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Abstract 
 
We present the travelling wave solution for a Susceptible, Exposed, Infective and 
Removed (SEIR) epidemic disease model. For this SEIR model, the disease is 
driven by both the latent and infective class (the diffusion term is included in both 
classes). The population is closed.        
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1.0  Introduction 
There has been a recent impetus for the study of spatial epidemiology, following the planned investment of 

billions of dollars by the United States government in biological weapons defence [18] and concerns over the 
potential use of small pox and other diseases as biological weapons [18]. 

However, a fundamental challenge in Mathematical epidemiology is determining how the structure of a 
population influences disease transmission. For instance, the Severe Acute Respiratory Syndrome (SARS) epidemic 
spread through twelve countries within a few weeks and the swine flu has spread through all the continents 
(including some parts of Africa, e.g. Badagry in Lagos, Nigeria) within a few months of its outbreak.                                                                          
Several scientists including [4] have made significant contribution in the area of travelling wave solution for disease 
model. He considered the travelling wave solution for an SIR epidemic model when the population is closed. 

Abual-Rub [3] used the idea of travelling wave to introduce vaccination/control for a susceptible and infective 
(SI) disease model which in turn keeps the number of infective and susceptible unchanged and specific in the long 
run.                                                                                                                                      

Jing Li and Xingfu Zou [12] formulated a susceptible infective and removed (SIR) model with a simple 
demographic structure for the population living in a spatially continuous environment with the assumptions that an 
infectious disease in a population has a fixed latent period and the latent individuals of the population may diffuse.                                             

 Abramson and Kenkre [1] analyzed the propagation of travelling wave fronts in a simple one-dimensional 
model of the ecology and epidemiology of the Hantavirus in deer mouse.               

Lewis et al [14] developed and analyzed a reaction-diffusion model for the spatial spread of the West Nile 
Virus.                                                                                                                              

Burie et al [5] investigated the structure of travelling waves for a model of a fungal disease propagating over a 
vineyard.                                                                                                       

Reluga et al [19] formulated the restricted-movement model to describe spatial patterns of disease transmission.                                                                                                                          
However, in all the works available for review,  the travelling wave solution for an SEIR epidemic model was 

not investigated. we will consider model formulation and analysis of an SEIR epidemic model. This formulation 
shall take into consideration the spatial spread of disease. In this model “exposed (latent) but not yet infections” 
individuals are denoted by E. 

 
Model Formulation And Analysis  
 
The model shall include diffusion of both the latent and infective only. The susceptible class does not include 

the diffusion term because the exposed and infective population are very active in infesting other individual in the 
total population and they are capable of moving more. S, E, I and R must be thought of respectively as the 
population densities of susceptible, exposed, infective and removed individuals depending on position as well as 
time.  



*Corresponding author: E-mail: Olowu.owin@yahoo.com, Tel. +2348037763658 
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 171 -176 

Travelling Wave Solution For An SEIR Endemic Disease Model   Olowu and Okounghae  J of NAMP 

The SEIR model is given by  
2 2

2 2
, , ,E

S E E I I R
IS TS SE D E I DI Iβ β δ γ γ

τ τ τ τξ ξ
∂ ∂ ∂ ∂ ∂ ∂= − = − + = − + =
∂ ∂ ∂ ∂∂ ∂

                    (2.1) 

In (2.1), the population is closed where birth and non-disease related deaths are neglected.  

ISβ  represents the incidence of the disease, δ is the rate at which individuals leave the latent class and enters 

the infectious class. Also γ  is the rate of recovery, 
E ID and D represent the diffusion coefficient in the latent and 

infectious class respectively. 
 

 
The initial condition for (2.1) is  
   , 0, 0 0 0S N E I and R as ξ→ → → → →           (2.2)     

We shall non-dimensionalize (2.1), rescale the time variable, τ  and spatial variable, ξ  in (2.1) using the 
following substitutions.  

