
Corresponding author: E-mail; vakwukwuma@yahoo.com ; Tel. +2348033440003
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 353 - 358

Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

Journal of the Nigerian Association of Mathematical Physics
Volume 17 (November, 2010), pp 353 - 358

© J. of NAMP
Metric for Measuring Software Power

Veronica V.N. Akwukwuma and Emmanuel E. Onibere

Department of Computer Science
University of Benin, Benin City,

Edo State, Nigeria.

 Abstract

The term “power” has been used to describe Software in
Software community especially Software vendors. However, there has
been no formal definition of Software power, nor has there been any
scientific method of determining Software power. It is therefore the
objective of this paper to examine the attributes of Software product
with a view to determining how they are defined and measured and to
formally define precisely Software power, and propose a metric for
measuring Software power.

We give a precise definition of Software power, and also propose
a function oriented metric for measuring Software power.

Keywords: Software attributes, Software power, measurement, Software metric, function point

1.0 Introduction

A large number of measures have been proposed in the literature to measure Software attributes, ([1], [2], [3],

[4]). It was observed that power has not been mentioned anywhere as one of the attributes of Software, neither has it
been defined or measured in Software engineering though it is commonly used by Computer vendors to describe
their software. Power was identified as a composite attribute of Software hence it was added to the growing list of
software attributes [5]. The presence of these sub-attributes of power in a software product only indicate the
presence of the quality attribute, power, of the software product but it does not in anyway quantify the Software
power. In other words it does not state the measure of the attribute that makes it possible to compare the quality of
the software with other Software in terms of their powers. Fenton and Pfleeger [2] in quoting Flinkelstan said,
“What is not measurable make measurable.” This phrase, attributed to Galileo Galilei suggests that one of the aims
of science is to measure attributes of things in which we are interested. Thus, as scientists, we should be creating
ways to measure our world, and where we can already measure we should be making our measurement better.

There is variety in how we use measurement, but there is a common thread running through in every case. Some
aspect (attribute) of a thing (entity) is assigned a descriptor that allows us to compare it with others. The rules for
assignment and comparison may not be explicit in all cases but it will always be clear that we make our comparisons
and calculations according to a well-defined set of rules. It was noted in [2] that we are now able to measure
attributes that were previously thought unmeasurable in the physical sciences, medical sciences, economics, and
even some social sciences.

Kafura [6] opined that to make Software an engineerable product, it is important that the designers,
implementors and maintainers of Software systems be able to express the characteristics of the systems in objective
and quantitative terms. Quantitative measures of quality are collectively referred to as Software metrics.

Unlike other engineering disciplines, Software engineering is not grounded in the basic qualitative laws of
physics. Absolute measures are uncommon in the Software world. Instead we attempt to derive a set of indirect
measures that lead to metrics. Because Software measures and metrics are not absolute they are open to debate [2,
4].

Corresponding author: E-mail; vakwukwuma@yahoo.com ; Tel. +2348033440003
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 353 - 358

Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

Our objective in this paper is to propose a function oriented metric for measuring Software “power”. The aim is
that measurement makes concepts more visible and therefore more understandable and controllable.

2. Background

According to [2], Software measurement was once an obscure and esoteric specialty, but it has now become
essential to good software engineering. Many of the best software developers measure characteristics of the
Software to get some sense of whether the requirements are consistent and complete, whether the design is of high
quality, and whether the code is ready to be tested. An effective project manager measures attributes of process and
product to determine when the software will be ready for delivery, and whether the budget will be exceeded.
Informed customers measure aspects of the final product to determine if it meets the requirements or expectations
and if it is of sufficient quality, and maintainers must be able to assess the current product to see what should be
upgraded and improved.
Measurement, according to [7], in most general terms, can be regarded as the assignment of numbers to objects in
accordance with some rules (measurement functions). The property of the objects that determines the assignment
according to the rules is called magnitude, the measurable attribute; the number assigned to a particular object is
called its measure, the amount or degree of its magnitude. It is to be noted that the rule defines both the magnitude
and the measure.
According to [8] the importance of measuring attributes of known objects in precise quantitative terms has long been
recognized as crucial for enhancing the understanding of an environment. Dhyani et al. [8] went on to say that this
note has been aptly summarized by Lord Kelvin:

“When you can measure what you are speaking about, and express it in
numbers, you know something about it; but when you can not express it in
numbers, your knowledge is of a meager and unsatisfactory kind; it may be the
beginning of knowledge, but you have scarcely in your thoughts advanced to the
state of science.”

