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Abstract

A time domain numerical technique is presented for the modelling of acoustic wave
phenomena. The technique is an adaptation of the alternating direction implicit
finite difference time domain method. The stability condition for the algorithm is
given. Simple illustrations of propagation in an infinite homogeneous medium are
provided which reveal the influence of the Courant number on a simulation and the
basic attributes of the algorithm.

PACS: 02.70.Bf — Finite difference methods.

1.0 Introduction

The finite difference time domain (FDTD) method as attractive technique for the prediction of field
behaviour in wave interaction problems in which thee parameter appears explicitly. The basic thewrthe
FDTD method applied to electromagnetic wave proklean be found in [1]. An adaptation of the FDTDtimoel
for the simulation of acoustic wave is given in.[&h FDTD algorithm is formulated by finite diffemeing a pair of
first-order partial differential equations whichpresent the wave, leading to recursive time steppikpressions
where the field values at the present time is deduitom field values at previous time steps. Howgvkee
traditional FDTD method [3] is based on an explfaifte difference algorithm and consequently thieveed time
increment is bound by the Courant-Friedrichs-Le\@yF) stability condition [4]. The CLF condition lits the
capability of the traditional FDTD method becau$en object has a small size compared with wagttgra small
time increment introduces a significant increasehi@ computation time required to obtain accepfabtrate
solution. To overcome this drawback, the altermmptlirection implicit finite difference time doma{ADI-FDTD)
method has been introduced for electromagnetic wamalations [5].

In an ADI-FDTD method the set of finite differenequations for updating the wave field values frivarith
to the (n+1)th time step is broken into a number of sub-sets, thadset of equations is implicit. These sub-sets
represent alternations in the computation direstidihe alternations in the computation directiorss/ioe made in
respect of either (i) the spatial coordinate dicets [5] or (ii) the sequence of terms on the righhd-side of the
partial differential equations [6]. Thus the congiign, to advance one time step, is performed uainmgmber of
updating sub-procedures equal to the number ostdwhich constitute the algorithm. In the ADI-ADTethod
all the field components are defined at every tisey n, (n+0.5) and (n+1), contrary to the tradidioFDTD
method which defines some field components at 8a49.6) and others at (n+1).

Here the ADI-FDTD method is adapted to model adoustave phenomena. For pedagogic reasons, the
formulation of the ADI-FDTD acoustic wave algoritHmgins with a one-dimensional situation. Numerstability
analysis of the algorithm is done using the Von iHaaon method [7].

2.0 Physical Model

An acoustic wave is a variation of pressure anditemvhich propagates through a compressible mediora
medium that exhibits little restraint to deformatjaghe restoring force responsible for acoustic evaropagation is
due to change in pressure. Using a field approaatiescribe the wave, the relevant field functiors medium
densityp(r,t), particle velocityV(r,t) and pressure pf), wherer is the position vector and t is time. The field
functionsp(r,t), V(r,t) and pf,t) which represent the wave are related via theaton of continuity, equation of
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motion, and equation of state. Mathematically, wplienomenon is represented by a wave equation.céunstc
wave equation is derived by using the equatiorootiauity and equation of motion.

Ignoring the temperature dependence of viscosityg Mewtonian fluid, the general equation of motisrihe
Navier-Stokes (momentum) equation [8] which camibiéen as,

/)B—\tﬂ(v.m)v}:pg—Dp+(ns+gnjD(DV)‘”DXDN* @y

wheren is the shear viscosityjg is the bulk viscosity and is the body force per unit mass. In adapting tagiét-
Stokes equation for acoustic wave phenomenon,dpopriate to admit compressibility and discardutation;
these concepts are represented in (2.1) by thegdimee and curl terms (of the velocity) respecyivélor an
acoustic wave in a source-free medium, the termesgmting the body force will not apply as it dexsoan external
force.

