s following 
some fixed policy п  is related as reward  
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R(s) is the return function. (6) describes the expected reward for taking the action prescribed by some policy п. 
Relating equations (3) and (4) , we have 
               Ft (yt) = min f (yt-1, xt) + R (yt) 
                          0≤xt≤yt-1                   
 Subject to                                                                                                                                                                           

                       }{ ntxx tt .....,,2,1,0),(1 =∀Γ∈+       
(7) 
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F(y,x) is the function of the state variable while R is the return function. For a deterministic SDPs, the transition 
probabilities are usually degenerate. We can represent the state variables by deterministic function  

                        ( )ttkt
ssfx '

,1
=+                                                                  (8) 

2.2 Continuity property : For each  j in Dijkstra’s model,  if sn
j−1→sj−1 in Sj−1, and yn

j→ yj in Yj, as n→∞, where 
yn

j → Yj(s
n
j−1), for all n, then yj → Yj(sj−1). 

In this case, each Fj is the closed (hence, compact) graph of the set-valued mapping 
sj−1 into Yj(sj−1) in the compact space Sj−1 × Yj . We require that Sj = f j(Fj) for all j = 
1, 2, . . . ,n so that, in particular, S1 = f1(F1), where F1 = {s0}×Y1(s

0). Thus, each Sj consists of the set of feasible 
points, that is, attainable states in period j (city) j. 
 
2.3 Efficiency (finite optimality). Let x є X. Then x is efficient (relative to α) if, for each y in X, and for each N 
such that sN(y) = SN(x), we have CN(x|α) ≤ CN(y|α). Also known as finite optimality, this criterion was originally 
introduced in a special case by [8], who called it finite horizon clamped endpoint optimality. 
 
Let Xe(α) denote the subset of X consisting of efficient strategies.  Then the efficient strategies exists, that is,  Ø 
СXe(α) ⊆  X, provided each of the spaces Yj and Sj−1 is discrete. (Although [12] assumed that the period costs were 
uniformly bounded, which has no effect on the definition of efficient strategy.) Before continuing with our 
comparisons of optimality criteria, given a sufficient condition for efficient solutions to exist in the case of  Y j and 
Sj−1. Fix N, and for each s∈  SN, let XN(s) denote the set of N-horizon feasible strategies which attain state s at the 
end of period N, that is, 

XN(s) =  {x ∈  XN : sN(x) = s } =  s−1
N (s). 

Since sN is continuous, we thus obtain a partition {XN(s) : s ∈  SN} of XN consisting of compact sets, as well as a set-
valued mapping s→XN(s) of SN into XN with compact, nonempty values. Now, for each N and s ∈  SN, consider the 

optimization problem.                )α/(min
)(

xCN
sXx N∈

 

If we let X*
N (s|α) denote the set of optimal solutions to this problem, then this set is a closed, nonempty subset of 

XN. We thus obtain another compact-valued set mapping of SN  into XN given by s єX*
N (s|α). If we define 
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then it is not difficult to see that the efficient solutions are precisely the elements of  ( )αχ *
N , that is, Xe(α) =  

( )αχ *
N  

The following gives a sufficient condition for the existence of efficient solutions—in the continuous state case. 
 
2.4 Theorem : If, for each N, the set-valued mapping s_→XN(s) is continuous , then efficient solutions exist, that 
is, Xe(α) ≠Ø, and Xe(α) is compact, for all 0 < α ≤ 1. 
 Proof. It follows from our hypothesis and [6], that the set-valued mapping s_∈X*

N (s|α) is upper semi-continuous . 
Consequently, the space X*

N(α) is compact  for each N. Hence, X* (α) is the intersection of a descending sequence of 
compact, nonempty sets, and is thus, compact and nonempty.  
This generalizes the  existence result for efficient solutions established in [12] for the discrete state case. 
3.0 Let MJ be a Bakery Outfit with its production planning period for one year broken into 4 quarters. Let the 
expected sale on quarterly basis be estimated as presenteds in the table below: 

Table 1: Annual Estimate 

Quarter No Estimated sales units Cumulative sales units  

1 600 600 

2 700 1300 

3 500 1800 

4 1200 3000 
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 The cost of producing Xn units is 50Xn naira and storage costs are estimated at 2.00 naira per unit per quarter. The 
planning problem consist of determining quarterly productions Xn and inventory to meet the sales requirement at 
minimum total cost. 
  
Solution 
Xn = production in the n-quarter, yn = inventory at the end of the n-quarter. Let each quarter represent a stage. For 
any period, inventory at the end of the period yn is  
Yn = yn-1+Xn-Sn Thus, the return function of the nth quarter with respect to table1 is  
         Rn(yn-1 , xn) = 50xn + 2yn-1 

For stage 4 
F1 = 50x4 + 2y3  Subject to , y4 = y3 +x4 – 1200 
     = 60000 – 48y3 
For stage 3 
F2 = 50x3 + 2y2 +60000 -48y3 , subject to , y3 =y2 + x3 – 500 ≥ 0 , x3 ≥ 0 
    = -46y2 + 94000 
For stage 2 
F3 = 50x2 + 2y1 – 94y2 +94000, subject to , y2 = y1 + x2 – 700 
     = -48y1 +35000 
For stage 1 
F4 = 50x1 + 2y0 – 48y1 + 35000 subject to y1 = y0 + x1 – 600 
    =2x1 -  46y0 + 63800. 
Now using backward substitution, we have that x1 = 600 implies that that y1 = y0 = 0. F4 = 63800 – 1200 = #62,600 
 

Y2 =0,  y3 = 300,  y4 = 0.  x1= 600, x2   =  700 x3 = 800 and x4 = 9000  
Conclusion  
 Uncertainty in production sector is a major problem. The optimal pattern of production, storage and sales in 
a company guarantees growth and sustainable development in any environment. Dijkstra’s model finds the routes by 
cost precedence obtaining the F(j) value with minimum cost. There are two important variables in dynamic 
programming problem, the state variables and the decision variables which act as the control variable. The reward or 
payoff function depends on the realized state and decision from that period. The idea of this model is based on the 
fact that for every minimum route, all costs are considered as positive numbers and that is why negative distances 
are not considered. 
                One major limitation of this model is that it can not be used in cases where the network under 
consideration is cyclic negative. For such cases, at least one pair of distinct city (i, j) using equation (2), one cannot 
compute the F(j) value before one computes the F(i) value neither can the F(i) value be computed before the F(j) 
value. However, this model is instructive in that it suggests that the solution of equation (2) can be carried out not 
just by the order dictated by the constraints but rather in an order dictated by the  values of {f(j)}, that is, equation 
(3).   
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