Rigorous measurement of Software attributes can provide substantial help in the evaluation and improvement of
Software products and processes. Symons [9] opined that, to make Software requirements unambiguous, traceable
and testable, then make the characteristics measurable.
As a result of this, a few proposals were made [3] based on:

� Measurement Theory [10]
� Axiomatic approach [11]

Measurement Theory specifies the general framework in which measures should be defined. First, an empirical
relation system should be specified to define the relations among the entities as far as the studied attribute is
concerned. Then, a numerical relation system is defined, to provide values for the measures of the attribute and
relations among these values. A measure is the link between the empirical relation system and numerical relation
system that maps entities into values and empirical relations among entities into formal relations among values.
Axiomatic approaches formally define desirable properties for the measures of a given Software attribute. These
properties are properties of a numerical relation system of measures. However, they indirectly affect the empirical
relation system.
 According to [12], measurements can be either direct or indirect. Direct measures are taken from a feature of an
item. Indirect measures associate a measure to a feature of the object being measured. Direct measures in a
Software product include: lines of codes (LOC), execution speed, memory size, and defects reported. Indirect
measures include: functionality, quality, complexity, efficiency, reliability, and maintainability. Size-oriented
metrics are used to collect direct measures of software engineering output and quality. Function-oriented metrics
provide indirect measures which focus on functionality and utility.
Rule [13] opined that what the Software community needs, is a measure of the quantity of information processing
functionality the customer requires of the Software, independent of the technology used and the people who produce
it. This is what [14] called a measure of ‘functional size’. According to [13] Functional size measurement methods
are such a family of techniques. This includes Albrecht’s ‘Function Point Analysis’ (FPA), Symons’ ‘MKII
Function Point Analysis’, Boeing’s ‘3D Function Points’ (3DFP), and ‘Common Software Metric International
Consortium - Full Function Points’ (COSMIC-FFP). The first function-oriented metric was originally proposed and
developed by Alan Albrecht of IBM in 1970. His insight was to measure the size of the functional requirements,

Corresponding author: E-mail; vakwukwuma@yahoo.com ; Tel. +2348033440003
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 353 - 358

Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

rather than to count the number of lines of code, thus moving away from a dependence on specific technology,
people and development methods. Later work by Albrecht, in conjunction with John Gaffney, stabilized and
popularized the technique, leading in 1984 to the formation of the International Function Point Users Group
(IFPUG) in the USA. Function points represent the functionality of a system. Many empirical studies point to an
existing relationship between these points and amount of work-effort necessary to develop them. [15, 16 and17]

3. Framework

Intuitively, Power is a measurement concept that is considered extremely relevant to engineering products. Here, the
framework “Property Based Software Engineering Measurement” proposed by [11] was adapted as a guide in our
search for the new measure as follows:

Applying the framework, power cannot be negative (property Power l), and we expect it to be null when a system
does not contain any elements (property Power.2). When modules do not have elements in common, we expect
Power to be additive (property Power.3). Consequently, we defined the Power of a system S, as a function Power(S)
that is characterized by the following properties Power.l to Power.3.

PROPERTY Power1: Nonnegativity. The power of a system S = <E, R> is nonnegative. ⇒ Power(S) ≥ 0
(Power.I)

PROPERTY Power.2: Null Value. The Power of a system S = <E, R> is null if E is empty, E = ∅ ⇒ Power(S)
= 0 (Power.II)

PROPERTY Power.3: Module Additivity. The Power of a system S = <E, R> is equal to the sum of the Power
of two of its modules m1 = <Em1, R m1> and

m 2 = <E m2, R m2,> such that any element of S is an element of either m1 or m2

(m1 ⊆S and m2 ⊆S and E= E m1∪E m2 and E m1 ∩E m2,=∅)

⇒ Power(S) = Power (m1) + Power (m2) (Power.III)

For instance, the power of the system S with three disjoint modules m1, m2, and m3 is the sum of the powers of the
three modules m1, m2, and m3.

