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 Abstract 
 

Mathematical (linear diffusion) equations are presented for two pseudo-
reservoir regions intersected by fault that describe the effects of partial 
communicating fault on pressure transient behaviour for each fault block. 
Green’s and source function technique solve these equations. A two-well system 
is considered for the reservoir, on one block is the active well, which is producing 
at constant rate and the second well, the observation well on the other side of the 
fault, is shut in at all times. An analytical solution is presented for each block, 
and parametric group that uniquely determines specific transmissibility ratio of 
the fault to reservoir is identified. 

They are initially developed for well testing with measured sand face flow 
rate, but can be extended, using convolution integral that can be deconvolved by 
Laplace transformation, to correct for storage capacity of the well bore and near 
well bore complexities. These solutions can improve design and analysis of 
interference testing. Type curves are presented to characterize flow regime as 
predicted by Boudet et al. from which reservoir parameter can be estimated. 

 
 

Symbols 
b = distance of active well to the fault      ct = total compressibility, psi-1 (Pa-1)  
ε = Ratio of porosity compressibility product 
     of region 1 to region 2     M= Mobility ratio 
αL= Specific transmissibility ratio with respect   αA = Specific transmissibility ratio with 
respect to the 
       to the interwell distance distance                      between the active well and the fault 
plane     
αA = Specific transmissibility ratio with respect to the   η = Coefficient of diffusion 
         distance between the active well and the fault plane  β = Thickness ratio 
λ = Mβ       K= formation permeability 
kf = fault permeability      µ= Fluid viscosity 
l f = effective fault of the fault zone.    L = interwell distance perpendicular to the 
fault 
∆P = pressure drawdown      PD = dimensionless pressure 
t = time       tD = dimensionless time 
φ = Porosity       ω = Fourier transforms variable 
s = laplace variable      x = distance perpendicular to the fault 
y = distance from active well parallel to the fault   Vx = volume leakage rate perpendicular to 
the fault. 

( )τ,',mmGG =  

EI (x) = exponential integral solution, - ( ) ∫
∞ −

=−ΕΙ
X

U

u

e
x  



*Corresponding author: E-mail: wale124@yahoo.com,  Tel. +2348057443926 
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 243 – 252 

Analytical Solutions To Describe Juxtaposed Sands         Adeniji  and  Falade        J of NAMP 

( ) duexerfc
x

u

∫
∞

−=
22

π
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Subscript 
A = active well      D  = dimensionless  
i = Initial       x = linear x-axis 
f = fault       b = distance from the active well to the fault 
L = inter-wells distance 

 
1.0 Introduction 

Fractures in rocks are classified as joints or faults: joints are those fractures that have merely opened, without 
appreciable offset of the rock along the fracture; faults are those showing definite offsets. Many faults have 
displacement of several thousands of meters [1]. Yaxley [2] described the nature of this system and developed 
model of the pressure equations: A fault is an anomaly, which could cause the low permeability of the cap rock to be 
interrupted in a local area of the reservoir. Fault in hydrocarbon structure may be either sealing or non-sealing. A 
sealing fault separates permeable sand from non-permeable shale; it will impede lateral fluid flow and may actually 
form part of fluid trapping mechanism for hydrocarbon accumulation. On the contrary, a non-sealing fault bisects 
two permeable strata, which could be different strata or a homogeneous reservoir bisect into two regions by the 
fault. Then it is physically obvious that sand to shale contact on each side of the fault can effectively act as seal that 
prevent fluid flow across the fault, and sand-to-sand contact at the fault will transmit fluid readily.  

A question frequently arises in the developmental planning of oil and gas fields is to what extent a fault that has 
been identified by seismic and geologic studies will act as fluid barrier; the juxtaposed sands properties. However, it 
is normal to be apprehensive over the presence of a fault for they are potential source of fluid leakage should the 
throw, or, vertical movement exceed the thickness of the continuous cap rock as shown in fig. 1. This is important 
because it has major impact on the numbers of well required to exploit a discovered field. 