   , , ,
S E I R

u v w z
N N N N

= = = =       (2.3a) 

   ,t x
D

γγτ ξ= =        (2.3b) 

Differentiating zandwvu ,,  of (2.3a) respectively with respect to , , ,S E I and R , we have  

   , ,S N u E N v I N w and R N z∂ = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂        (2.4) 

Also, differentiating each of (2.3b) with respect to ξandt  respectively gives 

   
1 D

t and xτ ξ
γ γ

∂ = ∂ ∂ = ∂      (2.5)  

Substituting (2.3a), (2.3b), (2.4) and (2.5) into the system (2.1), we obtain after simplication 
2

0 0 2
,

u v v
R wu R wu v

t t x
ε∂ ∂ ∂= − = − +

∂ ∂ ∂
,  

2

2

w w z
v w and w

t tx
ε∂ ∂ ∂= − + =

∂ ∂∂
    (2.6)   

Where 
0

N
R

β
γ

=  refers to the basic reproductive ratio;  

Nβ  is the rate at which a single infective introduced into a susceptible population of size N  makes infectious 

contacts and 1

γ
 is the expected length of time such an infective remains infectious. 

0R  is the expected number of 

infectious contacts made by such infective. 
0R  is a very important concept in epidemiology.  

Also  ( ) ( ), , , , , 0, 0, 0S E I R N
δε
γ

= = . 

If 
0 1R <  the disease dies out in the spatially uniform case while if 

0 1R >  an epidemic occurs.  

Next, we seek a constant shape travelling wave solution of the form 
( , ) ( ) ( ) , ( , ) ( )u x t u s u x ct v x t v x ct= = + = +  

( , ) ( ) ( ), ( , ) ( ) ( )w x t w s w x ct z x t z s z x ct= = + = = +     (2.7)  

Where s x ct= +   
( , ) , ( , ) , ( , ) ( , )u x t v x t w x t and z x t  are travelling waves which moves at a constant speed c in the 

negative x -direction with positive c. 
Substituting (2.7) into (2.6), we have  
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    0 0, , ,cu R wu cv R wu v v cw v w w cz wε ε′ ′ ′′ ′ ′′ ′= − = − + = − + =     (2.8)   

where the prime (‘) denotes the differentiation with respect to s. The system (2.8) is to be analysed subject to the 
boundary conditions 

   

1

1

( ) 1 , ( )

( ) , ( ) 0

( ) 0 , ( )

u s as s u s u as s

v s w s as s

z s as s z s z and s

→ → −∞ → → ∞ 


→ → ±∞ 


→ → −∞ → → ∞

    (2.9)  

In order to linearize (2.8), we rearrange the second and third equations of (2.8) and divide through by the first 
equation in (2.8). This gives  

   
wuRvvvc 0=′′−+′ ε

 
 

so,    
wuR

wuR

uc

vvvc

0

0−
=

′
′′−+′ ε

 

   
1

)(12

2

−=
′

−









+
du

vd

cdu

v
d

cdu

dv ε
 

Integrating across, we have  

   
Auv

cc

v
v +−=′−+ 1

2

2ε
 

Therefore,  

   








−++=′ A

c

v
uvcv

2

2ε

         (2.10)  
Also,  

   wwvwc −=′′−−′ ε  

   
wuR

w

uc

wvwc

0

=
′

′′−−′ ε

 

uRdu

wd

cdu

v
d

cdu

dw

0

2

1)(12
=

′
−










− ε

 
Integrating across  

   

Bu
R

w
cc

v
w e +=′−− log

11

2 0

2ε

 









−−−=′ Bu

Rc

v
wcw elog

1

2 0

2ε

     (2.11) 
Also, dividing the last equation of (2.8) by the first, we have  

   
uRdu

dz
or

uRu

z

00

11 −=−=
′
′

 
Integrating, we have  

   
0

1
logez u D

R
= − +       (2.12) 
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A, B and D in (2.10), (2.11) and (2.12) respectively are constants of integration to be determined by (2.9). Since  
wandvu ,, approach limit as ±∞→s , then it implies that wandv ′′

 do as well. So,  
   ( ), ( ) 0v s w s as s′ ′ → → ±∞       (2.13)       

