Journal of the Nigerian Association of Mathematical Physics
Volume 17 (November, 2010), pp 353 - 358
© J. of NAMP

Metric for Measuring Software Power

Veronica V.N. Akwukwuma and Emmanuel E. Onibere
Department of Computer Science
University of Benin, Benin City,
Edo State, Nigeria.

Abstract

The term “power” has been used to describe Softwdre
Software community especially Software vendors. Hoer, there has
been no formal definition of Software power, nor ahere been any
scientific method of determining Software power. it therefore the
objective of this paper to examine the attributesSnftware product
with a view to determining how they are defined ametasured and to
formally define precisely Software power, and praggoa metric for
measuring Software power.

We give a precise definition of Software power, aaldo propose
a function oriented metric for measuring Softwarewer.

Keywords: Software attributes, Software power, measuremaftw@re metric, function point
1.0 Introduction

A large number of measures have been proposectilitéhature to measure Software attributes, (H], [3],
[4]). It was observed that power has not been imeatl anywhere as one of the attributes of Softwaeither has it
been defined or measured in Software engineeriaggth it is commonly used by Computer vendors tciiles
their software. Power was identified as a compaaitebute of Software hence it was added to thwvigrg list of
software attributes [5]. The presence of these adtributes of power in a software product only aade the
presence of the quality attribute, power, of théiveare product but it does not in anyway quanttfg tSoftware
power. In other words it does not state the meastitke attribute that makes it possible to compheequality of
the software with other Software in terms of theawers. Fenton and Pfleeger [2] in quoting Flinteissaid,
“What is not measurable make measurable.” Thisgghrattributed to Galileo Galilei suggests that ohthe aims
of science is to measure attributes of things iictvlwe are interested. Thus, as scientists, weldhme creating
ways to measure our world, and where we can alressure we should be making our measurement better

There is variety in how we use measurement, buétisea common thread running through in every casene
aspect (attribute) of a thing (entity) is assigedescriptor that allows us to compare it with ath&he rules for
assignment and comparison may not be explicitlinaaes but it will always be clear that we makeaamparisons
and calculations according to a well-defined serués. It was noted in [2] that we are now ablenteasure
attributes that were previously thought unmeaserablthe physical sciences, medical sciences, eomso and
even some social sciences.

Kafura [6] opined that to make Software an engiabker product, it is important that the designers,
implementors and maintainers of Software systemasbiieeto express the characteristics of the systerbjective
and quantitative terms. Quantitative measures alfityuare collectively referred to as Software rigstr

Unlike other engineering disciplines, Software e@egring is not grounded in the basic qualitativeslaf
physics. Absolute measures are uncommon in thev8amdtworld. Instead we attempt to derive a setndfréct
measures that lead to metrics. Because Softwarsuresaand metrics are not absolute they are opdaltate [2,
4].

Corresponding author: E-mailjakwukwuma@yahoo.com Tel. +2348033440003
Journal of the Nigerian Association of Mathematic&hysics Volumel7 (November, 201Q)353 - 358
Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

Our objective in this paper is to propose a funttioiented metric for measuring Software “powerieTaim is
that measurement makes concepts more visible anefftiie more understandable and controllable.

2. Background

According to [2], Software measurement was onceolscure and esoteric specialty, but it has now ineco
essential to good software engineering. Many of kst software developers measure characterisfidheo
Software to get some sense of whether the requiresnage consistent and complete, whether the désighhigh
quality, and whether the code is ready to be tegtaceffective project manager measures attribofgzocess and
product to determine when the software will be ye&ar delivery, and whether the budget will be esaed.
Informed customers measure aspects of the finalymtoto determine if it meets the requirements)qreetations
and if it is of sufficient quality, and maintainemsust be able to assess the current product teveae should be
upgraded and improved.
Measurement, according to [7], in most general $ercan be regarded as the assignment of numbeltgeots in
accordance with some rules (measurement functide.property of the objects that determines trsigament
according to the rules is called magnitude, thesuexble attribute; the number assigned to a péati@bject is
called its measure, the amount or degree of itsnihadg. It is to be noted that the rule defineshitbe magnitude
and the measure.
According to [8] the importance of measuring atités of known objects in precise quantitative tehas long been
recognized as crucial for enhancing the understandf an environment. Dhyani et al. [8] went ors&y that this
note has been aptly summarized by Lord Kelvin:

