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 Abstract 

 
This paper extended the work of Chigbu and Nduka (2006), 

which obtained interesting results on closed form eigenvalues for 
comparing both orthogonal and rotatable Central Composite Designs 
(CCDs), by obtaining a majorization result. The majorization result is 
based on the principle of Schur’s ordering of designs and was used to 
compare the replicated cube plus one star orthogonal CCD and the 
replicated star plus one cube CCD. Based on our result the former 
CCD is better than the latter CCD.   

 
 

 
1.0   Introduction 

 
        This paper considers the optimal choice between the axial points (star) and non-axial points (cube) replications 
in the central composite design (CCD) with α -orthogonal structure proposed by [1]. This design has been widely 
used in agriculture, industrial and scientific investigations, since the design not only reduces experimental cost but 

also provide more efficient parameter estimation. The CCD is made up of a factorial portion consisting of a k2
factorial design, axial portion of k pairs of points with the ith pair consisting of two symmetric points on the ith 
coordinate axis (i = 1, 2, …, k) at a distance of α from the centre of the design, which coincides with the centre of 

the coordinates systems by the coding scheme, and 0n ( 1≥≥≥≥ ) centre points. The values of α and 0n can be chosen 

so that the CCD acquires certain desirable features; see, for example, [3]. Draper  and Draper and Lin ([4] and [5]) 
have shown that not only the centre points can be replicated but the cube and star as well. In that case, the CCD has 

a total number of points equal to 021 22 nknnk ++++++++ , where 1n is the number of cube and 2n is the number of star. 

        Replicating the design points in an experiment is so much desirable in the sense that it allows for the estimation 
of the pure error in the experiment. From the statistician’s perspective, a design is deemed good if it ensures small 
variance of estimates of linear functional. Generally, the value of the variance of linear functional depends on the 
information matrix of the design as well as on restriction imposed on its combinatorial parameters; see, for example, 
[6] and [7]. The effects of restrictions, such as orthogonality, rotatability, etc that induce desirable properties in 
designs, on the variances of quadratic model have been studied by [10]. The study showed that restricted CCD is 
better than unrestricted CCD. Chigbu and Nduka [2] considered the effect of replicating either the cube or star points 
of a CCD on some optimality criteria. The paper computationally compared two variations of restricted CCD, 
namely the replicated cube plus one star and replicated star plus one cube. The information matrix of the restricted 
CCD was expressed in terms of the number of cube and star and then applied the principle of alphabetical optimality 
criteria to know the portion of CCD, which optimizes it. Interesting results about closed form eigenvalues for both 
orthogonally and rotatably restricted CCD were obtained in that work. The results show that replicated cubes plus 
one star is better than replicated star plus one cube.  
         In this paper, we go a step further by proving some majorization results for comparing the two variations of 

orthogonally restricted CCD considered in [2]. Given any two designs η  and η ′′′′  with information matrices M  and 
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M ′′′′  respectively, η is a better design if and only if MM ′′′′≥≥≥≥ ; see [6] and [12]. Marshall and Olkin [9] devoted 

one chapter of the basic book on majorization to multivariate majorization where different orderings such as the one 
above are presented. The majorization results proved in section 3 are based on the above inequality. 
 
 

 Some other notations used are explained next. Ξ  is the set of all designs in a regression model, so η and

η ′′′′ ∈∈∈∈ Ξ . Let Ξ∈∈∈∈η  denote the replicated cube plus one star orthogonal CCD with corresponding information 

matrix M . Similarly, let Ξ∈∈∈∈′′′′η  denote the replicated star plus one cube orthogonal CCD with corresponding 

information matrix M ′′′′ . Then the ith eigenvalue of M  is denoted by )(ηλi  and that of M ′′′′  is denoted by )(ηλi ′′′′ .   

 
2.0 THE THEORITICAL FRAMEWORK 
For completeness the framework of this study shall follow the same pattern with that of [2] and [10]. In order to 
show how the orthogonal restriction is made in choosingα , attention will be given to the expanded design matrix, 

X and the information matrix, XX ′′′′ for the general CCD.  