It should also be noted that, while the throw of a sealing fault is such that a permeable stratum on one side of the 
fault completely juxtaposed against impermeable stratum on the other side, a non sealing fault usually has 
insufficient throw to cause complete separation of permeable strata on opposite side of the fault. A sealing fault will 
completely prevent the flow of fluid laterally, while a non-sealing fault on the other hand will always allow 
appreciable amount of fluid flow across it. Because of various mechanical processes, such as grain crushing, bed 
deformation, and clay smearing, however, the transmissibility of the fault zone may be much lower than the 
transmissibility of the adjacent strata. 

In-situ knowledge of juxtaposed sands and the transmissibility of the fault can be used as hard data in 
simulation model, eliminating the need for fault transmissibility as history matching parameter. 

A sealing fault is usually generated when the throw of the fault plane is such that a permeable stratum on one 
side of the fault plane is completely juxtaposed against an impermeable stratum on the other side of the fault. It is 
also generated as a result of the precipitation and crystallization of mineral within the fault plane before oil migrates 
into the reservoir. 

Based on this analysis fluid flow may occur across the fault plane laterally from one stratum to another; if the 
width of the fault zone is small compared with the distance between the fault plane and the producing well. The 
idealized nature of flow of fluid from one medium across the fault to the producing region of the reservoir may thus 
be described as one in which the observation region feeds it fluid across the fault into the active well region and 
resistance to flow is relatively determined. For this idealised approach it is frequently met that the fault width is less 
than its distance to the active region. 

Green’s function offers analytical convenience to obtain solution to the equations derived for the juxtaposed 
semi-infinite regions. [3], [4] and [5] have demonstrated extensively on the effectiveness of the use of Green’s 
function for solving problem relating fluid flow through porous medium. These papers reduced the problem into 
seeking the appropriate source function from which the solution to the diffusivity equation can be written directly, 
albeit in an integral form.  [5] extended this method to solve boundary value problems by seeking the Green’s 
function, which is the summation of fundamental Green’s function that is singular at the source at the initial time, 
zero everywhere else, and the function that is solution to the diffusion equation at point away from the boundary, 
and is zero at initial time(complementary function). This paper presented how kernel function was obtained for a 
reservoir with plane barrier using Liouville-Neuman-type series expansion – an approximation technique. In the 
present paper, we applied the classical integral transforms in seeking these two functions. [6] employed Green’s 
function technique for a situation of pressure field in a well near fracture with flow occurring along the fault plane in 



*Corresponding author: E-mail: wale124@yahoo.com,  Tel. +2348057443926 
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 243 – 252 

Analytical Solutions To Describe Juxtaposed Sands         Adeniji  and  Falade        J of NAMP 

addition. They obtained solution using the method of superimposition of complex linear diffusion boundary value 
problem by taking the fault plane as additional source in the reservoir and couple the flow by descretisation of the 
reservoir and fault flow solution, summing up all the resistance to flow. This paper presented analytical solution to 
the flow of fluid across the fault plane based on problem posed in reference 2. The reservoir properties are different 
at the two adjacent blocks so that juxtaposed formations can be identified. In general, the storage capacity of the 
well bore and near well bore damage affects transient behaviour of a well. During the analysis of pressure-time data, 
each of these and its duration must be recognised for the application of the semi log and type curve techniques to 
determine flow capacity (kh) and damage skin. Although this paper prepared analytical solution for middle time 
period, but it is extended for the early time data 

Theory 
Statement of Problem And Assumptions 
        The problem being considered is the pressure transient behaviour resulting from constant rate production from 
a well in reservoir(s) that contains a linear vertical fault. Fig.1 shows schematic of a typical faulting system in the 
actual juxtaposed reservoir(s).  The idealised model is shown in Fig.2 
        The fault plane is of thickness lf and permeability kf. It is located a distance b from the active well which acts as 
the source of strength qw. Reservoir properties on the active well region are considered to be different from the 
observation region. The assumptions made on the reservoirs are as follows: 

1) Two porous media of different properties are juxtaposed at the fault plane. Each reservoir is isotropic with 
respect to Permeability, homogeneous with respect to their rock properties, and both flowing a slightly 
compressible fluid of constant viscosity. 

