Journal of the Nigerian Association of Mathematical Physics
Volume 17 (November, 2010), pp 177 - 182
© J. of NAMP

A Robust Mathematical Model On Infectious Diseases

*Omorogbe Dickson E.A. and **Omoregie Nosa E.A.
*Institute Of Education(Ekewan Campus)
University Of Benin, Nigeria.

**Faculty Of Management Sciences
Ambrose Alli University
Ekpoma, Nigeria

Abstract

The paper presents a robust epidemiological compartment model on
infectious diseases. The model obviates the limitations of the classical
epidemiological model by accommodating different levels of vulnerability
and susceptibility to infections within different social class and spatial
structures. Unlike the classical model which considers every member
from different compartments to be geographically homogenous, implying
the chances of infection by communicable diseases to be the same. Thisis
unrealistic in real life situation. The Robust model in this paper is highly
realistic and suitable in real life situation. This paper also analyses the
actuarial implications of infectious disease plan and it is recommended
that the annuity for hospital and lump sum for hospital plans would fairly
reduce the cost that could cushion blow of any possible epidemic to our
health care system.

Keywords : Epidemiological model, Annuity for hospitalizatiomfectious diseases and infectious virus-
carrier.

1.0 Introduction

In the classical epidemiological model a wholeuydafion is usually separated into compartments Vaitiel S,
I, and R. there acronyms are used in differertepag according to transmission dynamics of thdistudisease. In
a nutshell, class S denotes the group of individu#hout immunity or susceptible to a certain dsmain an
environment exposed to communicable disease iofeditke the rural community of the Niger — Deltayian of
Nigeria with a lot of gas flaring and disease cagygerms. Some individuals come into contact Wl germs.
Those infected and are able to transmit the disaeseonsidered in class I. Due to medical theramividuals,
removed from the epidemic as a result of recovargnfthe ailment are counted in class R. Thidustitated in [8],
[9] and [10]. The major limitation of the classiogbidemiological compartment model is that it cdess every
member from different compartments to be geograblyichomogenous which is totally unrealistic in Irdige
situation. The susceptible people in the geoggbhieighbourhoods of an infectious virus-carrier likely to be
infected than those remote from the carrier/envirent. For example the health workers’ environnienmnore
susceptible to infection than workers in the cleamironment of the school or office environmentted ministries.
In order to address the limitation of the classiggidemiological model, we present a robust mathiealamodel
which obviate this deficiency and it is highly rie8it in real life situations.

According to [1], over the last century, many cdnitions to the mathematical modelling of epidemmgital
and communicable disease have been made by a wmueater of public health physicians, epidemiological
mathematicians and statisticians, their brillimmtrk ranges from empirical data analysis to diffei@ equation
theory. But [2] claimed that some have achievertsss in clinical data analysis and effective mtéslis. Barnes
and Fulford [3] considered mathematical modellinighvease studies. And Brauer [4] studies the dat@stic
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compartment models in epidemiology for a completgaw of a variety of mathematical and statisticaldels.

Interested readers are referred to [6] and [7]coding to [5] in their paper on epidemiological debin actuarial
mathematics, they opined from a social point ofwibat an effective protection — against diseasggedds not only
on the development of medical technology to idgntifuses and to treat infected patients, but asoa well-

designed health —care system. In order to gettarhenderstanding of this paper we give a faidyailed treatment
of the classical epidemiological compartment madéhe next section.

2.0 The Classical Epidemiological Compartment Model
The SIR model is expressed by the followingtesys of differential equations.(Where the acronymsl,R,
represent The susceptible, Infected and Recovssesarom the disease respectively). See [8].

S(t) = BSHI(H/N, ©0, (2.1)
I'(t) = BS(B)I(t)/N —al(t), t0, (2.2)
R (t) = a I(t), 0, (2.3)

With given initial values S(0) =SI(0) =lband $+ 1o =N
The assumption for the model is as follows:
(8) The total number of individuals keeps constant, 3t} + I(t) + R(t) , representing the total popidatsize.
(b) An average person makes an average nuifilidradequate contacts (i.e. contacts sufficientraasmit
infection) with others per unit time.
(c) Atany time a fractiorm of the infected leave class | instantaneousig. also considered to be constant.
(d) There is no entry into or departure from the pofioha except possibly through death from the dise&sr
our purpose of setting up an insurance model, #raagjraphic factors like natural births and deatles a
negligible, as the time scale of an epidemic isegalty shorter than the demographic time scale.
Since the probability of a random contact byirsfiected person with a susceptible individual isl $hen the
instantaneous increase of new infected individual$(S/N)I=BSI/N. The third assumption implies that the
instantaneous number of people flowing out of tifedted class | in to the removal cl&&is al.