 Consider the response surface, say )X,...,X,φ(X k21 , represented in the experimental area 1][ ±±±±±±±±α,  

by the second-order function 
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where, for orthogonality 0====∑∑∑∑
====

N

1j
ijX  ki ,...,, 21====∀∀∀∀ , jy is the jth response, jε  is the random error 

component associated with the observation jy , iiiii000 β,β,β,β ′′′′ are the unknown parameters of the model and 

1X , 2X , …, kX are the independent variables. Compactly, (2.1) can be written in vector notation as  

     eXβY ++++====                (2.2) 

where Y is the )( 1××××N  response column vector, X  is the )( PN ××××  matrix of independent variables of rank P, β  

is the 1)( ××××P column vector of the unknown parameters, and eis the error column vector of order )( 1××××N  with 

0e ====)(E  and Iee 2
eσE ====′′′′)( . Taking the average of the responses jy  in (2.1), we obtain  
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By rescaling the response variablejy , we obtain 
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By the same token (2.2) can be rescaled to  

    )( eeβXyY −−−−++++====−−−− ,              (2.5) 

where ).,..,,(y ′′′′==== yyy , )e.,..,e,e(e ′′′′==== and X  is the ))(( 1−−−−×××× PN design matrix with 

221 /))(( ++++++++==== kkP . The structure of the design matrix X  is given in [2]. The corresponding information matrix 

for the design may be written as 

    )M,I,I(XX 21 3tk MMdiag====′′′′ .              (2.6) 

In (2.6) 2k αnnM 211 22 ++++==== , 12 2 nM k====  and kk qqp JI)(M ++++−−−−====3  where kI is the )( kk ×××× identity 

matrix, tI  is the )( tt ××××  identity matrix, 21 /)( −−−−==== kkt  and 11′′′′====kJ  where 1 is a column vector of ones of k 
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components. The entries of the sub-matrix3M , p and q, are given as Nαnnnq 2kk /)( 2
211 222 ++++−−−−====  and

22 nαqp 4++++==== . Clearly by observing 3M , a CCD acquires orthogonal structure if q is equal to zero.   

 
3.0 Ordering Of Orthogonal CCD 
 
Besides the uniform ordering of designs, which is based on the variance of linear functionals defined on the set of all 
states of the observed object, another ordering can be useful in experimental design; see, [8]. For any information 

matrix M with ordered eigenvalues )...)) k21 ηληληλ (≤≤≤≤≤≤≤≤≤≤≤≤ (( where multiple eigenvalues appear in the  
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sequence )...)) k21 ηληληλ (,,, ((  as many as times as their multiplicity is large, a design η is better than the 

design η ′′′′  according to Schur’s ordering if and only if ∑∑∑∑
====

r

i
i ηλ

1
)( ≥≥≥≥ ∑∑∑∑

====
′′′′

r

i
i ηλ

1
)(  and if and only if there is strict 

inequality for at least one r. The designs η and η ′′′′ are said to be equivalent according to Schur’s ordering if and 

only if there is equality sign for },...,{ kr 1∈∈∈∈ .  

 Following the definition of orthogonal CCD in section 2, that is setting q = 0 in p, the information matrix in 
(2.6) becomes 

    )I,I,IXX t0t2k0diag( pMM====′′′′ ,         (3.1) 

where  
21

0
/)( NM ππππ====  and 2

212
0 22 nNNp /))(( /ππππππππππππππππ −−−−++++==== . The eigenvalues of the information matrix 

starting with the smallest are 0p  with k multiplicities, ππππ  with 21 /)( −−−−kk  multiplicities, and 0M  with k 

multiplicities, where 12 nk====ππππ . To compare replicated cube plus one star and replicated star plus one cube, a 

proposition based on Schur’s ordering will be proved for which we will need the following established result.  

Proposition 3.1: If A is an )( kk ××××  symmetric matrix with diagonal elements kaa ...,,1  and ordered eigenvalues

kµ...µµ ≥≥≥≥≥≥≥≥≥≥≥≥ 21 , then ∑∑∑∑ ∑∑∑∑
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PROOF:  
Denote )...,,D kµµ1diag(≡≡≡≡ . Let ku...,,u1 be the orthonormal eigenvectors of A corresponding to
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which implies that 
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Proposition 3.2: Given the information matrices M  and M ′′′′ obtained from using the respective orthogonal CCDs 

η  and η′′′′ and the corresponding eigenvalues of the matrices η)λi ( and )ηλi
′′′′( , then ∑∑∑∑
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iiMuu′′′′ ≥≥≥≥ ii uMu ′′′′′′′′ ≡≡≡≡ ih . According to Proposition 3.1, we have that 
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for r = 1, 2, …, k, this implies that η  is better in the sense of Schur’s ordering than η′′′′ .      

 
4.0 Conclusion 
 
Proposition 3.2 shows that the replicated cube plus one star orthogonal CCD is better than replicated star plus one 
cube orthogonal CCD. This implies that adding more points to the non-axial points will give better estimate of the 
parameters of second-order model than adding more points to the axial points.  
 Hence, in choosing points to be replicated in a quadratic design where the adequacy of the design is based 
on the information matrix, replicated cube plus one star orthogonal CCD is the better choice.    
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