“When you can measure what you are speaking alend, express it in

numbers, you know something about it; but when gan not express it in

numbers, your knowledge is of a meager and unaat@ly kind; it may be the

beginning of knowledge, but you have scarcely innthoughts advanced to the

state of science.”
Rigorous measurement of Software attributes camigeosubstantial help in the evaluation and impmo&et of
Software products and processes. Symons [9] oplmed to make Software requirements unambiguoaseéble
and testable, then make the characteristics mdasura
As a result of this, a few proposals were madé§ed on:

v' Measurement Theory [10]
v/ Axiomatic approach [11]

Measurement Theory specifies the general framewonkhich measures should be defined. First, an eoapbi
relation system should be specified to define thations among the entities as far as the studigtbwte is
concerned. Then, a numerical relation system imeéef to provide values for the measures of thebate and
relations among these values. A measure is theb@ilween the empirical relation system and numileraation
system that maps entities into values and empiriglaltions among entities into formal relations agmwalues.
Axiomatic approaches formally define desirable ntips for the measures of a given Software ateiblihese
properties are properties of a numerical relatigstesn of measures. However, they indirectly afteet empirical
relation system.
According to [12], measurements can be eitliszct or indirect. Direct measures are taken from a feature of an
item. Indirect measures associate a measure tataréeof the object being measurd&irect measures in a
Software product include: lines of codes (LOC), execution speed, memory, sinel defects reportethdirect
measures include: functionality, quality, complexity, efficiency, liability, and maintainability.Size-oriented
metrics are used to collect direct measures of softwaggnerring output and qualitfzunction-oriented metrics
provide indirect measures which focus on functidyand utility.
Rule [13] opined that what the Software communiggats, is a measure of the quantity of informatimtessing
functionality the customer requires of the Softwandependent of the technology used and the pesipdeproduce
it. This is what [14] called a measure of ‘functidsize’. According to [13] Functional size measneat methods
are such a family of techniques. This includes adiit’'s ‘Function Point Analysis’ (FPA), Symons’ ‘MK
Function Point Analysis’, Boeing’s ‘3D Function Rts’ (3DFP), and ‘Common Software Metric Internatb
Consortium - Full Function Points’ (COSMIC-FFP).€Tfirst function-oriented metric was originally pased and
developed by Alan Albrecht of IBM in 1970. His ight was to measure the size of the functional regquents,

Corresponding author: E-mailjakwukwuma@yahoo.com Tel. +2348033440003
Journal of the Nigerian Association of Mathematic&hysics Volumel7 (November, 201Q)353 - 358
Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

rather than to count the number of lines of cotlestmoving away from a dependence on specific tdoh,

people and development methods. Later work by AHtrein conjunction with John Gaffney, stabilizedda
popularized the technique, leading in 1984 to themftion of the International Function Point Us&soup

(IFPUG) in the USA. Function points represent thectionality of a system. Many empirical studiesnpdo an

existing relationship between these points and atnoiuwork-effort necessary to develop them. [16ahd17]

3. Framework

Intuitively, Power is a measurement concept thabissidered extremely relevant to engineering peteduHere, the
framework “Property Based Software Engineering Mieament” proposed by [11] was adapted as a guidmiin
search for the new measure as follows:

Applying the framework, power cannot be negativeerty Power 1), and we expect it to be null wizegystem
does not contain any elements (property Power.Z)eimodules do not have elements in common, wecéexpe
Power to be additive (property Power.3). Consedyewe defined the Power of a system S, as a fandtiower(S)
that is characterized by the following propertiesver.l to Power.3.

PROPERTY Powerl Nonnegativity. The power of a system S = <E, R> is nonnegative> Power(S)= 0
(Power.l)

PROPERTY Power.2 Null Value. The Power of a system S = <E, R> is null if Enspgy, E =0 = Power(S)
=0 (Power.ll)

PROPERTY Power.3 Module Additivity. The Power of a system S = <E, R> is equal to time sf the Power
of two of its modules = <E,;, Rn> and

m, = <E, Rm2> such that any element of S is an element oéeitf or m,
(my OS and mOS and E= E,0E nand Eng N E o, =0)
= Power(S) = Power (fh+ Power () (PowHy.

For instance, the power of the system S with tldisint modules m m,, and m is the sum of the powers of the
three modules mm,, and m.

