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Abstract

We analyze a non-linear model of the human immunodeficiency virus (HIV)
infection that considers the interaction between a replicating virus, CD4" T cell and
the cytotoxic-T-Lymphocytes (CTL) i.e. CD8" T cell. The non-negative steady state

of the model equation were obtained when P, <landP, >1, and further

analyzed for stability. We observe that the steady state of the model equation when
P, <1 is asymptotically stable if P4 <1 and unstable if P4 >]. Also, we observe

that the steady state of the mode equation when P4 >1 isasymptotically stable.
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1.0 Introduction

In recent time, mathematical models have provebetwaluable in understanding the dynamic of the kififéction. Many
sample mathematical approaches have been developsglore the relation between antiviral immungpanses, viral load
(the amount of HIV in the body of the host that stamtly reproduces more viruses) and virus diversfections with HIV.

World Bank [19] stated that there are three stagdds|V infection i.e. acute stage, latency (Asympitic) stage
and clinical AIDS stage. Due to the progressivaureabf development of AIDS, [17] and [18] dividduetclinical AIDS
stage into persistent generalized lymphadenopd&®} |, AIDS related complex (ARC) and full-blown A) These phases
show progressive increase in the intensity of thessand symptoms.

The effect of HIV infection has been mentionedtsy works of [31] and [32]. According to them, HB/disruption
make infected people susceptible to illness thahaibnormally occur or that are usually not seriolisese illnesses are
called opportunistic illnesses because they takarstdge of the damage to the immune system.

Lippincott [30] showed that HIV transmission systéas biologic and social determinants. Biologitedminants
include characteristics of the pathogen, the hodttdomedical interventions. Social determinantdude individual-level,
pairwise and community level processes that affedtviour and thus the structure and dynamics ofttaesmission
network.

Jacquez [20] were the first to use mathematicadetsto emphasis the importance of primary staggsmission
using a computational deterministic model. Theyvea that an interval of high contagiousness dupngary infection
followed by a large decline in infectiousness warsistent with the pattern of epidemic seen in cshof man who have
sex with men (MSM) in the early years of the epidem

To estimate the effect of change of human immuficieacy virus (HIV) dynamics (drug regimens, T-{cebunt
and viral load) on HIV progression, many top-dowmthematical model based on the solution of a sebrdihary
differential equation (ODE) have been proposed]([I34], [35] and [38]). One drawback of this apach is that it is
restricted by the ODE's ability to estimate tempdmat not spatial change of system variable.

Another possible approach to stimulate HIV progi@s is the bottom up approach based on Agent-B&&sBjl
model [39] and Cellular Automata (CA) model [36hi3 approach can be used to construct and unddriarcomponents
of complex system by assigning different agentst(ptypes) developed in different ways to simulateonsidered model
(such as an HIV progressive model). During the Bgmeent process, agents cooperate to reward sdotesgents.
Although this approach can be used to study HI\gmssion and at the population level [39], it hasbeen implemented at
the cellular level since it is very difficult to & up-dating agents and their spatial connectidmsnwhe system dynamic
rapidly changes during acute phase of HIV progoesi33].

Graziano [4] formulated mathematical models wregplicitly represents the effect of special disitibn of T cells
and HIV load in HIV progression. In constructingthoverning differential equation, he considersEhéerian conservative
form of the continuity equation to preserve megle sind dimensions.

*Corresponding author: E-mail; godwin.mbah@unn.eguTel. +2348034198454
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 201Q)299 - 310
Mathematical Model on the Viral Load/Burden of HIV/AIDS Mbah and Chinebu J of NAMP



In a study carried out by [40], they formulated astddied a mathematical model for the transmissibrHIV/AIDS
considering Counseling and Antiretroviral TheragdR[). Here the population is partitioned into threempartment of
susceptible S(t), infected I(t) and Removed R(tathematical model to investigate the effect edtment and vaccination
on the spread of HIV/AIDS can be found, for examiplg21], [22], [23] and [24]. Models for the cootrof HIV using
condom can be found for example in [25], [26], [2AH [28].

In [29], Simple models were developed taking iatwount the essential non-linearity of HIV dynamilrs this
paper, we provide a detailed analytical study ehathematical model of the interaction between iifecvirus, CD4 T
cells, and CTL (CD8T cells) thereby estimating the viral load/burdSpecifically, we consider the existence and stgbil
of the infected steady state of the system.