3.1 The proposed defined metric of Software power

In order to give Software Power an identity and thus make it easily recognizable, the theoretical definition of
Software power was proposed as follows:

Software power (Ps) is defined as the effectiveness with which the Software is able to interact with or use
various items of the Computer System during its operation in relation to the volume and complexity of the
items per unit time.

Effectiveness is defined as the ability to bring about the result intended [18]. Notationally, we use the symbol Ps
(upper case P, subscript s) to represent Software power. Effectiveness is defined as the ability to bring about the
result. This ability or effectiveness of the Software can be likened to the energy or the ability to do work in
Mechanical power. This ability of the Software can be identified if we can break the Software system into smaller
components. This can be achieved with the Function Point Analysis (FPA) technique. FPA is used to break systems
into smaller components, so they can be better understood and analyzed. In Software systems, these components are
called elementary processes. When these elementary processes are combined, they interact to form what we call a
Software system or application. Function Points can be used to size Software applications. Sizing is an important
component in determining productivity (Output/Input), predicting effort, understanding unit cost, and so on and so
forth [19 and 20]. Similarly, sizing (functional size) is an important component in determining ability to do.
Software Power (Ps) in this sense is the ability of the Software to solve or the effectiveness to perform a given task
per unit time relative to the processor speed. We say relative to the processor speed in that external quality can only

Corresponding author: E-mail; vakwukwuma@yahoo.com ; Tel. +2348033440003
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 353 - 358

Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

be assessed for a complete hardware/Software system of which the Software product is a part. According to [21],
external metrics are applied when executing the Software. The values of external measures necessarily depend on
more than the Software, so the Software has to be evaluated as part of a working system. Hence Software power can
be measured in terms of the function point count of the Software.

We give the proposed metric as follows:

Ps =
SPEEDTIME

FP

*
 ... (3.1)

Where:

Ps⇒ Software Power,

FP⇒ Number of function point count,

TIME ⇒ Execution time,

SPEED ⇒ Processor speed.

This represents the rate at which the Software performs work while Processor speed (SPEED) is normally given,
Execution time can be recorded using a stop watch, and number of function point count can be computed following
the International Function Point Users Group (IFPUG) guidelines provided in the Function Point Counting Practices
Manual (FPCPM) version 4.1[22]. Hence, we can derive the power of any software.

3.2. The unit of Software power

From equation 3.1, the numerator, function point count is just a number. The processor speed is measured in hertz
(Hz), which is the number of cycles per second, while the execution time is measured in seconds, that is to say;

(sec) TIME * sec)/(

countpoint function of No.
 (unit)

CyclesSPEED
PS =

Cycles

countpoint function of No.
 =

That is, Number of function point (FP) count (the numerator) per cycle (the denominator).

We adopted the name Vion (pronounced as v-e-e-on, and written for short as Vn; upper case ‘V’ and subscript ‘n’),
as the unit of Software Power. The term Vion is defined as the number of function point count of a Software per
mega cycle (the amount of work done by the Software per 1,000 000 cycles). That is to say, 106 Vn is equivalent to
1FP/mcycle. Multiplying what ever value obtained in fp/mcycle by 106 will convert the value to Vn.

The numerator, Function point (FP) of equation (3.1) can be computed using the following equation;
AFP = UFP * VAF ... (3.2) [23]

Where AFP (FP) = adjusted function points
 UFP = unadjusted function points
 VAF = value adjustment factor

Conclusion

Our proposed metric:

Corresponding author: E-mail; vakwukwuma@yahoo.com ; Tel. +2348033440003
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 353 - 358

Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

 is computable
 is consistent in its use of unit
 is programming language independent
 Empirically and intuitively persuasive (i.e. metric increases in value as the number of

elementary processes increases)

These characteristics are in line with what Ejiogu in [4] called the attributes that characterize effective Software
metrics (both derived metrics and the measures that lead to it). Conclusively, this research work is viewed as an
initial step. We believe the metric we proposed is generally desirable and relevant. Hopefully this research work will
provide a foundation which can be built upon.