3.1 The proposed defined metric of Software power

In order to give Software Power an identity andsthmake it easily recognizable, the theoretical riédin of
Software power was proposed as follows:

Software power (R) is defined as the_effectivenessith which the Software is able to interact with o use
various items of the Computer System during its ogation in relation to the volume and complexity ofthe
items per unit time.

Effectivenessis defined as thability to bring about the result intended [18]. Notatibyalve use the symbd?s
(upper case P, subscript s) to represent Softwaweip Effectiveness is defined as the ability todprabout the
result. Thisability or effectivenessof the Software can be likened to the energy er ahility to do work in
Mechanical power. This ability of the Software danidentified if we can break the Software systato smaller
components. This can be achieved with the Fun®mint Analysi§FPA) techniqueFPA is used to break systems
into smaller components, so they can be betterrstmt® and analyzed. In Software systems, thes@aoemts are
called elementary processes. When these elemgmtacgsses are combined, they interact to form wideacall a
Software system or application. Function Points lsarused to size Software applications. Sizingnisnaportant
component in determining productivity (Output/Inpuiredicting effort, understanding unit cost, adon and so
forth [19 and 20]. Similarly, sizing (functionalzsg)) is an important component in determining abitid do.
Software PowerRy) in this sense is the ability of the Software #ve orthe effectiveness to perform a given task
per unit time relative to the processor speed. #yerslative to the processor speed in that exteality can only

Corresponding author: E-mailjakwukwuma@yahoo.com Tel. +2348033440003
Journal of the Nigerian Association of Mathematic&hysics Volumel7 (November, 201Q)353 - 358
Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

be assessed for a complete hardware/Software systerhich the Software product is a part. According21],
external metrics are applied when executing théwaé. The values of external measures necessipgnd on
more than the Software, so the Software has tovalei@ed as part of a working system. Hence Soéwamver can
be measured in terms of the function point courihefSoftware.

We give the proposettetric as follows:

) FP
TIME * SPEED

Where:

.. (3.2)

Ps

P.= Software Power,

FP=> Number of function point count,

TIME = Execution time,
SPEED = Processor speed.

This represents the rate at which the Softwareopmg work while Processor speed (SPEED) is norngilhgn,
Execution time can be recorded using a stop waieth,number of function point count can be compétédwing

the International Function Point Users Gr@lfPUG) guidelines provided in the Function Point Countirgctices
Manual(FPCPM) version 4.1[22]. Hence, we can derive the powearnf software.

3.2. The unit of Software power

From equation 3.1, the numerator, function poinintds just a number. The processor speed is megsarhertz
(Hz), which is the number of cycles per secondJewvtiie execution time is measured in secondsjshatsay;

No.of functionpointcount

P (unit)=
s (unit SPEED (Cycles/ sec) TIME (sec)

_ No.of functionpointcount

Cycles

That is, Number of function point (FP) count (thenerator) per cycle (the denominator).

We adopted the naméon (pronounced as v-e-e-on, and written for short asupper case V' and subscript ‘n’),
as the unit of Software Power. The tevfion is defined as the number of function point couina Goftware per
mega cycle (the amount of work done by the Softvpere1,000 000 cycles). That is to say’? ¥Q is equivalent to
1FP/mcycle. Multiplying what ever value obtainedpfmcycle by 18 will convert the value to

The numerator, Function point (FP) of equation)8dn be computed using the following equation;
AFP = UFP * VAF .. (3223]
WhereAFP (FP) = adjusted function points
UFP = unadjusted function points
VAF = value adjustment factor

Conclusion

Our proposed metric:

Corresponding author: E-mailjakwukwuma@yahoo.com Tel. +2348033440003
Journal of the Nigerian Association of Mathematic&hysics Volumel7 (November, 201Q)353 - 358
Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

is computable

is consistent in its use of unit

is programming language independent

Empirically and intuitively persuasive (i.e. metrincreases in value as the number of
elementary processes increases)

o S S

These characteristics are in line with what Ejiagy4] called the attributes that characterize @ffee Software

metrics (both derived metrics and the measureslé¢iaak to it). Conclusively, this research work iswed as an

initial step. We believe the metric we proposedeaserally desirable and relevant. Hopefully thseaach work will

provide a foundation which can be built upon.

