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Abstract

Mathematical (linear diffusion) equations are prested for two pseudo-
reservoir regions intersected by fault that deseilthe effects of partial
communicating fault on pressure transient behaviodor each fault block.
Green’s and source function technique solve thesgi&tions. A two-well system
is considered for the reservoir, on one block igtactive well, which is producing
at constant rate and the second well, the obsensativell on the other side of the
fault, is shut in at all times. An analytical solign is presented for each block,
and parametric group that uniquely determines sgdacitransmissibility ratio of
the fault to reservoir is identified.

They are initially developed for well testing witmeasured sand face flow
rate, but can be extended, using convolution intagthat can be deconvolved by
Laplace transformation, to correct for storage cagty of the well bore and near
well bore complexities. These solutions can improdesign and analysis of
interference testing. Type curves are presentedcharacterize flow regime as
predicted by Boudet et al. from which reservoir pareter can be estimated.

Symbols
b = distance of active well to the fault . =dotal compressibility, pgi(Pa’)
€ = Ratio of porosity compressibility product
of region 1 to region 2 M= Mobility ratio
o= Specific transmissibility ratio with respect o, = Specific transmissibility ratio with
respect to the
to the interwell distance distance between the active well and the fault
plane
o = Specific transmissibility ratio with respecttte n = Coefficient of diffusion
distance between the active well and it plane B = Thickness ratio
A=MB K= formation permeability
k; = fault permeability p= Fluid viscosity
l; = effective fault of the fault zone. L = integll distance perpendicular to the
fault
AP = pressure drawdown p B dimensionless pressure
t =time t = dimensionless time
¢ = Porosity w = Fourier transforms variable
s = laplace variable x = distance perpendidiolghe fault
y = distance from active well parallel to the fault V, = volume leakage rate perpendicular to
the fault.
G=G(mm,7)

U

El (x) = exponential integral solutiongt (- x)= T e
u
X
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efc (x)= Z_J' e Y’ du ;Complementary error function
NI
Subscript
A = active well D =dimensionless
i = Initial X = linear x-axis
f = fault b = distance from the active wellthe fault

L = inter-wells distance

1.0 Introduction

Fractures in rocks are classified as joints ortfagbints are those fractures that have merelynegewithout
appreciable offset of the rock along the fractuejlts are those showing definite offsets. Manyltfadnave
displacement of several thousands of meters [1kleya[2] described the nature of this system andetiped
model of the pressure equations: A fault is an algmvhich could cause the low permeability of tag rock to be
interrupted in a local area of the reservoir. Faulbydrocarbon structure may be either sealingan-sealing. A
sealing fault separates permeable sand from nangable shale; it will impede lateral fluid flow anthy actually
form part of fluid trapping mechanism for hydrocambaccumulation. On the contrary, a non-sealind taigects
two permeable strata, which could be differenttatia@ a homogeneous reservoir bisect into two regioy the
fault. Then it is physically obvious that sand bale contact on each side of the fault can effefiact as seal that
prevent fluid flow across the fault, and sand-toesaontact at the fault will transmit fluid readily

A question frequently arises in the development@hmping of oil and gas fields is to what extengalf that has
been identified by seismic and geologic studies adt as fluid barrier; the juxtaposed sands prigerHowever, it
is normal to be apprehensive over the presencefadilafor they are potential source of fluid legkashould the
throw, or, vertical movement exceed the thickndsth® continuous cap rock as shown in fig. 1. Tikignportant
because it has major impact on the numbers ofregllired to exploit a discovered field.

It should also be noted that, while the throw skaling fault is such that a permeable stratumnanside of the
fault completely juxtaposed against impermeablatsin on the other side, a non sealing fault usubig
insufficient throw to cause complete separatioparineable strata on opposite side of the faultedisg fault will
completely prevent the flow of fluid laterally, vilhia non-sealing fault on the other hand will als/egllow
appreciable amount of fluid flow across it. Becan$&arious mechanical processes, such as grashicrg, bed
deformation, and clay smearing, however, the trassbility of the fault zone may be much lower thdre
transmissibility of the adjacent strata.

In-situ knowledge of juxtaposed sands and the mnégwmbility of the fault can be used as hard data i
simulation model, eliminating the need for faultrtsmissibility as history matching parameter.

A sealing fault is usually generated when the thodwhe fault plane is such that a permeable stratn one
side of the fault plane is completely juxtaposediagt an impermeable stratum on the other siddefdult. It is
also generated as a result of the precipitationcaystallization of mineral within the fault plahefore oil migrates
into the reservoir.