2. Background
» In this section, we discuss the biological backgbof the problem to be studied. It is a well-knofat that
human immunodeficiency virus (HIV) is differentsiructure from other retroviruses. It is roughlyspcal with
a diameter of about 120nm, around 60 times smidir a red blood cell, yet large for a virus. lt@nposed of
two copies of positive single stranded RNA thatestbr the virus’ nine genes which are (gag, pod, env, tat,
rev, nef, vif, vpr, vpu and tev) encoding 19 progiThree of these genes, gag, pol and env, cariteiormation
needed to make the structural proteins for newsvirarticles.

gag, pol and env are general retroviral gene wiailerev, vif, vpr, nef and vpu are specific HIVngs. The major
factors in this model is the rate at which humamimodeficiency virus (HIV) is reproduced in the paxf the host. This is
a determining factor because it has been propdseditiring the non asymptomatic stage of HIV irifettthe virus has a
relatively low affinity towards T cell (and has @h affinity for macrophages resulting in a lowl kiite of CD4 T cells by
the immune system. This implies that the numbeunttional CD4 T cells falls in an HIV infected person. When eénrt
number of CDA T cells has been eliminated by the HIV cells as atated above, this is initially compensated fioough
the production of new helper T cells from the thgmoriginally from the bone marrow). Once the viloscomes
lymphotropic (or T-tropic), however, it begins taféct CD4 T cells far more efficiently (likely due to a clgarin the co-
receptors it binds to during infection), and theriome system is overwhelmed.

Of great importance is the death rate of the CD4ell. Usually the CD4T cells are reduced in most HIV + person
by about 30 to 100 cells per year. There existr@gogevhen HIV (i.e. the virus) is undetected in thieod. This simply
indicates that there is battle between the HIV gnedimmune system. This is achieved through thedigoal activation (i.e.
recognition and verification). During this peridtle T-helper cells then allows itself to proliferdty releasing a potent T cell
growth factor called interleukin-2 (IL-2) which actipon itself on an autocrime fashion. Prolifematirelper T cells can
differentiate into two major subtypes of cells knoas type 1 and type 2 helper T cells respectiviigse types are defined
on the basis of the specific cytokines they prodiigel cells produces interferon gamma (oMNF— }/) and lymphotoxin

(also known as tumor necrosis factor b§er TNF - S, while T, 2 cells produces interleukin-gIL - 3), among

numerous other cytokines.

Actually, HIV can survive even when all the detédtavirons in the blood (viremia) are eliminatetiintegrates itself
into the DNA of the host cell and can stay thenmeyiars, lying dormant, immuned to all kinds ofrégy because it is just
DNA. When the cell divides and DNA is copied theusiis copied too. After years, the virus can bezagtive again, seize
the cells machinery and replicate.

3. Governing Equation
The model includes the interaction of infective HI®D4™ T cells and cytotoxic T lymphocytes, CTL's (CDB
cells). We use V, | and C to denote the populatiensities of infective HIV, CD4T cells and CTLs, respectively. Then

dv di an dd_c denote the rate of change in population densitiésfective HIV, CD4 T cells and CTLs (CDS8T cells),
dt " dt’ dt
respectively at time t.

From the assumptions made in the study, the foligweiquations are derived
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dv _

E_z/mv—ﬁv—zvc (3.1)
‘;_'tz(ﬂw’)—al—ﬂv (3.2)
%:W—ec (3.3)

Where the parameter are;

l//yis the production rate of the virus which indicajeometrical reproduction,andlﬂ is a constant while
y=0,1,2,3,... (,8) is the death rate of virug/,is the clearance per virus in the body of the lurstugh the destruction

of infected cells before they release a fresh afogruses and is assume to be in compﬁc;'bt,+ 5) is the quantity of CD4

T cells, but /4 is the newly produced CDZ cells from source within the body of the hostle/tO is the rate of production
of CD4'T cells from proliferating cellg? is the death rate of CDA cells, £ is the death rate per CDZ cells due to
the number of the viral infected cellg is the rate of stimulation of cytotoxic T lymphaeyg (CTLs), CD8T cells by the
CD4" T cells due to presence of infective virus aﬁdepresents the death rate of cytotoxic T lympho¢@€Ls) CDS T

cells.
We now introduce new parameters by letting

F)lzlg’PZ:a,P3:€’P4:(/'I+5)Z/IV,
ap
PS:O,_M
144

where the parameterE’4 andP5 respectively represents, the basic reproductitia far the virus and the death

rate of virus due to the immune response. By uiegnew parameters and introducing new variabléhabthe system will
be non-dimensionalized, we have that the new viesahtroduce are:

:fleV_Xa

al &
__al | = y(u+9)
(1+9) a
, = flvec ~C= Zag
alev &o
Substituting the new variables into equations (3J3.p) and (3.3), we have:
d
d_?[(: P, (P,xy = x) = Pyxz (3.4)
dy _
L ) (3.5)
t
dz
P P (x-2) (3.6)

By defining three non-linear functions
f,(x,y,2) = P, (P,xy = x) = Psxz

f,(x,y,z)=P,(1-y-xy)
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f(x,y,2) =PRy(x~-2)
Equations (3.4), (3.5) and (3.6) becomes respdgtive

‘;_f= f(xy,2) (3.7)
‘;_{= (% y,2) (3.8)
%: f, (xy.2) (3.9)

A point ()2, 2 2) is called a steady state of the system (3.7), @n8)(3.9) if it is a constant solution of the etiprzs.

f.(%9,2)=0 (3.10)
f,(%9,2)=0 (3.17)
f,(%,9,2)=0 (3.12)

Proposition I: Supposep,, P,,P,,> 0

(@) If P, <1, then the non-negative steady state of the system, (3.8), and (3.9) ié)A(O, 90, 20) = (O,l,()
(b) If p, > 1,then the non negative steady state of the systefy (3.8) and (3.9) are that given in (a) abové an

(%,9,2) = (k,ﬁ,k]

Proof:
From equation (3.8) we have:
P,=0o0ry= 3.13
2 y )’Z + 1 ( )

From equation (3.9) we have

P,=0o0r =2 (3.14)
Substituting equations (3.13) and (3.14) into sys{8.7), we have:

X[ P&* + (Py+ P)% - P, (P,-1)] = 0 (3.15)

Then;

bed
)2:00r)2:—%(1+P1P5)+}/2{(1+%)2+%:_)} (3.16

From the proof of proposition |, we have:

€) P4 <l,ithen the non negative steady state of the systerd),(33.8) and (3.9) is
(%6,90.2,)=1(0,1,0) (3.17)
(b) if P4 >1 then the non-negative steady state of the sys3em), (3.8), and (3.9) are that given in 3.17 and
s noa 1
Xy ] Z)= k v lk 3 . 1 8
(%,9.2)= kg K] (3.19)

Where

Ps

N H
= 24) e )+ 222

Now, we consider a region close to the steady staddet
X=X+X,y=9y+Y,z=2+7Z
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Expanding f, f, and f,in Taylor series expansion aboét)A(, Y, 2) then retaining only the linear terms we
obtain the following linear system

%_
w|. [
Y=
— | = 3.19
E z
L dt

Where Q denote the Jacobian matrix of the modeésysvaluated aéf(, 9, 2) i.e., the Jacobian matrix is thus;

P (P,y-1)- Pz P,P, X - p X
Q= -P,y -P,(%+1) 0O (3.20)
P3 0 ~Ps

At this point, the stability of the model is studi terms of the eigen values of the matrix Q. dasn the theory of
differential equation, we know that the steadyeststthe system (3.19) where det# O is stable if no eigen value of Q has
positive real part, and is asymptotically stablallfeigen values have negative real part i.e.

it A, =a,+ib,
Whered,, is the real part oﬂn then,

a, < 0, = stability

a, < 0L, = asymptotically stable

a, >0 if or at least ondN = unstable
The characteristic determinant of Q becomes

P(P,Yy-1)-Pz-2 PP, X -pX
-P,y -P,(x+1)- 4 0
Ps _ps_/]
The characteristic equation is
P(P,y-1)-Psz-4 P,P,X -pX
= -P,y -P,(x+1)- A 0 [=0 (3.29
P, -p;, - A

Which solves out to
A+ P, (X+1)+ P+ P,+ P2- PP,y ]A°

H PP (R + D+ PP, (R+ D+ PPy (R + J2+ PP+ PPZ+PPR-PPP J-PPP § ]

