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Abstract

Hydraulic fracturing is a Well intervention program, designed to create
fracture(s) within a reservoir system and hopefully, extend the volumes of
these fractures, to facilitate improved recovery of in-situ fluid(s). This paper
presents mathematical equationsin dimensionless forms, to rapidly estimate
the fracture extension and efficiency during a hydraulic fracturing
operation.

The fracture extension profiles over time are captured in generated
plots. The results are consistent with theory established in this work, and
provide an innovative method of rapidly estimating the extensions of
fracture lengths.

Nomenclature

a(t) = fracture area, ft Y= Dimensionless parameter
A = Fluid leaking coefficient q = Injection rate, volume/time

I/(t) = Fluid flow velocity into reservoir w= Fracture width

fracture = reservoir
Time n= Efficiency
Gamma function

o B
I

1.0 Introduction
Energy is a key requirement to sustain and driveld@ment worldwide. Petroleum is a major parthaf t
energy chain, and the petroleum industry is coutirsly looking for ways to improve the recovery ofsitu fluids
from reservoirs. This is particularly necessaryigw of the greater demand for energy, especiatural gas.
A major part of the effort to improve the recovedyin-situ fluids, is through Well intervention mams,
particularly, Well stimulation. Well stimulation pgrams are broadly classified into:
e Hydraulic Fracturing of the immediate environmehthe reservoir around the Well, and
» Matrix Acidizing of the immediate environment oktheservoir around the Well.
The lithology of the reservoir system — sandstoneg@bonates, shale, etc., determines the stimaolptogram that
should be used. This facilitates the right fluidid formulation for executing the program — injeatinto the
reservoir. In this paper, we concentrate on hydedthcturing, which is basically, the splitting afrock, thereby
creating openings — fractures, by a fluid undesguee. Our emphasis is on the length(s) of theenldaactures.
A classical in-situ fluid is natural gas, whichiereasingly becoming a very important part of émergy
mix. We have the so-called:
» Conventional Gas, and
* Un-conventional Gas.
Under un-conventional gas, we have such categasies
e Tight gas, and
» Shale gas.
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The reservoir systems containing these gasesharaaterized by their low values of permeabilithieth must be
enhanced by “induced” openings, to effect any andfmproved recovery of the natural gas, thus, hyiita
fracturing. Generally, the purpose of hydrauliccftaing is to improve well productivity beyond theatural
capabilities of the reservoir. This applies to bo#tural gas and crude oil reservoirs, where tteeseneed to create
additional “openings” for the in-situ fluid(s), fmw to the Well.

Designing fracturing jobs to improve production aogtimize returns is an optimization and exact
mathematical science. A recent paper [1] on Wetfgmmance improvement on a Well in a Texas gadfiel
describes how fracturing has opened numerous uectional frontiers that would have been uneconolntiza
develop without hydraulic fracturing.

This paper presents a mathematical model that earsed to estimate a fractured length, obtaineohglur
the period of injection of the fracturing fluid aftthe fracture initiation. Also, we report theuks of the analysis of
parameters that can be controlled so that effedtaature length will be increased. Fracture lengttrelated to the
fracture conductivities. A long fracture lengthdsao an infinite conductivity fracture. This idracture that is so
conductive compared to the reservoir itself [2].

Mathematical Formulation - Model

For natural rock formations, the theory of fractastension indicates that the injection pressurailshbe
twice the confining stress and the tensile strernyblvever, field evidence does not support thisf8} instance, an
injection pressure twice the magnitude of confinprgssure seldom occur in extending horizontaltdirec while
vertical fracture extension pressure is two-thitdhe overburden stress. The extension lengthfod@ure depends
on the volume of fluid that leak into the reservaird the volume retained in the fracture, the sfinvlach is the
total volume injected over an interval of time, wlinican be expressed as:

G =0; +q ‘
Equation 1 describes the material balance naturdluad conservation, which is the basis of the megd
mathematical model. In the fracture, the injectieddfwill split into two parts: one part enters anthe reservoir
under the influence of pressure differentldl — P. between the fracture and the external reservointhary. The
remaining volume subsequently moves into the fraotpening and thereby increases the length dfaleture.

To derive the basic flow equation, ge make the following assumptions:

*  The fracture is of uniform width,

* The flow of fracturing fluid into the reservoir is governed Dgrcy flow equation or any
linear flow model,

* The flow of fluid into the reservoir is through the fractumefaces and at any point on the
fracture face, the velocity of flow is a function of timtewdnich the fracture fluid reaches it.,
and

» The pressure in the fracture is equal to the saoel ihjection pressure.