Discarding the circulation is equivalent to seafiixV = 0. The vector identity

OxOxv =-02V +0(0V) (2.2a)
implies that
0(0Vv)=0% ,when OxV =0. (2.2b)

When the wave is of small amplitude, we can ignore the ineas# term in (2.1) and the equation of motion for
an acoustic wave in a Newtonian fluid reduces to

\Y
Poaa—t=—DP+i7aD2V y Ha=ngtdnl3 (2.3)
wherep,, the constant equilibrium density of the fluid, is riegd by the small amplitude approximation [9], P
(= p — R) is an acoustic pressure andlpe equilibrium pressure.
For small amplitude waves, assuming an adiabatic equatictats, the equation of continuity can be
written as [9]

9P _gov. (2.4)
ot
where B is the adiabatic bulk modulus of the fluid.

The two coupled linear partial differential equations (2.3) §A4) describe an acoustic wave in a
Newtonian fluid, and represent the acoustic wave equatia@pdin of coupled equations (2.3) and (2.4) is a system
of four scalar partial differential equations governing foomknown scalar field functions: namely, three velocity
components and the acoustic pressure. The four coupled plifféagntial equations in rectangular coordinates (X,
Yy, Z) are:

2

PA L (2.5a)

ot 0 X 0 x°

v, a9p 9%V,
Po—r =" T a2

ot oy a0y’

ov, __6P+ %V,
Poot " oz oz
a_:—B(aV>< +M+mj (25d)

0 X oy 0z

(2.5b)

(2.5¢)

ot

The system of partial differential equations (2.5) is thasbfs a finite difference time domain algorithm
describing a general acoustic wave problem.

3.0 Numerical Model

A finite difference time domain model approximates a contisusave field in space-time by sampled data at
points in a finite space-time lattice. The unit cell appadprifor an acoustic wave is given in [2, 10]; the field
placement scheme on the cell is slightly different from trata Yee cell [3]. The partial derivatives in the
differential equations which define a problem are approximatdgufinite differences and, consequently,
difference equations replace the differential equations describingproblem. The common FDTD symbolism
introduced by Yee denotes a function of space-time as
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F"(i,j.k)=F (iox, joy kdz,not) (3.1)

where i, j, k, and n are integef, dy anddz are space increments along the respective axest @d time
increment.
In an ADI-FDTD method, a space derivative is replaced with a @shthfference approximation which is
second-order accurate in the increment:

OF (%) _ F(xo+0.55)—F(xo—0.5§)+z9(52) (3.2a)
d X o

F () F(x*8)=2F(x)* F(% =) 550y (3.2b)
ax? 02

where x is the expansion point aridis a space increment. However, a time derivative is replacedaviidrward
difference approximation which is first-order accurate in tieeement:

n 05 _ &n
OF P 5(at) (3.3)
ot 0.54t

3.1 ADI-FDTD 1-D Algorithm
To introduce the formulation, let us consider a 1-Dasiten for which the governing partial differential equations
reduce to

v, _ aP 0%V,

Po ot - E-F’/Ia axz (3.49)
%—f = —B%\;X . (3.4b)

According to the alternating direction implicit (ADI) printgp the finite difference algorithm for marching from the
time instant n to the time instant (n+1) is broken up anhumber of sub-steps; namely the half time step froon n t
(n+0.5), and the half time step from (n+0.5) to (n+1). @arsg (3.4a) for instance, the two half time steps are:

1) For the half time step from n to (n+0.5), at the tingant (n+0.5), Vis updated using an explicit finite
difference equation arising from

Vv, P .
d Toxl o
t i+0.5 X i+0.5 X i+0.5

2) For the half time step from (n+0.5) to (n+1), at theetinstant (n+1), YVis updated using an implicit finite
difference equation arising from

0.5 1
v, " opP[" | .
I Ma 2
at i+0.5 axi+O.5 OX i+0.5
Thus for the system of equations (3.4) the two sub-proesdvhich constitute the ADI-FDTD algorithm are:

n n n

0’V

(3.5)