2) Each reservoir is initially at same constant pressure, Pi. 
3) The physical properties of the fluid remain constant at all pressure. 
4) Reservoir pressure remains constant and equal to the initial pressure, as distance from the fault is infinitely 

large. 
5) The well could be approximated by infinite line source assumption. 
6) The semi-permeable barrier is infinitely long and has negligible capacity. 
7) The fluid leakage rate through the semi-permeable barrier is proportional to the instantaneous pressure 

different across the fault. 
8) The well fully penetrated the whole reservoir thickness that is; sand-face pressure is independent of depth.   
9) The fault width is small compared to its distant to the producing well. 
     Statements 1-5 are generally the basic assumption for transient problems, while statements 6 and 7 allow the 
partially communicating fault to be approximated by vertical plane. Statement 7 expresses that the resistant 
effect of the fault, then the leakage rate per unit time per unit length of the fault can be expressed as 

( ) 2 2 2
2 1

f f
x x

f f

k h k h dp
V p p while V

l dxµ µ
= − = −

 

 

Statement 8 states that none of the constants of the system or physical conditions vary with depth, so that the 
problem becomes 2 dimensional. Then the flow in horizontal section of each region bisected by the fault needs 
be considered and then couple at the fault line. 
        On both sides of the fault the pressure obeys diffusivity equation, and for the present situation it is best 
expressed in Cartesian coordinates since the flow across the fault is linear. As shown in Fig.2 the semi barrier 
lies along the y-coordinate. The partial differential equations describing flow of viscous fluid in this 
heterogeneous and isotropic system are described as 
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With the initial and boundary conditions prescribed below as 
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For convenience the following dimensionless variables are defined. 
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Note ( )xtftDL ,=  and putting –b-x=L. L is the distance between active well and a point in the observation region 
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Method of Solution 
 
We are now in position to give logical and inductive procedure in establishing relationships between pressure and 
time in environment of parameters controlling flow through porous materials.  
The governing equations describing flow in the two regions, in dimensionless form are defined below: 
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The Green’s function for the Equations (13) & (15) are easily found using Neuman product method [3, 4], which 
says that the Green’s function for two-, or three-dimension variables is equal to the product of the corresponding one 
dimensions. Applying this we seek the solution to the one dimensional diffusivity equation in xD that is infinite at xD 

=0 and is zero at( )0≠Dx , i.e. we request for the solution of the differential equation 
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For an infinite reservoir, subject to the condition that  

( ) ( ) ( )23                                                                                           .0, DDDD xtxp δ==
 

Applying Fourier integral transform defines as 
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And inversion formula 
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It is readily shown that transformation reduces the partial differential equation to the  ordinary differential equation  
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The transformation of the initial condition is 
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Substituting the initial condition we have 

1=A , Then 
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Introducing eqn. 29 into the inversion formulae given above gives 
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Since the integral is analytic function we can integrate under the integral sign to easily solve Equation (30) as 
follows 
set  
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The first term in Equation (31) vanishes identically, therefore 
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Then by direct integration we have 
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where C is the constant of integration, this implies that 
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then, we seek the constant C by setting xD=0, I(tDL) = C.  
And 
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Equation (37) is symmetrical about the origin and making a substitution Dtz 22 ω= , it is transformed into 
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the integral term is solved in the polar coordinate, we arrive at 
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Putting Equation (40) to Equation (36) and finally into Equation (30) we have 
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.  
This is the fundamental green function from which solutions to other problem are obtained by summation with the 
complementary function. We then seek the Green’s function of the form [3] 
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For region xD < -bD and zero for xD < -bD; and H is the solution to the one dimensional diffusivity equation for xD > 
or < bD and is zero at tDL = 0 such that G satisfies the prescription at the fault. We then have: 
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The solutions to Equations (43) & (44) in the two semi-infinite regions xD <-bD are approached using Laplace 
transformation with respect to dimensionless time. The Laplace transform is defined as 
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On applying this, the solutions to Equations (31) and (32) are  
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Also transformation of fundamental function f  is  
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Substituting Equations (41) – (42) into Equation (30) for active region and observation region separately, we have 
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In the observation region  

( ) ( )55                                                                                                     .,2

−∞<<−

Β=
DD

D

xb

x
Ms

D esxG ε

 
And 

( )1 2 .                                                                                               56
dG dG

M x bdx dx D DD D

β = =−

 

( ) ( )2 .                                                                                         57a1 2

dG
G GL x bdx D DD

α= − =−

 
Setting  

( )

( )c
M

sq

and

bsq

57                                                                                                                      .