Based on this analysis fluid flow may occur acritgsfault plane laterally from one stratum to aeothf the
width of the fault zone is small compared with tlistance between the fault plane and the produgiely The
idealized nature of flow of fluid from one mediurmrass the fault to the producing region of the masie may thus
be described as one in which the observation refiieds it fluid across the fault into the activellwegion and
resistance to flow is relatively determined. Fds ilealised approach it is frequently met thatftngdt width is less
than its distance to the active region.

Green's function offers analytical convenience bdain solution to the equations derived for thetgposed
semi-infinite regions. [3], [4] and [5] have demtmased extensively on the effectiveness of the afs&reen’s
function for solving problem relating fluid flow tbugh porous medium. These papers reduced theeonotnito
seeking the appropriate source function from whiah solution to the diffusivity equation can bettem directly,
albeit in an integral form. [5] extended this nwthto solve boundary value problems by seekingGheen’'s
function, which is the summation of fundamental &@re function that is singular at the source atittigal time,
zero everywhere else, and the function that istissluo the diffusion equation at point away frone tboundary,
and is zero at initial time(complementary functiomhis paper presented how kernel function wasioéthfor a
reservoir with plane barrier using Liouville-Neuragpe series expansion — an approximation technituéhe
present paper, we applied the classical integaaisforms in seeking these two functions. [6] emptbreen’s
function technique for a situation of pressuredfigel a well near fracture with flow occurring alotig fault plane in
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addition. They obtained solution using the methéduperimposition of complex linear diffusion bownd value

problem by taking the fault plane as additionalrsetin the reservoir and couple the flow by dessaéibn of the
reservoir and fault flow solution, summing up &létresistance to flow. This paper presented awgalysiolution to
the flow of fluid across the fault plane based oobfem posed in reference 2. The reservoir propedre different
at the two adjacent blocks so that juxtaposed ftoma can be identified. In general, the storageacty of the

well bore and near well bore damage affects trahsiehaviour of a well. During the analysis of grae-time data,
each of these and its duration must be recognisethé application of the semi log and type cumehhiques to
determine flow capacity (kh) and damage skin. Alifjio this paper prepared analytical solution for digdtime

period, but it is extended for the early time data

Theory
Statement of Problem And Assumptions

The problem being considered is the prestansient behaviour resulting from constant pateluction from
a well in reservoir(s) that contains a linear \eatifault. Fig.1 shows schematic of a typical fangitsystem in the
actual juxtaposed reservoir(s). The idealised migdghown in Fig.2

The fault plane is of thicknesshd permeability kIt is located a distance b from the active wdlich acts as
the source of strength,qReservoir properties on the active well regioe eonsidered to be different from the
observation region. The assumptions made on tleevaiss are as follows:

1) Two porous media of different properties are jurtsgad at the fault plane. Each reservoir is isotrepih
respect to Permeability, homogeneous with respgedhéir rock properties, and both flowing a slightl
compressible fluid of constant viscosity.

2) Each reservoir is initially at same constant pressi.

3) The physical properties of the fluid remain constarall pressure.

4) Reservoir pressure remains constant and equaétmitial pressure, as distance from the faulhfaitely
large.

5) The well could be approximated by infinite line sm@iassumption.

6) The semi-permeable barrier is infinitely long arad megligible capacity.

7) The fluid leakage rate through the semi-permeableidy is proportional to the instantaneous pressur
different across the fault.

8) The well fully penetrated the whole reservoir thieks that is; sand-face pressure is independeiepoi.

9) The fault width is small compared to its distantite producing well.

Statements 1-5 are generally the basic assomfatr transient problems, while statements 6 aradlow the
partially communicating fault to be approximated \mrtical plane. Statement 7 expresses that thetaas
effect of the fault, then the leakage rate per timé per unit length of the fault can be expresasd

Ki hy kh, dp,
Y2 Hoodx

Statement 8 states that none of the constantseadytstem or physical conditions vary with depthttet the
problem becomes 2 dimensional. Then the flow inzemotal section of each region bisected by thetfaekds
be considered and then couple at the fault line.