([RP.P,(+ D+ PP, (R+ )2+ PPPR(R+ )= RPPP )= 0 (3:2)

We then let
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E)P4y _________________ =S

P, (X +1)(P, + P, + P2)+ P, (P, + Py(%+ 2))- =,
(3.23)

- P1P4(P2 + P3)9 __________ =5,

PP, (8 +1)(P + Pg(8+2))---------- =,

P1P2P3P4y _____________ = Ss

Then the characteristic equation of the matrix @iven by

UO(An):/]3+(rl+sl)/12+(r2+sz)/]+r3+33:0 (3'24)

Preposition 2:
(@) SupposeP,, P,,P,,P, > 0.The steady state of equation (3.17) of the sys&ad] is asymptotically stable if

P, <1,and unstable il’|:’4 >1.

(b) P,P,,P;,P,> 0and P,> 1then the steady state (3.18) of the system (3sl@ymptotically stable.

Proof:
We first remark that the characteristic equatibmatrix Q is given by

Ug(A,)= A2+ (r,+s)A%+(r,+s,)A+r,+5,=0 (3.24)
Substituting equation (3.23) into (3.24) we obi@r22).Also, Substituting (3.17) into equation (3.2ve obtain
A%+ [Pl + P, + Py - F>1F)4]/]2 + [P1P2+ PP+ PP,-PPP  -~PPP 4]/]

+P PPy - PP,PP,=0 (3'25)
We solved forAd and obtain the following
A =-P,,A,==P,,A,=-P,(1-P))

From the proof we have:
() After substituting the steady state (3.17) into #ystem (3.19) we obtain that the characteristic
equation is in the form

(A+P,)(A+P)(A+P-PP,)=0
This shows that the eigenvalues of matrix Q are

A =-P,,A,==P,A,=-P,(1-P))
This implies that the eigenvalued, <0 andA, < ( If P, <1, clearly A; will be less than 0
(/13 < O), which means that the steady state (3.17) is asyioglly stable. 1, >1, then A, will be

greater tharﬂ(/]3 > O) ,we conclude that the steady state (3.17) is urestabl

(b) Since P4 > 1, the steady state (3.18) exist and k>0. By Routhwtarcriterion, it follows that all roots of
the characteristic equation (3.24) have negatigkparts if and only if
n+s>0,r;+s,>0
(3.26)
(r,+s)(r,+s,)=(ry+s,)>0
Verifying condition (3.26) we substitute systeml@.into equation (3.23) and we obtain
rh—s =P;+P,(k+1)

ry+; = P,Pk (P + Py(2k + 1))
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(rp+s)(r,+s,)-(ra+s;)=wW

= PP} (k+1)+ PPk + P/ (k+1)(Pk?+ Pk + P,(k + 1))
This means that condition (3.26) is satisfied. Tistsady state (3.18) is asymptotically stable.

4. Analysis of Result

In formulating these mathematical models on HIV/&lfor the estimation of viral load/burden in thedl of a
host, many variables as stated earlier were apiatefyr built in and thus we had a fairly good modéif particular
importance to be mentioned among the parameteesanerthe production ratio of virus and the deaté of virus due to the
immune response because they determine the rathieh the virus increases and decreases respsctivéhe body of a

host.
We conduct numerical simulations to confirm theotletical predications discussed in section 3. W& fise the

values of parameterp , P, P,, P,, P, that are suggested by Verotta and Schaedeli (200%2) show the qualitative
behaviour of the three variables HI@S() CD4 T cell (y) and CTL(z) when the basic reproductiate of the virus is under

control level i.e. P4 is less than on{ P, < 1). We numerically solve the system (3.7), (3.8) &@) by using the fourth

order Runge-Kutta-Fehlberg method with
P;=0.85, B=0.133, R=1.22, B=0.278 and P=4.56.