The third assumption simplifies the flow rate addture fluid into the reservoir as product of aopan to flow and
velocity of flow. Thus, the integral of flow veldgiover the present area and over the fracture is:
a(t)
q = j v(t-7)da(7) (

0o

Since the extension of a fracture increases witle s long as the fracture keeps on acceptingijbetéd fluid, for
a given area formed, there is a lag in time forl¢iaéx off into the reservoir.

By superposition theorem, the velocity of flow irttze reservoir,V(t - T), is the response to a unit impulse

created at time t at a point that arrives at armgploént at time (t - T) in a system that is infinite. Since fracture
area also increases with time, then

da:%dr 3)
dr

Substituting Equation (3) into Equation (2), theflrate into the reservoir from the fracture, beesm
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_torr o 9a(7)
q —_([v(t r)?dr (4

The flow rate into the fracture is equivalent te {injected) volume (into fracture) per unit tinféis volume is the
product of area created over time and the widthsunesl at entry point, which is:

da
=w— 5
G =W (5)

Equation 1 can now be re-written as:

t

_togyda(r) da
qi—lv(t r)?dr+wa (6)

This is a convolution equation, which can easilysblved in the transform space.
Method of Solution

The time variable t can be transformed into a spda®mplex variable by Laplace transformation [Bfined
as:

ungf@pﬂm (i

s>0
where f (t) is applied to represent any variable that is tirapeshdent.

The Laplace transform of a convoluted integral iseg as the product of each variable involved ie th
superposition. By this definition, the transforroatiof Equation (6) is given by:

o) Tda g T _qda
= t —dt
. v(s).([ae d +W_([e & d (8)

And by rearrangement, we can rewrite Equation @y an evaluation of the integral. Through inteigra by parts,
the transform of the derivatives, is:

T _,da(t
Ie‘s‘ Ldt:sqat(s) (¢
)T dt
A = (v(s)+w)sa(s) (1¢
S
Thus,
a(s)= (11
s? (2v (s)+ W)
To recover the area in time dependence, we define the Cauchwintegr
f(6)= 5= | f(s)e"ds (12
The form of the velocity profile determines the functit(s) . If the velocity profile follows the form:
A
v(t)=— @3
(=7

With the transformation
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o 1
v(s) :A_[t 2g % dt (L
0

By making a change of variable:

Jt= Y , thendt :§ydy.

Js
Equation 14 becomes:
_2A7 - d |
v(s)= @J' e dy (@
0
By transformation into radial and azimuthal coordinates, aweh
T
v(s)=1,/— 1))
S
a(s)= 9 @z

ol

To recover the fracture area in real time variable, our constrymtimeeds from the Bromwich integral:

C+ioo

1
f(t)=—— | f(x)e’dt 18
(055 ] 109 (
Making intuitive construction, Equation (17) is expanded.@yrent series as:
_ G
a(s)= 5 3 (19
s2 (Z)I Jr+ Wszj
Then we make some substitution and expand the result byisintheorem. That is:
w [s 24z
Let Z = —\/: . This implies that\/_ = T
2A\ T W
If we setW = , then,
W
a(s)=—A—— (20
3 32
S2wW| 1+ —
W
Expanding the term in the bracket and taking note of analytieatem of complex variable s:
1 3
s2 s g2
G|l-—Ftwr Wi
Yy v W
R(s)= 5 1
wWs?
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a(s):quW is——1+ Sl—%\ﬁ... (2
g ¥ g
1 1

Also putting¥ + s? = { , this implies thas? = { —{ . Substitution into Equation (20) and then expanding by
binomial theorem, we get:

-__ & |
a(s) =TT (23

_q( 1 3 17  6q*
RZ(S)_W[W4Z+W5+ LIJ6+ W7 +j (24

-q (1++2++
R (9 =— o

Since the integral contains no pole other than the branch gojaétion (25) becomes:

(2!

(26)

NM—\ =

+w]

Combining Equations (22) and (26) we have

a(s):% [ + - + 27)
Ww*ls

Expanding further:

a(s):i %—i+%——13+... (2¢
Yw < Ys VR W

Inversion to Time

Equation (28) will be inverted back to the time variablangig€Equation (12). The nature of the integral
requires a construction of a cut plane that will accommodate eacbhbpoint to the left of the origin. For the first
term we have:

1 C+ioo st
a(t)=— | £ (29
2m C—ico 52
By analytical continuation, we s&t=re'” and s = re”' " along the two paths. Thus:

—-rt

e’dr (30

1 im

R
0 r262 rEeT
which simplifies to:
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f e; ( jdr (31)

Now it remains to evaluate the semi-infinite integral. sTE best confronted by making the transformation
r = y?> = dr = 2ydy in Equation (31), yielding:

1(2e™
a(t)=— 2ydy (32)
=]
Another change of variable and introduction of radial coord@ahe solution to Equation (32) is:
1 2m 0o )
t)=——=| | dg|e " rar (33)
a(t) mlt u ! ]
Simplified to:
1
t)=— (3¢
a,(t) N