On both sides of the fault the pressureyshibffusivity equation, and for the present sitoitit is best
expressed in Cartesian coordinates since the ftasa the fault is linear. As shown in Fig.2 thensbarrier
lies along the y-coordinate. The partial differahtequations describing flow of viscous fluid inisth
heterogeneous and isotropic system are described as

X

(p, - p,) while V, =~

x> dy> n, ot

2 2
08p, ,078p, 108, (1)

0°Ap, , 0°Ap, _ 1 9Ap,
d x° ay> n, ot

| —b<xg-0 (2)

With the initial and boundary conditions prescritiedow as
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Dp, (% Y.t > 0)=0,.y,

Apn(x - 00, y,t) =0

n=1,2

Ap(x - Oo) = On:1,2'

(klhljdﬂpl =(k2h2]dApz

dx e

) dx U
kh\dy, _(kh)
Hirab s

For convenience the following dimensionless vagaladre defined.

Pon = 27K,hy 1 qu(p, )

n=12-"

__

tm_zrgjgg

(©)

Note tp, = f(t, X) and putting —b-x=L. L is the distance betweenvactiell and a point in the observation region

X, =X,
L
b
b, =7
a, = il /(kzhzj.
M H
If
lp =—.
L
_h
Bt
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(12d)

z
1
&= =

Method of Solution

We are now in position to give logical and induetiprocedure in establishing relationships betweaessure and
time in environment of parameters controlling fldwough porous materials.

The governing equations describing flow in the tegions, in dimensionless form are defined below:

9°p, , 9°py _ 0P,

13
ax,> Ay, Oty o 3
oL
po =277 [G(p,mr)dr. (14)
0
d*pp, , 9°Pp, _ 9P
= <x<o0* 15
de2 + ayD2 c?tDL “bo— - ( )
a2 GN d
olxlzD22 ' ay:? i aﬁff oo (10
pn(XD ' YooloL = 0) :qnzlz- (17)
91()% —’°°1yD1tDL) :qn=12' (13
pn(XD’yD _’OO'tDL):qFLZ' (19)
dps, _ dpy,
A= g e (20
S (21)

The Green’s function for the Equations (13) & (H5¢ easily found using Neuman product method [3whjch
says that the Green’s function for two-, or thrémehsion variables is equal to the product of thieesponding one
dimensions. Applying this we seek the solutionht® ®ne dimensional diffusivity equation ip that is infinite at

=0 and is zero E{KD % 0), i.e. we request for the solution of the differahe¢quation

2
0 pgl — aPDl‘_OKX o (22
0Xp oty °
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For an infinite reservoir, subject to the condittbat

Po (X5, =0) =4(x, ). (23
Applying Fourier integral transform defines as

)= [ s Yo, (24
And inversion formula

Pl )= 5 [ Dt Jw (29
It is readily shown that transformation reducesghsial differential equation to the ordinaryfdiential equation

~owro=2 (26)

dty,

The transformation of the initial condition is

ety — 0)=[&™™3xo Jobx,. (27
Then,

Oty ) = Ae. (2¢

Substituting the initial condition we have
A=1, Then

O(w,tp, )= e (29)
Introducing eqgn. 29 into the inversion formulaeagivabove gives

— 15 g A-@tp
p(XD’tDL)_ZT_Le e o dw, ( 30)

Since the integral is analytic function we can gnége under the integral sign to easily solve Eqna(30) as
follows
set

®  —jwxy —wlt
I (XD ’tDL): _I e De DL gw. (31)

00

Differentiating | (X,t) with respect toX , we get

a =(}°4ce*""“e1&ﬂd/v @
db )
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(o]
dI(xD,tDL) o e_wztDL o —ix_e 1“Be a?tDL
= =li -i| » ( :Sf
D DL ‘ o DL
—00

The first term in Equation (31) vanishes identigatherefore
dl (XD’tDL) - _ Xp

(X5, T ) 34
dXD 2tD|_ ( D DL) ( )
Then by direct integration we have
2
X .
log, I (Xp,tp, )= ——2—+C". (35)
at
where C is the constant of integration, this imgptieat
X7
I (XD oL ) =Ce ", (36)

then, we seek the constant C by settiggQx I(tp) = C.
And

1ty ) = Te“f for g, (37)

Equation (37) is symmetrical about the origin araking a substitutiod® = a)ztD, it is transformed into

It )= \/tijfe‘zzdz. (38)

the integral term is solved in the polar coordinate arrive at

12(ty, )= —2 J%Te”zrdrde. ( 39)
tDL 00
2 nm

1ty ) = 7” =C. (40)
tDL

Putting Equation (40) to Equation (36) and finaliio Equation (30) we have

& . (41

o) =
p(XD DL) 2/,

This is the fundamental green function from whiokutions to other problem are obtained by summatigh the
complementary function. We then seek the Greemistfon of the form [3]