57                                                                                                                           .

2

1

ε
=

=

 
 
We solve Equations (56) and (57a) simultaneously to yield 
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Multiply Equation (58) by ( )Lq α+2  and Equation (59) by q2 we have 
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Subtract Equation (60) from Equation (61) to get 
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then 



*Corresponding author: E-mail: wale124@yahoo.com,  Tel. +2348057443926 
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 243 – 252 

Analytical Solutions To Describe Juxtaposed Sands         Adeniji  and  Falade        J of NAMP 

( )63                                                                                                                                                              .
2 1

2

2

1
1

2

1
1

1

A
q

e

Mq

q
q

Mq

q
q

Dbq

LL

L
L

=









++









−+

−

β
αα
β
αα

 
then for q1 and q2 
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and  
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Where 

1 2,
M

M q s and q sλ β
ε

= = =  

where β = the ratio of active well thickness to the observation well thickness. 
 Defining a new parameter h as the effective transmissibility, then  

λ
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M
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We therefore obtain, by substituting, the green functions as  
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These two equations. are inverted using the Bromwich integral formula defined by   
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we have, after analytical evaluation of the integral 
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In the same vein the Green’s function for y-axis is found to be  

( ) ( )70                                                                                    .
2

1
,

4

2

DLt
Dy

e
t

tyG
DL

DLD
−=

π
 

And by Newman product scheme, the equivalent G in the reservoir is product of the corresponding one-dimensional 
coordinates in the horizontal plane, which is written below 
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Substituting Equations (71) and (72) into Equations (13) & (14) respectively we have 
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Where variable ‘u’ is a dummy variable of integration and  

DD xbz +=  in Equation (73) 

 
Derived Model Equations  
The dimensionless pressure distribution for the active well region, as derived above, is 
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And for the observation region we have 
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Equation (73) shows the application of principle of superposition to pressure transient response as function of 
space. The first term represents pressure distribution in a homogeneous reservoir, while the second term is an 
indication of sealing fault response and the third term describes the characteristic of the fault. The transmissibility 
across fault is parameter describing the magnitude of the third term. Figure 3 describes these responses profile for 
active well region, which is called type curve. Type curves are quite useful for identifying and analysing composite 
systems. The most noticeable feature, characteristic of pressure profile for this system, is the present of two straight 
lines or curves. The first of these curves is the straight line response for estimating the parameters of active well 
region, and the second curve demonstrates the transmissibility nature of the observation well region. Figure 4 is a 
type curve that can be used to match the interference response of a well on the other side of the active or flowing 
well plotted for various values of transmissibility of the fault.   

 Conclusion 
A very important factor in this method of solution is its flexibility in seeking solution to partial differential 

equations for complex boundary conditions albeit in integral form, and the derivation of the fundamental equation is 
straightforward. The Kernel function is sought by employing classical integral transforms method. 

The purpose of this study is to provide analytical solution that could be applied to identify juxtaposed formation 
across a fault using well test. This is achieved by developing simultaneously pressure and pressure derivative type 
curve for the partially communicating fault across the pseudo-reservoirs. The analytical solution obtained in this 
study could be used to improve the design and analysis of interference tests between wells separated by the 
communicating fault. The information generated by these solutions will yield separate estimate of formation 
transmissibility and the transmissibility of the fault itself. 
 

An explicit solution for draw down at the active well offers the possibility of deriving the fault transmissibility 
from the draw down and build up behaviors of the active well alone. One could use this method if convenient 
observation well has not been drilled to determine the fault transmissibility theoretically. 
 

 
 
 
          
                                                                               
                                                                             
                          
 
 
 
 
 
 
 
 
 
Fig. 1: typical faulted Reservoir      
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Fig 2: modelling the fault plane as vertical linear barrier 
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Fig.3: Dimensionless Pressure response and derivative plot.    Fig.4:dimensionless Log – Log plot of Observation 

well   response 
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