3.0 Actuarial Analysis

Since mortality analysis is based on ratittead of absolute counts, we now introduce #f),and r(t)
respectively as fraction of the whole populatiangach of clas§, | andR. Dividing equations (2.1)-(2.3)by the
constant total population size N yields.

s'(t) =i () st), =0, (3.1)
() =Bi()s (t)—ai),t=0, (3.2)
() =1—s()—i),to0, (3.3)

One could actually interpret the ratio fuoatis(t), i(t) and r(t) as the probability of an iwvidual being
susceptible, infected or removed from infected<taspectively at the time spot t.

Since all these ratio functions lie in theeimial [0, 1] we could easily interpret them as ghebability of an
individual remaining susceptible, infected or rem\at the time point t. however, it should be ndked due to the
laws of mass action, movements among the compatsmely on the sizes of each other. Thus theseagibities
represent mutually dependent risks as opposedetinttependent hazards one always sees in multgdesthent
life insurance models. With these probability fuoes s(i), i(t) and r(t), we now incorporate actahmethods to
formulate the quantities of interest for an infeat disease insurance.

4.0 Annuity for Premium Payments and Annuity for Hospitalization

We assume that the infection plan worksaisimple annuity fashion. Individual premiums amdlected
continuously as long as the covered person remsuisseptible, whereas medical expenses are conshlyou
reimbursed to each infected policyholder duringwhmle period of treatments. Once the individuaorers from
the disease, the protection ends right away.

Following the international Actuarial Notation, tlaetuarial present value (APV) of premium paymdnisn an

insured person for the whole epidemic is denotetag)ywith the superscript indicating payments from slasand

APV of benefit payments from the insurer is dendIgdag with the superscript indicating payments to class |
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On the debit side of the insurance product, tha tiscounted future claim is given by

a0 = [ es(t)dt, (4.1)
while on the revenue side, the total discountedréupremiums is
a = [ es(t)d, 4.2)

where d is the force of interest. Our study in this papebased on the fundamentafjuivalence principle in
Actuarial Mathematics for the determination of leggeemiums, which requires;
E[present value of benefits]=E[present value ofdfi¢premiums].

Therefore, the level premium for the unit annuiy fiospitalisation plan is given as.

pa)=2

(4.3)

ac;s

Just like in life insurance, where the force of rabty is defined as the additive inverse of thegoraf the derivative
of the survival function to the survival functidsélf, we define here the force of infection as

/’Its = ﬂ, t> 0'
s(t)
and the force of removal as
K = O R
i(t)

specifically from (3.1)-(3.2), we see that = —Zi(t) and 4 =-Bs(t) +a.
Note that the above definitions imply that

s(t) :exp{—ﬁ yfdr} = exp{—ﬁj;i ¢ )alr} t>0, (4.4)
and

i(t) =exp{—J'; U dr} = ex;{—ﬁj';s ¢ pr +at} t>0, (4.5)
Proposition 4.1 in th&R model in (3.1)-(3.2),

(l+%jaio +ap = %. (4.6)

Proof. From (3.1) and (3.2), we obtain that
S'(t)+i'(t)=ui(t), t>0.
Integrating from O to a fixed t gives

S(t) +i(t)-1= —aj;i(r)dr,tz 0.

Multiplying both sides by & and integrating with respect to t from Octoyields
as +ai 1 _ aal
0 0~ ——="—4ao.
o o

where the right hand side comes from exchangin@téier of integrals,

[ expe-at )I;i ( Yrdt :% 7] ;i ( )rd (expEat )= % [ exptar i dr = éa‘o

Notice that the right hand side represents thpqieal annuity. The intuitive interpretation of tieé hand side is
that if every one in the insured group is rewardéth a perpetual annuity, the APV of expenses frdass S

—Ss -l
accounts forao and similarly that of expenses from class | addsto the cost. Recall that at any time a fraction
of the infected subgroup move forwards to clasedh of them would receive a perpetual of valdeas/ well at

the time of transition. Therefore, the APV of expes from this compartment would ke / 5)30 It is reasonable
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that it should sum up to the value of a unit pargkeannuity regardless of the policyholder’s locatiamong
compartments.

With this relation in mind, we could easily fincetinet level premium for the unit annuity for hoapitation plan, as
follows:

a _ dao
_S -

a 1-(5+a)a

(4.7)

5.0 Lump Sum for Hospitalization

The analogy of the plan is with a whole life inswra in actuarial mathematics. When a covered peasstdiagnosed

being infected with the disease and hospitalized,medical expenses is to be paid immediately nmplgum and

insurance protection ends. Then the APV of bepeafiiments to the infected denotede can be obtained as
Aol B[ e s(n)i(t)et, (5.1)

since the probability of being newly infected abeit isps(t)i(t)
proposition 5.1

%R+@:%%, (5.2)
and

1. 1—i a — —j

EIO +EAO :an ta, (5.3)

(see Proofin [8])