Po

n+l

9%V

(3.6)

Po

First sub-procedure @ n+0.5)

VoS (i+0.8) =V, (i+ 09— 2V (i+ 0.5-afP(i+ 1-P"(i)} +

(3.7a)
+d (v (i+1.5)+V; (i- 0.5}
P2 (i) =P" (i) - b {V (i+0.5) -V, (i- 0.5} (3.7b)
_ ot _ Bot 0t
where a, = , =— , d=""—=. (3.7¢)
2p,0X 20X 2p,0X
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Second sub-procedure (n+6-5n+1)

Vi (i40.5) =V 0% (i+ 0.9 - 2LV (i+ 05-af P i(i+ 1- P} +
+d v (i+1.5) + V™ (i- 0.5}

P (i)=P™% (i) - b, {v,""(i+0.5)-Vv,"'(i- 0.5)} (3.80)

(3.83)

Observe that the ADI-FDTD discretization method applied teDasltuation results in one explicit sub-procedure
and one implicit sub-procedure, leading to a split impétgorithm. Note that in a geometrical sense, the natfon
‘alternating directions’ is not appropriate to one-dimensis there is only a single direction.

The implicit expression (3.8a) can not be used directly beasfushe presence of B. Thus (3.8b) is used
to eliminate P in (3.8a) leading to:

—t V(i +15)+[1+2t v (i + 05)-t, vV (i - 05)= V(i + 05) -
n+05 (; n+05 (; —
—aX{P (+1)-pP (|)} , t,=ab, +d, (3.80)

The implicit expression (3.8c) is usually resolved usingi-gliagonal matrix algorithm, after which (3.8b) is
evaluated. Observer that the inter-leaving of the pointwhath the pressure and velocity are evaluated on a

computation lattice implies that field data for pressure areadblailat integer (i) space points while those for the
velocity are available at half-integer (i+0.5) space points.

3.2 ADI-FDTD 2-D Algorithm

In a two-dimensional situation, assuming the problenmdependent of z, the governing partial differential
equations (2.5) reduce to

v, _ aP 0%V,

Po ot - E-F’/Ia axz (3-9a)
oV, AP 0%V,
poW:_a_y-Frla 3y (3.9b)
AV
a—P:—B LA (3.9¢)
ot ox 0y

Applying the same approach that we used for the discretizdtitie @ne-dimensional case leads to the ADI-FDTD
2-D acoustic wave algorithm. The first sub-procedure is gbyeaquations (3.10) and the second sub-procedure by
equations (3.11).

First sub-procedure (n to n+0.5)

V9 (i+0.5,]) =V, (i + 0.5§) - AV, (i+ 0.5)-a fP"(i+ 5)-P"(i j)}+

(3.10a)
+ dx{v; (i+1.5,j)+V(i- 0.5, )}
Vy'”o's(i, j +0_5) :Vyn (i g+ 0.3 - ﬂyvymo.s (i i+ 0.;6—ay{|:>n+o.5(i j+ )]__
(3.10b)
=PYOS (i, )b +d, V(i ) + 1.8+, °%(i j - 0.8}
Pn+0.5(i, J) =p" (i,j)_bx{vxn (| + OS,J ) —VX”(i - 051 )} -
(3.10c)

—b, {vyo% (i, j +0.5) -V,"°%(i,j - 0.5}
o
ay = 2 ! byzBid dy: T]az
Second sub-procedure (n+0.5 to n+1)
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X