To invert the second term in Equation (30), we invoke tbpgmty of transform of integral that is:

i) :

Simplifying further, we have:

t
t)=.|— 3t
3, ()=~ (
The inversion of inverse of s has a simple solution:
a,(t)=1 3
The last term in the Laplace space in Equation (28), by analgtiogéhuation has the form:
— 1 T e_rt i 7T ¢ e—rt —i 7T,
a,(t)= o I € ar +Ije dr (38)
Oz+r2e? “zZ+re?
By rationalization we have:
2| L r1/2e—rt
a,(t)=—| | =—dr 39
(1) 271 J; Z2+r (39)

whose solution is:

a,(t) = W +e* (1-arf 21)) (

Combining, &, (t),i = 1234, we have:
-_4q t 1 wa (4
a(t)_W[zw\/;-'-qﬁ—\/ﬁ 1- qJ?,w/],/tn+e (1 erf (W\/_))J (41

. _ _ 2cm
Thus, Equation (41) is an expression for fracture area creagpthdtg¥ = :

w
a(t):%[4¥\/g+e$“‘[erfc[%ﬁn—q (42)

Equation (42) is the model that describes the fracture area wsctioh of time of injection and fluid leaking
coefficients,A. The term erfc can be fully simplified by finding the asymtic expansion of a familial function
defined in form of definite integral using method of intgn by part. We choose the incomplete Gamma function
defined by:
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H(u,x) = je‘st”‘ldt (42
0

By repeated integration by parts, a suitable series representati be found for Equation (43), when variable x is
small:

H(ux) =3 )X 44
(ux) = ZOZW (
When variable x is small, we define complementary incompleten@afunction as:
I (u,x) :je’tt”’ldt = Tu-H(ux) (4
By repeated integra_tion by parts, we have
r (u, x) = _—I' (Eli n)}e‘xx“‘”‘l; x> u-1 4
Hence a¥X — 00,
> lu U=
r ~ X Ju-t 4
0| S ‘

Therefore, erfc is an example complementary Gamma functiors arfidhie form:

-1
1 (1 e 1\ (-1) ‘
erfc(x)=—I| ='%° :eXZZF r——= ( Zr)_l (48
Jro\2 =) 2) X
We note that this representation of the erfc term is forpeoational purposes, remembering that our objective is
equation 42, which describes the fracture area.

Fracture Efficiency

The efficiency of any hydraulic fracturing process is théoraf its output response to the quantity of
injection input. Here, the input is the total volume (enggallons) of injected fracturing fluid and the responghes
volume of fracture created, a function of the fracture area. Thevtahe injected is the product of injection time
and injection rate, in which the output is the productatfire width and the area created. It follows that:

_w*a(t)
B gt

By substituting the equation for fracture area, the fracturegiesity can be represented by Equation (50).

(N 51 )
/7(t)—4n_/12t 4T 7—T+e (erfc(v—v\/ED 1 50

Defining the dimensionless variable x as:

2t

(4¢

, therefore Equation (50) becomes:

)= Xi(ZX\/;lT re erfc(x)—l] 51

Equation (51) is the expression for fracture efficiency. ditfieterm is represented by Equation (48).
Validation of Model
Equation (42), the objective of this paper, describes the aradra€ture as a function of time, with fluid

properties, reservoir properties and fracture width, as paraandtable 1 shows our sample data used for the
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estimation of the fracture area, a, in this work. Using thas®, eve present in Table 2, the estimated values of the
fracture area, a, at various injection times. Table 3 showsffib&ncy of the fracturing fluid as a function of time.
Figures 1 and 2 with fracture widths of 0.2 and 0.4 inctesjonstrate the importance of a fracturing fluid on
created fracture length. We note that fracture area is a functioaobiire length. The leaking fluid coefficient is
representative of a fracturing fluid. The lower the value &f farameter, the longer the extended length of the
fracture created. The input data are synthetic data generated byRAGRTo indicate the arbitrariness of the
parameters that can be used for investigations, and subdggtreneffective design of a hydraulic fracturing job.
The plots in the Figures 1 and 2, describe the area-timéegrfidr variations in the widths of the created fractures.
It is seen in Figures 1 and 2 that a fracture fluid wvaitkeaking coefficient greater than one is ineffective as a
fracturing fluid. Table 3 generated from equation 51, clearbwshthat the efficiency of a fracturing job depends
greatly on the leaking fluid coefficient. From Figureit3can be seen that low leaking coefficient of about 0.001,
will give an efficiency of about 100%. Since injection pteesis constant the fracture length is longer for shorter
injection time as the plot shown. This will be a major iripudesigning hydraulic fracturing jobs.