C'h()%vtm)zfN()%vtDL)"'HN()%-tDL)- (42

Where
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XZ
1 - D4tDL

f(XD'tDL ): We
DL

For region % < -bp and zero for x < -ly; and H is the solution to the one dimensionaludiffity equation for x >
or < by and is zero apt = 0 such that G satisfies the prescription afdét. We then have:

(42a)

0°Hy,  oH,

= —bp <Xp <0 * 4
a'XDZ atDL ‘ oo ( 3
azHDZ I"I él ID2

= . 44
3 2 £ atDL‘—h)<xD<—w ( )

The solutions to Equations (43) & (44) in the twens-infinite regions ¥ <-bp are approached using Laplace
transformation with respect to dimensionless tifrtee Laplace transform is defined as

H,06,8)= €™ H (%, to, Jdt. (49
0
and
oH,)_ 7 -, oH
n =g gt 4
L(atDLj ! atD|_ tDL ( e
o e 1%
=‘e DLnDL‘O +;J.e DLHndtDL' (43
0
1
=0+ Hbx, 9 (49
H(0)=0
Also
2 © 2
L 9 Hx =[e g H“dtDL. (49)
0Xp ° 0Xp
Ew. ( 50)
dxp

On applying this, the solutions to Equations (3id &2) are
H,(x, ,5) = Ae™Ve. (51)

H, (%, .s) = Be@XD. (52)

Also transformation of fundamental functioh is

F(xD,s):z—\l/ge’ﬁM. (53

Substituting Equations (41) — (42) into Equatio@)(®r active region and observation region seglyatve have

R - M \
b, 8 =——e""" +Ae . 4
Gl()%bag 2\/-3 _
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In the observation region

Ms
G, (%,,9)= Bl e (59)
—bp <xp <-e
And
dG dG
1 2
M = . 5
o dxp  dxp Xp=-bp ( 9
dG
2 _
dg =a (6,-6,) X5 =bp ° (579
Setting
o =s. (57)
and
M
G = s (57¢)

We solve Equations (56) and (57a) simultaneousiyetia

_,Bé\/l e %Pl - ApMq,e%™ = Bg,e . (58
g_Le—oubD +Aq e = Be (g, +0,). (59)
G

Multiply Equation (58) by(q2 +0'|_) and Equation (59) by.gve have

W(OQ_GL) -
2(;qltb _Aqlm(qZWL)e%:qu(qz*aL)e 2, (¥
a g, - -
Lt g4 +A"queq1bD = Be qé)qu(qzwL)-- (¥
20
Subtract Equation (60) from Equation (61) to get
~%Pp
a g |e -
q, a, | BMqg,e *> [ q,a, a, ] b ‘
1t —a, - -AlgQ +—+ M Be *>* =0. 62
(q d ﬁ'\"] 2q, A TV (

then
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% a,
i - L
[Oﬂ. q2 a\_ W ] e—zq]bD _A

. (63)
4a. , A
(ql "o " ,m]
then for g and g
qt+aq \/?—HL 1
RV 2o
A= M A € (64
q+a F L&
M) A
and
a+a JE -
B:ie“’hbb*‘%bu - - M A \/Ee_qlbD+q2bD' (63
X 29| q+q \/E +ﬂ M
a+ta M1
Where
M
A=MpB, g =+/sand q,=,[s—
&

wherep = the ratio of active well thickness to the obsion well thickness.
Defining a new parameter h as the effective trassbility, then

h=a i +ﬂ

\'mM A
We therefore obtain, by substituting, the greercfions as
g + aL\/z o
Gl(XD , q) - i e‘ChXD + M A e_ql(ZbD +><D) i (66)

20, 2q,(q, +h)

Ch"'%.\/ﬁ_j £ -ql(bD-\/g(bo‘fxo)j
J; e | (67)

2C]1(Q1 + h) ;

These two equations. are inverted using the Bromwitegral formula defined by

Gbot)= 1 Jecho s o4

C-ico

we have, after analytical evaluation of the intégra
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—_— 1 4tDL 4'tDL
Gl(XD’yD’tDL)_ 471DL € +471DL €
a h?tp, +hz—2—- y’o Z
— e “ouerfel hyfty, +—— | (69)
201ty ( T J

In the same vein the Green'’s function for y-axi®isnd to be

7
Glypto )= We : (70)
DL

And by Newman product scheme, the equivalent Génréservoir is product of the corresponding omeedisional
coordinates in the horizontal plane, which is writbelow
eyl 2y a hztDL+hz——