V" (i+0.5,)) =V, (i+ 0.5)) - AV (i + o.5j)—ax{P”*1(i + 1) -

(3.11a)
P (i, )} +d, (v (i +15,1) +v, (i - 05))
Vyn+l(i,j +05) :Vyn+0.5(i 1j + 03_ zyv;+0.5(i ‘ + O.$_ay{Pn+0.5(i 1 + ﬁ__
(3.11b)
=P8 (i, j)} +d, {vO5(i, j +1.5) +V," (i ,j - 0.5]
P (i, 1) =P™%(i,]) ~b,{V," (i + 0.5,j) -V, (i - 0.5 )} -
(3.11c)

n+05 [+ n+05(:
—b, {vyo% (i, j +0.5) -V,"°%(i,j - 0.5}
Observe that equation (3.10b) in the first sub-procedurg3afhda) in the second sub-procedure can not be solved
directly. Hence they are re-expressed using the equation&'fdmaRd P** in the respective sub-procedures: thus

—t, V708 (i, j+1.8) +[ 1+ 2, V)05 (i j + 0.5ty °%(i j - 0.p=
=V (i, j +0.5) —a, {P"(i,j + - P"(i .j)} +c, {V,)(i + 0.5) + )- (3.10d)
-V (=05, + 9=V (i+ 05))+V(i - 0.5)

~t V" (i+1.5,)) +[1+ 2,]V (i + 05)) -ty (i - 0.5,)=

=V (i+0.5,)) —a {PmO°(i+ 1j) =P (i j )} +c, v,y °i + 1j + 05~ (@.1109)
_Vyn+0.5(i +11j _ 03 _Vyn+0.5(i ;j + 0'3+Vyn+0.5(i _l _ Oﬁ
where Sy = B&*/4p,xdy and t,=ab, +d,
The equations (3.10d) and (3.11d) are solved using @agedal matrix algorithm.

4.0 Stability Analysis

The ADI-FDTD algorithm is analyzed for numerical stabilitying Von Neumann method [7]. In this
method, instantaneous values of the field functions digeth in space across the computation space are first
Fourier transformed into waves in spatial spectral domaimgpoesent a spectrum of spatial sinusoidal modes.
Assume, in 1-D, a harmonic representation of a field function

y" (i)=w,q"expd(kiox) , J=+v-1 , (4.1)
where k is wave number and q is a growth factor. If the magnitidbe growth factor for an FDTD algorithm is
less than or equal to unity, then the algorithm is numéyistdble, otherwise the algorithm is numerically unstable.

For the first sub-procedure (3.7), we substitute a harmepiresentation (4.1) of the pressure and velocity
fields into (3.7) to obtain

(a°-1+2d, - 2d, co®,)V] +J 2, sifo, /PP" = (4.22)
32 sin(0, 1QV) +(qL* - )P =0 , 0, =k,x , (4.2b)

where q is the growth factor for the first sub-procedure. Elinimgtany one of the field functions from the pair
(4.2) leads to a quadratic equation for the growth factor

g -(2-1)e+(,-B)=0 , o,=&, (4.3a)
where B.=1+4dab sif(0, /3 , =2 (F co8)= d, si{o, . (4.3b)
Thus

A RN R A e
or
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4.1

o =lallel= (B -1). (4.4b)
Similarly, for the second sub-procedure (3.8) substititie harmonic representation (4.1) leads to:
{09°(1+ 2d, - 2d, co®,) - Jv) +Ig° & sifo, /pP" = (4.5a)
I 2b, sin(0, /2" + (g% -1)P" =0

(4.5b)

Eliminating anyone of the field functions from (4.5) giwbe quadratic equation

(ﬁx+lx)£22_(2+lx)£2+1:0 ’ quE; (4.6)
Thus

82:(2+/x)i3x/4(ﬁx+/x)‘(2+/x) RV (4.73)

2(B, +14) B, +1,
or
-1
0, =|&,]€o] = (B +1) (4.7b)

Since the growth factor for the entire algorithm is thedpeo of the growth factors of the sub-procedures,
we have that the total growth factor for the 1-D ADI-FDT Doaitlhm is

a=00 =(B, ~1,)/ (B +1,) <1, (4.8)
Given the values of, and i in (4.3b), equation (4.8) is always satisfied and thHel-BDTD algorithm is
unconditionally stable. Observe from the definitions ir3Kd.thati, is a loss-term arising from the medium
viscosity, and (4.8) implies that the wave decays with naetl time-stepping in a viscous medium. In a non-
viscous mediun, = 0 (since g= 0 when

N =0) and the growth factor for the algorithm reduces to ysignifying that the algorithm is always stable.