The above proposition also provides an interestiigight into the break-down of expenses in eaclsscldo
understand (5.2), we suppose every susceptibleichdil claims one unit perpetual annuity. The APMHe total
cost is g/d. From an another perspective, it is equivalergive every one a unit annuity as long as persoranes
healthy in the group and then grant them each tepenpetual immediately as he or she becomes adedthe APV

of these two payments is exacl@/c)')ﬂo +ao. If one thinks of class | as a transit, the teind side of (5.3)
count the expenses at the point of entry. Sinceersgs for initial members ii% /0 and other individuals from

class S each adddl/Hence the total expenses add upijd d + (1/5)&. The class of the infected persons
—i
accounts fordo | and any one leaving the class takes away a pedptvalue of 1. Thus the right hand side sums
up to (a’/d’)alo +ao.
Therefore for the lump sum payment plan with a beitefit, the equivalence principle gives the egel premium
P(Ao):
—i =i
=~._MA _(a+d)a -i0
P(A) == = (5)—°_|
a 1-(a+9d)ao
The major limitation of the classical SIR modeltlst it considers the chances of infection in aohlh

populations as homogenous, which is unrealistit @mtrue in real life situation. We therefore mmetsa Robust
epidemiological model which obviate this limitationthe next section.

6.0 The Robust Epidemiological Compartment Model.

The Robust epidemiological model that distisped different levels of vulnerability or infeatisness within
different social groups, spatial structures ismivMby the ODE systems below:
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s(t) =-ps, 0 0" qES) +I, (>0, 6.)
S0 =-ps, LELE0, (0, 62)
E (1) = S0+ pS, 1) D7 qES) O W), o, 63

I t)=kEX)-(a+A,+I)I(t), t>0, (6.4)
J't)=alt)-(, +5)J(t), t>o0, (6.5)
R'(t) =yl @)+ y,30), t>0, (6.6)

In this model, there are two distinct susitéet compartments with different levels of exposuee the
communicable diseases infection e.g. HIV/AIDS, ngn® for the most susceptible Health care community $nd
for the other less susceptible members of the @ipnl. Initially, S,(0) =N and$S; (0) = (1 —p)N, wherep is the
proportion of Health Care inhabitants is total pagion. An average highly susceptible person fia €lassS))
makes an average numberfoddequate contacts (i. e. contacts sufficientangmit infection) with others per unit
time. As a result of frequent visits to Health €areas which is more prone to infection, an awelagver
susceptible person (in the Cle&&¥ would only be exposed to an average numb@padequate contacts with others
per unit time. Therefore an individual infected twkIV/AID virus may experience an incubation period3 — 6
months before the onset of any visible symptom. imectious class is set up for those infected ihoit yet
manifesting the symptoms. The parameter g is ts@tkeasure the lower level of infectivity duringetimcubation.
As the time elapses, the infected individual wod&Velop observable symptoms and become fully iitfestin
Classl with g = 1. In order to distinguish their potential dise transmission to general public, the Clags
separated for those infectious individuals thatuar@iagnosed. Since almost all diagnosed caseguarantined in
hospitals, the Claskhas a lower infectivity level reflected by a retion factor I.

The rates of population transferring fré&nl andJ to their chronologically adjacent compartmeht$ and the
recovered clasR are respectively, a andy,. Considering that even before being diagnosed AIVS patients
many either recover naturally at the ratey06r die at the force of fatalit}, we also have the claBskeeping track
of deaths as a result of the HIV/AIDS from two stegl andJ. The patients under medical treatments in Class
suffer death at the rate assumed to be same awotttality in Clasd.

Notice that both E and | are undiagnosed phatere is literally no statistical data for esttmg their
parameters. Therefore, another compartment Cejoorted probable cases is set aside to trace bacériginal
time of incidences by a time series. Figure 1 gjivansfer directions among the different compantse

From an insurer’s point of view, this model ggets many business opportunities. On the one, agigiduals
in Classes Sand $ are potential buyers facing the risk of infectigith HIV/AIDS. On the other hand, there is an
evident need for insurance covering costs in bqthrfsl $, medical examination expenses for probable cases i
Class I, hospitalization and guarantee expenseSlams J and death benefit for Class D. sincenabeu of parties
are involved in the health care system, such agange companies, policy — holders, governmenttthagencies,
and hospitals. Numerous business models coulebigred to bring them together in order to redbedfinancial
impact to the lowest level. In this paper we regmnd the annuity for hospital plan and lump sumhfaspital plan
because these insurance plans would fairly redose that could cushion the blow of any possibledemiic to
health care system.
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Figure 1: Transfer diagram of the communicableake (e.g. Hiv/Aids) epidemic dynamics

7.0 Conclusion
In this paper, we present a Robust epidemiologiwadel which obviates the limitation of the claskicedel (in
[8], [9] and [10]). In this Robust model the levefl vulnerability and susceptibility varies and deg@e on the
geographical neighbourhood/environment of the iiddigl to the infection virus-carrier. Thereforestbloser the
individual to the virus-carrier/environment, the ragusceptible to infection. This model is highdglistic and true
in real life situation.
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