1
G Yorto ) =———€ * +———g Fr ———1 DLerf{hJ t—— ] (7
( ° DL) a,, art, 2)I,/7tDL 2/t ( ])

G, (% Yootor)

it ol Mjwcwjbo—ﬂ(bow)j ,

tDL

Substituting Equations (71) and (72) into Equati(ir&) & (14) respectively we have
1o (O +y?) 1 Z+y*) W1 e z

P,,=—EIl - -=El| - 4 erfg) hvu + —— |du. 73

o2 [ 4 Jz[ 4, jf fzﬁ 73

DL
M o h2u+h[bD— M(bD+xD)—yL2] by _ﬂ'\:l_ (bD + XD) du
£ 4u
P, =0, n?.([ e erfc| ha/u + oTn (74)

=l

Where variable ‘u’ is a dummy variable of integoatiand
z=Db, + X, in Equation (73)

Derived Model Equations
The dimensionless pressure distribution for thevaatell region, as derived above, is

-1 X2+ 2 1 ZZ+ Q. fo h2u+hz—
le(XD,yD,tDL)=E'£‘ y]‘zE'L‘ qyJ Jn LII 4“afc(h\/ﬁ+mju (73

2 tDL DL

And for the observation region we have
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2 M

tor .« hlushb - Mlp +x |-¥D b~ M x|

DL

):x/nal_ % [—e D SED D} AW erf h@+D;—fDD du (74)
0 u

g

pDZ(XD,yD,tDL

Equation (73) shows the application of principlesaperposition to pressure transient responserasidn of
space. The first term represents pressure digwibuh a homogeneous reservoir, while the seconeh is an
indication of sealing fault response and the titénain describes the characteristic of the fault. fraasmissibility
across fault is parameter describing the magnitidee third term. Figure 3 describes these resopsofile for
active well region, which is called type curve. &yqurves are quite useful for identifying and asislg composite
systems. The most noticeable feature, charactedbpressure profile for this system, is the pnesé two straight
lines or curves. The first of these curves is tnaight line response for estimating the paramedéractive well
region, and the second curve demonstrates thentissibility nature of the observation well regidfigure 4 is a
type curve that can be used to match the interfereesponse of a well on the other side of theveadi flowing
well plotted for various values of transmissibildf/the fault.

Conclusion

A very important factor in this method of solutigits flexibility in seeking solution to partialifterential
equations for complex boundary conditions albeihtegral form, and the derivation of the fundaraéeuation is
straightforward. The Kernel function is sought lngpdoying classical integral transforms method.

The purpose of this study is to provide analytgUtion that could be applied to identify juxtapdgormation
across a fault using well test. This is achievedibyeloping simultaneously pressure and pressureatige type
curve for the partially communicating fault acrahe pseudo-reservoirs. The analytical solution iobthin this
study could be used to improve the design and aisalyf interference tests between wells separajedhé
communicating fault. The information generated bgse solutions will yield separate estimate of fiom
transmissibility and the transmissibility of theufiaitself.

An explicit solution for draw down at the active lixeffers the possibility of deriving the fault tramissibility
from the draw down and build up behaviors of thévacwell alone. One could use this method if caneat
observation well has not been drilled to deterntieefault transmissibility theoretically.

Active well
K region Observation
1 region
Fault
/
plane /
0.0 fault
K, <«
Fig. 1: typical faulted Reservoir Fig 2: modelling the fault plane as vertical linarrier
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100 100
" ——p=0 L
// =00 v BIE= SRS R R
— —= e
— p=0.001 S — "
— %F 4 M
/ = d=0.001 = /r | —
10 — — —%—p=0.005 /V
. = —o— 0,005 . ¥ /
o = ——p=0.01
@ | ——4=001 /
o p=005 2 ¥
a d=0.05
=
" "
a = / ——p=E()) solution
p=05
1 " d=05
p=L
d=1
— — 0.01
—— p=no fault /
d=no fault
0.001
01 1.00E-01 1.00E+01 1.00E+03 1.00E+05 1.00E+07 1.00E+09 100E+11 100E+13
100E-02  100E+00  100E+02  100E+04  100E+06  100E+08  1.00E+10  100E+12  1.00E+14
TIME
DIMENSIONLESS TIME
Fig.3: Dimensionless Pressure response and dewvgalibt. Fig.4:dimensionless Log — Log plot digervation

well response
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