Stability Analysis for 2-D Algorithm
The numerical stability analysis for the 2-D ADI-FDTD acaustave algorithm is carried out as before, assuming a
harmonic wave representation of the field functions

w" (i,]) =v,q" expd (K iox+ k, 0y). (4.9)

For the first sub-procedure (3.10) we substitute the wapeesentation (4.9) for the pressure and velocity field
functions in (3.10) to obtain:

(a* =144, )y + J23,sin(0, /JP" = C (4.10a)

[o®(1+1,) 1] V) + 324, sin(0, 19P" = (4.10b)

J2b, sin(6, V) + 3° 2y, sir{o, /v +(q*°- 1P = (4.10¢)
where 1, =4d,sir’(0,/2) and 0,=ky.

We write the set of simultaneous equations in matrix farahculate the determinant of the system-matrix and
equate it to zero, to obtain a cubic equation for the growtbrfact

q° [l+/y +4a,b, sin2(0y /3]+q1[/x/y+/x+ 4ap, sid (0 , /?—
~dah,sir? (0, /2)- 2,- J+a?°[ 3 2.+ ab, sih(o, /p+ (4.11)
+41,a.b, sin? (6, /2)+ly—/>[y:|+[lx— - 4ap,sif(0, /ﬂ = 0.

For any cubic equation, if we extract the unity solution ettpgation can be written as a product of a linear equation
and a quadratic equation thus:

(x-1)(ax + bx+ d= ak+( b- % %x+( e p x =0. (4.12)

Hence, given a, c, (b-a) and (c-a) we have that
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b = Y%{c+a-(c—b) + (b-a) (4.13)

Now, for the cubic equation (4.11), upon extracting théywulution we have the quadratic equation for the growth
factor:

(8, +1,)& -T.e,+(B,-1,)=0 , a,=¢, (4.14a)
where
B, =1+4ab,si (0, /2 1)
o=ty +1,—1,~2=-2absit(0,/+ 2ap sit(0, /2
Solving equation (4.14) gives the growth factor of thet ub-procedure
_ _r2
- rliJ\/4(:8y+ly)(le IX) M , |£1|= Bty (4.153)
2(8,+1,) B+,
or
=1
Q= L. (4.15b)
'Gy +ly
For the second sub-procedure (3.11), following the abovhanethe quadratic equation for the growth
factor is
2 _ — 2
(B +1,)& ~T£,+(B,-1,)=0 , a,=¢3, (4.16a)
where
O, =14, +1,~1,—2=2 a b sirf (0 yla +2ap sid(6, /2. (4.16b)
Thus
- \-r2 _
£, = rzi-‘]\/‘l('gx +Ix)('8y /y) 2 , |‘91| = Bty (4.17a)
z(ﬁx +Ix) X +/x
and
=/
aQ, = Py ly . (4.17b)
ﬁX +IX

Therefore, the growth factor q for the entire 2-D ADI-FDalgorithm is
(B.-1.)(8,-1,)
g=q@¢ = <1

(B +1)(B,+1,)

Since equation (4.18) is always satisfied the ADI-FDTD dtigoris unconditionally stable.

(4.18)

5.0 Lattice Truncation

In an FDTD model, the size of the computation space is limis@ty a lattice truncation scheme [11]. The
details on implementing a lattice truncation scheme deperiteoproblem. We observe that the finite difference
equations presented in Section 3 are for updating the fieléwvalt interior lattice points, because those equations
were derived by replacing a space derivative with a centered differepiaeciapation, which require knowledge of
the field at points outside the computation space.