2 1
o %’ 0.9
2 +
T -2 + 0.87
g 3
-4+ 3 0.7+
-6 0.6
0] 200 400 600 800 (0] 200 400 600 800
t=time figla t=time figlb
4
3,
5
M 2
N
1,
0]

0 260 460 660 800
t=time figlc
FIG: 1a — 1c; (t=0.0:7.0:700)
In figures (1a — 1c), we show the time series ffier density of HIV in the blood, the density of 8B4 T Cells in
the blood and that of the CTL in the blood respetyi. Both HIV and CDAT Cells density decreases while the CTL density
increases.
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x 10" x 10"

5 1
0 % 0
2 +
T+ -5 + -1
x 3
10+ >II_ -2t
-15 -3
0] 1000 2000 3000 4000 o 1000 2000 3000 4000
s t=time fig2a t=time fig2b
X 10
15
6' 10+
{
N 5l
0]
0] 1000 2000 3000 4000
t=time fig2c

FIG:2a — 2c; (t=0.0:7.0:3020)
From figures (2a — 2c¢), it shows that as time pasbe density of HIV, continue to decrease, thesity of CD4
T Cells(y) start to increase while that of CTLontinuously increases. This can only be possilile physical parameters

((//y,ﬁ,,u +9, a) can be maintained through vaccination and post&x@ immunization so that the conditiﬂl <lis
satisfied.

x 10°7 x 10°7
2 3
0 ﬁ 2
2 -
I 2t 1
x é
-4+ N o
-6 -1
(o] 5000 10000 15000 o 5000 10000 15000
13 t=time fig3a t=time fig3b
x 10
10
8 L
2 o
N 4r
2 L
(o]
(0] 5000 10000 15000
t=time fig3c

FIG: 3a — 3c; (t=0.0:7.0:13000)
Also figures 3a — 3c, show that as time continwepdss, the density of the CD# cells continuously increase
while that of the HIV decreases. Viewing this bigitally, it will be seen that when, the basic refurctive rate of the virus is
under the control, then at the beginning of thedtibn, each virus cell produces on the averagetleen its decline rate.

Hence the infection cannot spread and the ‘CDdells density continue to increase(éft"' 5% .
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Also to show the qualitative behaviour of the thveeiables HIV(x), CD4 T cells (y) and CTL (z) when the basic
reproductive rate of the virus is not under contegkl i.e. greater than one, we numerically saheesystem (3.7), (3.8) and
(3.9) by using the fourth order Runge-Kutta-Fehipmethod with

P;=0.2, B=0.005, B=0.03, B= 7.0 and P=0.5.

5 1
47 8
> = 0.99¢
I3
X
20 > o0.98}
1
(0] 500 1000 1500 (6] 500 1000 1500
t=time fig 4a t=time fig 4b
0.36

0.34

0.32

0.3}

Z=CIL

0.28

0.26
(0] 500 1000 1500

t=time fig 4c

fig 4a -4c; (t=0.0:7.0:1300)

From figures (4a-4c), we show the time series efdiansity of HIV, CD4 T cells and CTL in the blood which
shows a continuous increase in the density of Hitf @TL, and a decrease in density of CDicells. This is because after
HIV infection, the tRNA picked from the former hosell facilitates the immediate conversion of viRINA to double-
stranded DNA by the action of reverse transcriptdsethe host DNA divides, the virus is also copiedlivide and in this
way the virus continues to multiply.

30 1
= 0.95¢
20+ 8
> 0.9
'TT +
0.85
X 10t %
> 0.8t
o 0.75
0 5000 10000 (o] 5000 10000
t=time fig 5a t=time fig 5b
1.5
.
N 0.5
o
o] 5000 10000

t=time fig 5¢

FIG:5a — 5¢; (t=0.0:7.0:9000)
Figures (5a-5c), shows that as trasses, i.e. at t = 9000, the density of HIV aiid 6tarts decreasing while that
of CD4 T cells start increasing. This is because a stimmgune defense reduces the number of viral pagioh the blood
stream making the start of the infection’s clinizdkncy stage.

*Corresponding author: E-mail; godwin.mbah@unn.eguTel. +2348034198454

Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 201Q)299 - 310
Mathematical Model on the Viral Load/Burden of HIV/AIDS Mbah and Chinebu J of NAMP



60 1

= 0.95
40 8
> — 0.9}
% +
X 0.85|
20+ é
> 0.8t
0 0.75
0 5000 10000 15000 (0] 5000 10000 15000
t=time fig 6a t=time fig 6b
1.5
1 L
ﬁ 0.5
N
O L
-0.5 : :
0 5000 10000 15000

t=time fig 6¢

FIG: 6a — 6¢; (t=0.0:7.0:13000)

Figures 6a-6¢, show that as time contboygass, both the density of HIV and CDHcells oscillate for a while before
increasing. This verifies the fact that cases alloumnere the pro-viral DNA becomes integrated it® lhost cells DNA, the
cell will be fully infected but not actively produng HIV proteins. This is the latent stage of HiMdction during which the
infected cells can be an “unexploded bomb” for poigdly a long time. Once the host cell starts toduce proteins from the
pro-viral DNA, the HIV supplied protase enzyme makgtave the nascent HIV proteins in order for thenbe assembled
into HIV virons. The virons leave the cell by budgithrough cholesterol rafts on the host cell sigf@].