Conclusions
The ability to have effective control of a fracturing program ba an invaluable asset to the petroleum
engineer. This helps to optimizing reservoir surveillance@nduction. The proper selection of a fracturing fluid
with the right leaking coefficient as well as knowledge & fhacture width, are the parameters by which the
fracture length, which can be confirmed by well test, wdl gre-determined. From this paper, we conclude as
follows:
* A mathematical model is presented to provide an innovativeathath rapidly estimating the
extensions of fracture lengths from hydraulic stimulatais]
» The effectiveness of a fracture fluid depends on the area ofittark produced.
e The fracturing fluid leaking coefficient controls the profdé the fracture extension-time plot,
with lower coefficient producing the most extension.
» The fracture efficiency can be rapidly modeled to provide inddion about the loss of the
injected fluid and to detect thief zones.

Table 1: Sample Data for Estimating Fracture Area, a.

Injection Rate, g Fluid Leaking Coefficient/ Fracture Width, w
(bbls/min) (inches)
5 10" - 16 2-10

Table 2: Estimated Fractures Areas, a, in dimensionless form

Fluid Leaking | 1.00E+02 1.00E+01 1.00E+0d 1.00E-01L 1.00E-02 10®E7 1.00E-04
Coeff, A, =
Injection Time Area Area Area Area Area Area Area
(min)
1 1.59E-02 1.58E-01 1.51E+Q0 1.02E+01 2.20E+01 B2t01 2.48E+0]]
2 2.25E-02 2.24E-01 2.17E+Q0 1.62E+01 4.19E+01  EHO1 5.02E+01]
3 2.76E-02 2.75E-01 2.68E+00 2.10E+01 6.07E+01 EAB2 7.47E+01
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4 3.18E-02 3.18E-01 3.10E+Q0 2.51E+01 7.85E+01 2200 9.91E+01
5 3.56E-02 3.55E-01 3.48E+Q0 2.87E+01 9.56E+01 B+P2 1.25E+02
6 3.90E-02 3.89E-01 3.82E+Q0 3.20E+01 1.12E+02 B+02 1.49E+02
7 4.21E-02 4.20E-01 4.13E+(Q0 3.51E+01 1.28E+02 E:+62 1.74E+02
8 4.50E-02 4.49E-01 4.42E+Q0 3.79E+01 1.44E+02 E+92 2.00E+02
9 4.77E-02 4.77E-01 4.70E+Q0 4.06E+01 1.59E+02 202 2.24E+02
10 5.03E-02 5.02E-01 4.95E+Q0 4.32E+01 1.74E+02 OR202 2.50E+02

Table 3 Estimated Fracture Efficiency,(t)

Fluid Leaking | 1.00E+02 1.00E+01 1.00E+0( 1.00E-0L 1.00E-02 10®E7 1.00E-04
Coeff, A, =
Injection Time | Efficiency | Efficiency | Efficiency | Efficiency | Efficiency | Efficiency | Efficiency
(min)

1 6.36E-04 6.33E-03 6.08E-02 4.08E-P1 8.81E-01 B-8r 9.93E-01
2 4.50E-04 4.49E-03 4.35E-02 3.24E-P1 8.39E-01 B-61 1.00E+00
3 3.67E-04 3.66E-03 3.58E-02 2.80E-P1 8.09E-01 B0Y 9.96E-01
4 3.18E-04 3.18E-03 3.11E-Q2 2.51E-p1 7.85Er01 B.01 9.91E-01
5 2.85E-04 2.84E-03 2.79E-02 2.30E-p1 7.65E-01 B01 9.97E-01
6 2.60E-04 2.59E-03 2.55E-02 2.14E-p1 7.48E-01 B-68 9.95E-01]
7 2.41E-04 2.40E-03 2.36E-02 2.01E-p1 7.33E-01 B-66 9.94E-01
8 2.25E-04 2.25E-03 2.21E-Q2 1.90E-P1 7.19E-01 B-63 9.98E-01
9 2.12E-04 2.12E-03 2.09E-02 1.81E-P1 7.07E-01 B-61 9.96E-01
10 2.01E-04 2.01E-03 1.98E-Q2 1.73E-01 6.95H-01 9B6G1 9.98E-01
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fracture area time plot with fluid leaking coefficient, fracture with as parameters

3.00E+02
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—e&— 1.00E+02
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Figure 1: Area-Time Plot with Fracture Width of 0.2 inches

fracture area time plot with fluid coefficient as parameter
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Figure 2: Area-Time Plot with Fracture Width of 0.4 inches
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1.20E+00 —e—effcy @ 100

1.00E+00 o996 oo o effcy @ 10
8.00E-01 effcy @1
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Figure 3: Efficiency — Time Plot
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