To update the field values at a lattice boundary point we tisst-®rder absorbing boundary condition
[12], along those planes of the lattice boundary norméilegropagation direction, which is discretized using a Mur
differencing scheme [13]. However, because the absorbingdaoy condition difference approximation has to be
consistent with the interior region difference approximatiospace derivative is replaced with a centered difference
while a time derivative is replaced with a forward difference.

At the wall x = 0, say, the absorbing boundary condifiiwrthe pressure field is [12]
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e L (5.1)

We discretize (5.1) by applying a centered difference formuldfiatittous pressure point P(0.5, j) for each space
derivative and relate it by a simple average to field values algressure points via:
P(0,j)+P(1,]
p(o_5,j) :%. (5.2)
Following the alternating direction implicit method, the @téng boundary condition is discretized explicitly for
the sub-step from n to (n+0.5), and implicitly for thé-step from (n+0.5) to (n+1). Thus for use with thetfgub-
procedure we discretize as follows:

n n

1oP _OP (5.3a)
v ot 05,j 0 X 0.5] '

or
P0%(0.1) = =P *5(11) (3 + JP"(11) (s - IP"( 0i) . » =001/ (5:3)

wherey is the Courant number. And, for use with the seconepsobedure time marching from (n + 0.5) to (n + 1)

we discretize as follows:

n+0.5 n+1

10Pp - _oP (5.42)
v at 0.5,j aX 0.5j '
or
. -1 . 1 . .
Pn+l 0' :V_Pn+1 1’ - Pn+0.5 O, PI’H—O.S 1’ . (54b)
(0.1)= 7P (L) + [ Po(0) + P oY1)

The pressure values along the remaining planes parallel tir6otion of propagation are obtained using a plane
wave (Neumann-type) boundary condition [2]; thus

P4 (i,0) =P™°%(i,1), first sub-procedure, (5.52)

prt (i, O) =pmt (i ,]) , second sub-procedure. (5.5b)

Also, because the equation of motion (2.3) includes a seauled-oartial derivative with respect to space, the finite
difference equations in Section 3 are not applicable for updé#te velocity values at velocity mesh boundary
points (as they use a centered difference approximation). \Afiigied to the column of points,{0.5, j), those

equations will require information for the non-existemtings V,(-0.5, j). Consequently, at the velocity mesh
boundary (0.5, j), say, we implement boundary conditions sintdathose described above for the pressure field.

6.0 Source Implementation

Before the calculations implied by an FDTD algorithm begin initialization of the algorithm is necessary.
This entails specifying the initial condition(s) of a deh in the computation space (i.e. a specification of the field
values at zero time) and then using these zero-time fiel@vadudetermine the first set of computable field values.
The zero-time field values are assumed known in any prolsieice they represent the initial condition, and must
be suitably introduced into the computation space. The zegofiihd values represent the field source.

A plane wave source is simulated by making any plane in thpuation space “radiate” into the domain.
Numerical experiments show that an easier simulation restitn this “radiating” plane coincides with a
computation boundary plane in the case of time harmonic planeswBnansient plane waves may be simulated by
using a Gaussian pulse

0 ()= p{ {MH ' 6D

where T is the pulse width angis the time lapse before the pulse enters the domain.

7.0 Numerical Results and Discussion

In order to demonstrate the ADI-FDTD algorithme simulate the propagation of an acoustic wave in sea
water. The medium is assumed to be homogeneous andenfihie fluid density and bulk modulus are taken to be
998.0 kgn™ and 2.18 x 1DNm?, respectively. The simulations are for time harmonic and #angiane waves,
and in both situations our concern is limited to the frepggation of the wave in the absence of any obstacles. The
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transient wave is modelled using a Gaussian pulse witte pidth 0.15 ms. The computation space is a 2-D 100 x
100 grid of square cells, each of side 0.01 m. The timerimameis dependent on the Courant number used in a
particular test.

