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Abstract 

 
A class of continuous second derivative hybrid methods is developed and the 
stability of these methods is investigated using the root locus plot. The k-step stiffly 
stable schemes of order 2k +  are suitable for stiff systems of equations for 14k ≤ . 
These schemes have been implemented and some numerical results are presented.  
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1.0  Introduction 
 

Let us consider the initial value problem  

 ( )( ) ( ) ( )baxyayxyxfy ,,,, 0 ∈==′           (1.1) 

whose solution is stiff. The class of stiffly stable continuous second derivative hybrid methods of interest for the numerical 
solution of (1.1) is given by  
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Equation (1.2) is an extension of  [5] 
Our purpose is to derive hybrid methods in continuous form which possess good characteristics such as small error constant, 
high order and minimum function evaluation. The use of the second derivative in the hybrid predictor enhances stability 
characteristics. The methods have been obtained using a means of interpolation and collocation. Continuous collocation 
methods are found in,  [1], [2], [3], [4], [7], [9], [11], [12], [13], [14]. 
 The derivation of the class of methods and its hybrid predictor is found in section 2. The determination of the stability 
of the method using the root locus is contained in section 3. In section 4 some numerical results are presented.  
2.0 The Derivation of the Class of Methods and its Hybrid Predictor 
 The polynomial interpolant  
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+
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j
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is assumed to represent the numerical solution of (1.1). Substituting (2.1) into (1.2) we obtain the linear system of equations.   

The values of sa j′  are determined by solving the above system of equations. Setting thxx n += +1  and putting the resulting 

values ja  in (2.1) yield the coefficients ( ) ( ) ( ) ( ) ( )tandtttt vk ,1,12,11,10,1 ,,,, βββββ L  for a fixed value of k  with 1−= kt . In 

Table A we have the continuous coefficients of the schemes for 3,2,1=k .  

In a similar manner using the interpolant  
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the coefficients ( ) ( ) ( ) ( ) ( ) ( )tandttttt kkk ,3,2

**
2

*
1

*
0 ,,,,, ββαααα L  of the hybrid predictor (1.3) are derived. For 3,2,1=k  

its continuous coefficients are given in Table B. Likewise for ( )1414∈k , the continuous coefficients for the schemes (1.2) 

and (1.3) can be gotten.  
Table 1:  Continuous Coefficients of the New Class of Methods. 
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Table 2:  Continuous Coefficients of the Hybrid Predictor   
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3.0 The Stability of the Methods  
 The stability of the methods is determined using the root locus approach. Lambert [10] and Otunta et al [13] 

discussed the general graphical form of the root locus plot. Substituting the hybrid solution vny +  at point vnx +  into the LMM 

(1.2) for a corresponding k and applying the resultant method to the scalar test problem ( ) hzhyy λλλ =<=′ ,0Re,  

with an arbitrary initial value we have the stability polynomial  

 ( ) ∑ ∑
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Applying the root locus method to ( ) 0, =zrπ  shows that the methods in (1.2) are stiffly stable for 14≤k . The root Loci 

are shown in figures 1-15. For any given value of k, the interval of absolute stability of the methods are deduced in Table 3. 
 

                          
       

        Figure 1: Root Locus for k=1                                            Figure 2: Root Locus for k=2 
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       Figure 3: Root Locus for k=3                             Figure 4: Root Locus for k=4 
 

       
         Figure 5: Root Locus for k=5                Figure 6: Root Locus for k=6 

               
             Figure 7: Root Locus for k=7    Figure 8: Root Locus for k=8 
 
 

                  
 Figure 9: Root Locus for k=9                     Figure 10: Root Locus for k=10 
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 Figure 11: Root Locus for k=11                 Figure 12: Root Locus for k=12 

                
 Figure 13: Root Locus for k=13                              Figure 14: Root Locus for k=14 
 

 
 Figure 15: Root Locus for k=15 
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Table 3: The step number, interval of absolute stability, error constant and order of methods. 
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4.0 Numerical Experiment  
 Let us consider the following initial value problems:  
Problem 1: Linear problem, Enright [5] 
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with x  in the range [0,3] and 0001.0=h  
Problem 2: Nonlinear chemical problem, Enright [5] 
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For 1=k , the proposed class of  methods is used to solve the above problems. The implicitness in the methods is resolved by 
applying the Newton Raphson iterative scheme as reported in [5], [6], [9] ,[10] and [13]. The inverse Euler method in [6] is 
used to generate the starting values for the iterative schemes. The numerical results of the first component of problem 1 and 
the second component of problem 2 are of comparable accuracy to that of [5] and ODE 15s code in MATLAB discussed in [8] 
as seen figure 16 and figure 17. 
 
5.0 Conclusion  
 A class of continuous second derivative linear multistep methods with one hybrid point of step number 14≤k  is 

considered. The stability graphs in figures 1-15 show that the methods are stiffly stable for 14≤k  and unstable for 15=k . 
The order and the error constant of the methods and its corresponding second derivative hybrid are given in table 3. The 
graphs in figure 16 and figure 17 show the accuracy of the new formulas when compared to results from Enright’s methods 
and the state of-the-art code, ODE 15s in MATLAB.           
 

 
Figure 16: The plot of the numerical solutions of the component )(1 xy  of problem 1.  
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Figure 17: The plot of the numerical solutions of the component )(2 xy  of problem 2.  
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