References

[1] M.L. Cook (1982) Software Metrics: An Introductiand Annoted Bibliography. In ACM SIGSOFT Software
Engineering Notes vol. 7, Issue 2 (April). Pp 80-

[2] N.E. Fenton and S.L. Pfleeger (1997) “Software MstrA Rigorous and Practical Approach, second igdit
PWS publishing company.

[3] S. Morasca and L.C. Briand (1997)owards a Theoretical Framework for Measuring ®afe Attributes.”
IEEE Proceedings of thd"4nternational Software Metrics Symposium (METRI®Z), pp. 119 -126

[4] R.S. Pressman (2001). Software Engineering: A Ricawr’'s Approach, B Edition McGraw Hill. New York.

[5] E.E. Onibere and V.V.N. Akwukwuma (2010) Power: Attribute of Software? (In Press)

[6] D. Kafura (1985), “A survey of Software Metricsm ICommunications of the ACM 0-8991-10-9/85/1000-
0502. PP.502 — 506.

[7] B.R. Boyce, C.T. Meadow and D.H. Kraft (1994), Ma&asnent in Information Science. Academic Press Inc.
Orlando, Fla.

[8] D. Dhyani, W.K. Ng and S.S. Bhowmick (2002), “A Sey of Web Metrics. ACM Computing Surveys,
vol.34, no.4 December, pp.469-503.

[9] C. Symons (2001), Software Measurement and proceSoftware Measurement Service 143 High Street,
Edimbough, Kent TNB SAX. UK. Issue 8, spring p.3

[10] N.E. Fenton and B. Kitchenham (1991) “Validatingft®are measures.” Journal of Software Technology,
verification and Reliability, vol. 1, no. 2, pp.-Z2.

[11] L. Briand, S. Morasca and V. Basli (1996), “Propedased Software Engineering Measurement.” IEEE

Transactions on Software Engineering, vol. 22, pp.168-86, Jan.

Corresponding author: E-mailjakwukwuma@yahoo.com Tel. +2348033440003
Journal of the Nigerian Association of Mathematic&hysics Volumel7 (November, 201Q)353 - 358
Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

[12] D. Calvert (1996), Software Metrics”. Pp.1 — 7. Aable online at

http://hebb.cis.ugguelph.ca/deb/27320metrics1.html,

[13] P.G. Rule (2001) “The Importance of the Size oft®afe Requirements”. Presented at the NASSCOM
Conference, Hotel Oberoi Towers, Mumbai, Indid" 710" February, pp. 15. Available online at

http://www.software-measurement.com/

[14] ISO/ICE 14598 International Standard, “Standard foformation Technology — Software product

evaluation — part 1: General overview”. Availabldioe athttp://www.hmaster.com.glossary/175.html

[15] A. J. Albrecht and J. Gaffney Jr. (1983) “Softwdienctions, Source Lines of Code, and Development
Effort Prediction: A Software Science ValidatiodlEEE Transactions on Software Engineering, vol.8, n

Nov., pp. 639 — 648

[16] J.M. Desharnais and G. Hudon (1990), Adjustment &lléor Function point Scope Factor — A Statistical

Study, in IFPUG, Montreal. 29 pp.

[17] C.F. Kemerer (1987), “An Empirical Validation of fBgare Cost Estimation Models”, Communication of

ACM. Vol. 30, no. 5, May. Pp. 416 — 429
[18] A.S. Hornby (2001), Oxford, Advanced learner’s Rinary of current English. Oxford University Press.
[19] C.F. Kemerer (1992) Measurement for Improved SafwBevelopment, in Conference at the Computer
Research Institute of Montreal (CRIM), Montreal n@da, pp.14.
[20] D. Longstreet (2004), Function Point Analysis Tiain Course. Longstreet Consulting Inc. 11 pp.

Available online ahttp://www.SoftewareMetrics.Com

[21] N. Bevan (1997) Quality in use: “Incorporating humiactors into the Software engineering lifecycle”.

pp.9. Available on line attp://www.usabilitynet.org/papers/qiuhfo7.pdf

[22] FPCPM. (1999) Function Point Counting Practices iddn\Version 4.1, January. 104 pp.

[23] IFPUG. (1999) Function Point Counting Practices M#nRelease 4.0, Westerville, Ohio.

Corresponding author: E-mailjakwukwuma@yahoo.com Tel. +2348033440003
Journal of the Nigerian Association of Mathematic&hysics Volumel7 (November, 201Q)353 - 358
Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