We show a sample of the results for the case of a tnand@ne wave, only, as these reveal the salient
characteristics of the algorithm. In Figure 1 the Courantbsuris 1.0, corresponding to a time increment 6 /&6
Figure 2 is for a Courant number 2.0, implying thattf@se the time increment is 13.582 The results show the
normalized pressure magnitude as a function of space-time.

Generally, we observe a small non-physical decay in the wapétade as the numerical method simulates
propagation phenomenon. The pulse gradually loses amp(idu@mergy) as it propagates through the computation
space, even in a non-viscous medium. The amount of thipmgsieal decay increases slightly with an increase in
the Courant number. Thus the algorithm is not energy ceatbex. This is most likely due to the fact that the
discretization uses a forward difference in time. Hence the mé#lodgs to the category called “upwind methods”
which are known to be dissipative [4].

For a transient wave, the results show a trailing wiggleingihg’ (Figures 2b-d) with increasing computation
time, if the Courant number is chosen to be greater tharalibated by the Courant-Friedrichs-Lewy criterion. In
FDTD models such wiggles are usually attributed to theeslofphe pulse (necessitating the use of a sufficiently
‘smooth’ pulse). That is why a Gaussian pulse is comm@dgmmended [14]. Having used a Gaussian pulse, the
observed wiggle is likely to be due to an inadequate tempesalution of the pulse occasioned by using a large
time increment (when the Courant number is high). krnewn that the temporal sampling rate (of a pulse) is
indirectly related to the Courant-Friedrichs-Lewy criterion.

While exploring our ADI-FDTD code, it was observed thangshe Courant number 0.9 (or 0.8) caused a
floating-point-overflow after some time steps, forcing the program to abortdémtally, this was associated with
the evaluation of the Gaussian pulse at the particular tistenin(t = 178t = 1.0596 ms for Courant number = 0.9)
and so may be a machine error unconnected with the ADI-FDg&iddm. These experiments were done on an
IBM-clone using an Intel Pentium IV microprocessor. Hogrethe use of other Courant numbers, e.g. 0.5, 0.7 and
1.5, did not cause a floating-point-overflow.

8.0 Conclusion

We have derived the governing equations for applying the attegndirection implicit finite difference time
domain method to an acoustic wave, in 2-D, together \wihstability analysis for the ensuing algorithm. The fact
that an ADI-FDTD algorithm is unconditionally stable isally shown by the equation of the growth factor, which
also indicates the effect of a lossy medium on the algorithngeneral. It is worthy of note to observe that
discretizing the absorbing boundary condition followirdge talternating direction implicit principle leads to
difference equations which are distinct from those used thithconventional FDTD algorithm, where both the
space and time derivatives are replaced with centered difference iapgtioRs.

The numerical technique has been shown to model propagatewoostic wave in an infinite homogeneous
medium. The liberty which the ADI-FDTD algorithm affords regard to the choice of Courant number is also
demonstrated. Though, care is required in using a Couranberuthat violates the Courant-Friedrichs-Lewy
criterion. While in theory the algorithm is applicable totbtdssless and lossy media, because of an inherent
numerical dissipation, the alternating direction impliciitérdifference time domain algorithm may not be suitable
for the study of the effect a lossy medium on wave propagat
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Prapagation along X (del X)

Figure la: Pulse after 30 time steps, clf = 1.0

propagation along X (del s}

Figure 1c: Pulse after 90 time steps, clf = 1.0

Propagation along X (del X)

Figure 2a: Pulse after 15 time steps, clf = 2.0
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Normalized Pressure

Mormalized Pressure

Propagation along X [del z)
.

Figure 1b: Pulse after 60 time steps, clf =
1.0

Propagation along X [del 1)

Figure 1d: Pulse after 120 time steps, clf = 1.0

Mormalized Pressure
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Propagation along X (del X)

Figure 2b: Pulse after 30 time steps, clf = 2.0
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Figure 2c: Pulse after 45 time steps, clf = 2.0

Normalized Pressure

Propagation along X (del X) propagation along X (del X)

Figure 2d: Pulse after 60 time steps, clf =
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