2000 1
1500 | Z 0.8/
> F 0.6
T 1000} +
X g 0.4}
500 t > 02!
o] o]
0] 5000 10000 15000 o] 5000 10000 15000
t=time fig 7a t=time fig 7b

0 5000 10000 15000
t=time fig 7c
FIG: 7a — 7c; (t=0.0:7.0:13990)
Figure (7a-7c), shows that a2 12, 65Cthe viral load increases until it results to a falbwn AIDS. Also at
t >13,400C, the CD4 T cells count start decreasing until it is too lo less than about 200 cells per cubic millilioé
blood.
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From the biological point of view, whe(1|34 >1,) the basic productive rate of the virus is not urxtartrol level,

each virus cell produces on the average more thidss rate. In this case, the virus can estahlisimfection since its death
rate due to the immune response is low.

Here, even if the immune response is maintaineds \persists. However the virus may persist withoausing
disease for sometime if the immune system is styorggponsive. This is the clinical latency stagéhe infection. During
this stage, HIV is active within the lymphoid orgamvhere large amount of virus becomes trappetéarfdllicular dendrite
cells (FDC) network. The surrounding tissues thmatrich in CD4 T cells may also become infected cells and asvires.
During this time, CD4CD45R0 T cell carry most of the pro-viral load.

Also, HIV can survive even when all detectable rgdn the blood (Viremia) are eliminated. It intetgs itself into
the DNA of the host cell and can stay there forgelying dormant, immune to all kinds of therapchuse it is just DNA.
When the cell divides and the DNA is copied, theiwiis copied too. After years, the virus can bezative again seize the
cells machinery and replicate.

5. Summary and Conclusion
Interpreting the result of proposition (2) in thelbgical sense, we have that, whey) < 1 the basic reproduction

ratio for the virus is at a control level which meahe virus is unsuccessful in escaping from feeific immune response,
CTL, which produces a protein kown as CAML (Calciivindulating Cyclophilin Ligand), that inhibits thelease of the
HIV-1 virus from human cells. Part (a) of propasiti(2) ensures thap, < 1, then the virus is unable to maintain the

infection for a more longer period of time. The CO4cells population will converge to the ra(ip + 5)/0' .

Changes in the basic reproduction ratijocBn have an influential effect on virus load/bur@éen if the virus is
close to maintaining the infection because a st©my response results in a low virus load/burdéthé virus load/burden
(V) is sufficiently small, then the total deathaaif CD4 T cells due to the infectiong )is small compared to the total

loss of CD4 T cell(a I ) . Thus, the virus weakly affects the steady statesity of CD4 T cell. By this model, patients with

strong CTL (CD8 T cell) responses should have a greater redugtisteady state viral load/burden than those wigiakv
CTL (CD8" T cells) response. According to the above reasirihie physical parameteréw VB U+ O, ) can be

maintained so that the conditidF?4 <1 in proposition (2a) is satisfied, for example thgh vaccination and post-exposure
immunization, then it may be possible to prevengpession towards AIDS.

However, by the second statement of part (a) amt (@ of proposition (2), ifp, > 1 that is, the basic

reproduction ratio for the virus is not in a cofied range, then the virus can establish an indectéind the uninfected steady
state (3.17) loses its stability while the infecteady state (3.18) comes into existence analdestThe long asymptomatic
period between infection and collapse of the immsystem is the duration required for the virus pajion to evolve into
full blown AIDS since the CD4T cell count has been reduced to less than alfifutélls per cubic millilitre of blood. This
can be attributed to the fact that the HIV coapingteins readily detaches from virus particles. bluwod becomes filled with
these proteins, which can stick to the CO4cells, gluing them together. In addition, theg aecognized by the immune
system causing the immune cells to attack their @@ T cells [8]. This is then the case in which pragien to full
blown AIDS can be expected, and the patient caowub to opportunistic infections.
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