References

[1] M.L. Cook (1982) Software Metrics: An Introduction and Annoted Bibliography. In ACM SIGSOFT Software

Engineering Notes vol. 7, Issue 2 (April). Pp 41- 60.

[2] N.E. Fenton and S.L. Pfleeger (1997) “Software Metrics” A Rigorous and Practical Approach, second Edition

PWS publishing company.

[3] S. Morasca and L.C. Briand (1997) “Towards a Theoretical Framework for Measuring Software Attributes.”

IEEE Proceedings of the 4th International Software Metrics Symposium (METRICS ’97), pp. 119 -126

[4] R.S. Pressman (2001). Software Engineering: A Practitioner’s Approach, 5th Edition McGraw Hill. New York.

[5] E.E. Onibere and V.V.N. Akwukwuma (2010) Power: An Attribute of Software? (In Press)

[6] D. Kafura (1985), “A survey of Software Metrics”: In Communications of the ACM 0-8991-10-9/85/1000-

0502. PP.502 – 506.

[7] B.R. Boyce, C.T. Meadow and D.H. Kraft (1994), Measurement in Information Science. Academic Press Inc.

Orlando, Fla.

[8] D. Dhyani, W.K. Ng and S.S. Bhowmick (2002), “A Survey of Web Metrics”. ACM Computing Surveys,

vol.34, no.4 December, pp.469-503.

[9] C. Symons (2001), Software Measurement and process in Software Measurement Service 143 High Street,

Edimbough, Kent TNB SAX. UK. Issue 8, spring p.3

[10] N.E. Fenton and B. Kitchenham (1991) “Validating Software measures.” Journal of Software Technology,

verification and Reliability, vol. 1, no. 2, pp. 27-42.

[11] L. Briand, S. Morasca and V. Basli (1996), “Property Based Software Engineering Measurement.” IEEE

Transactions on Software Engineering, vol. 22, no.1.pp. 68-86, Jan.

Corresponding author: E-mail; vakwukwuma@yahoo.com ; Tel. +2348033440003
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 353 - 358

Metric for Measuring Software Power Akwukwuma and Onibere J of NAMP

[12] D. Calvert (1996), Software Metrics”. Pp.1 – 7. Available online at

http://hebb.cis.ugguelph.ca/deb/27320metrics1.html,

[13] P.G. Rule (2001) “The Importance of the Size of Software Requirements”. Presented at the NASSCOM

Conference, Hotel Oberoi Towers, Mumbai, India, 7th -10th February, pp. 15. Available online at

http://www.software-measurement.com/

[14] ISO/ICE 14598 International Standard, “Standard for Information Technology – Software product

evaluation – part 1: General overview”. Available online at http://www.hmaster.com.glossary/175.html

[15] A. J. Albrecht and J. Gaffney Jr. (1983) “Software Functions, Source Lines of Code, and Development

Effort Prediction: A Software Science Validation”, IEEE Transactions on Software Engineering, vol.9, n.6,

Nov., pp. 639 – 648

[16] J.M. Desharnais and G. Hudon (1990), Adjustment Model for Function point Scope Factor – A Statistical

Study, in IFPUG, Montreal. 29 pp.

[17] C.F. Kemerer (1987), “An Empirical Validation of Software Cost Estimation Models”, Communication of

ACM. Vol. 30, no. 5, May. Pp. 416 – 429

[18] A.S. Hornby (2001), Oxford, Advanced learner’s Dictionary of current English. Oxford University Press.

[19] C.F. Kemerer (1992) Measurement for Improved Software Development, in Conference at the Computer

Research Institute of Montreal (CRIM), Montreal, Canada, pp.14.

[20] D. Longstreet (2004), Function Point Analysis Training Course. Longstreet Consulting Inc. 11 pp.

Available online at http://www.SoftewareMetrics.Com

[21] N. Bevan (1997) Quality in use: “Incorporating human factors into the Software engineering lifecycle”.

pp.9. Available on line athttp://www.usabilitynet.org/papers/qiuhf97.pdf

[22] FPCPM. (1999) Function Point Counting Practices Manual, Version 4.1, January. 104 pp.

[23] IFPUG. (1999) Function Point Counting Practices Manual, Release 4.0, Westerville, Ohio.