Applying (2.9) and (2.13) on (2.10), (2.11) and (2.12) as −∞→s , gives 
1, 0, 0A B D= = = . Hence (2.10), (2.11) and (2.12) becomes  

  
2 2

0 0

1 1
log ( ), 1 log

2 2e e

v v
z u z u v c v u and w c w u

R c c R

ε ε  ′ ′= − = = + + − = − −  
   

           (2.14) 

To determine the wave speed, we analyse (2.14) and  

         
1

u wu
c

′ = −           (2.15) 

Applying the second boundary condition as s → ∞ , we have that 1 1 1 11 where 1u w u z+ = = − so 

that  

1 0 1exp( )l z R z− = −           (2.16) 

 

Since 
0

1
logez u

R
=  that is ( )0 0log expe u R z or u R z= − = − . 

(5.1.16) will always have the solution 1 0z =  representing no epidemic. If 0 1R < , then there is no other 

positive solution, whereas if 0 1R >  then there is another solution z , satisfying 

( )1 0 1 0 10 1 1 1z and R z R u< < − = < . 

It follows that in this spatially inhomogeneous case there can be no epidemic if 0 1R < . Let us take 0 1R > , 

so that 1
0

1
0 1u

R
< < < . The only critical points of (2.14) and (2.15) are 1( , 0, 0) (1, 0, 0)u and . To 

analyse this, we determine Jacobian matrix of 

         
2 2

0

1 1
, 1 , log

2 2 e

v v
u wu v c v u w c w u

c c c R

ε ε  −′ ′ ′= = + + − = − −  
   

              (2.17) 

The Jacobian matrix is 

    

0

1 1
0

1 0

w u
c c

v
c c

c

c
v c

R u

ε

ε

 − − 
 
   + 
  
 
 − −
 
 

        (2.18)  

At the critical (1, 0, 0), we have  

    *

0

1
0 0

0

0

c

J c c

c
c

R

 − 
 
 =
 
 − 
 

               (2.19) 

where *J  denotes evaluation of J at the steady state Next, we determine the eigen values λ  which are the roots 
of  
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0

1
0

0 0

0

c
c c

c
c

R

λ

λ

λ

− −

− =

− −

      (2.20) 

(2.20) implies  

   ( )2

0

1
( ) 0

c
c c

c R
λ λ λ

 
− − = − = 

 
 

   3 2 2

0 0

1
2 0

c
c c

R R
λ λ λ

 
− + − + = 

 
      (2.21) 

Now, we simply look for conditions that will make the roots of the polynomial in (2.12) negative, which are the 
criteria for the critical point (1, 0, 0) to be asymptotically stable. To determine this, we use the popular Routh-
Hurwitz Conditions. 

The Routh-Hurwitz Conditions for the roots of (2.21) to have negative real parts, requires 0 0R λ < . This 

holds if. 

   2

0 0 0

1
2 0, 0, 2 0

c c
c c c

R R R

 
− > > − − − > 

 
   (2.22)      

 
 

 
It is obvious that if the second inequality of (2.22) holds, the first and third do not hold except 0C <  which 

again violates the second inequality. Since the Routh-Hurwitz Conditions are not satisfied, we have no travelling 
wave front solution which approach the steady state (1, 0, 0) as .s → −∞  

For the steady state (1, 0, 0), it is difficult to characterize the travelling wave speed probably due to the fact that 
we are dealing with more than one infested class. Our analyses were carried out via the method of linearization 
around the equilibrium point.  

However, determine if the wave speed of the second equilibrium point can be characterized, we substitute 

( )1, 0, 0u  into (2.18). 

1

*

0 1

1
0 0

0

0

cu

J c c

c
c

R u

 − 
 
 =
 
 − 
 

      (2.23) 

The Eigen values λ  of the second equilibrium point ( )1, 0, 0u  is the roots of  

1

1
0

1
0

0 0

0

u
c

c c

c
u c

R

λ

λ

λ

− −

− =

− −

     (2.24) 

From (5.1.24), we obtain  
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   3 2

0 0

1 1
2 0c c c

R R
λ λ λ

 
− + − + = 

 
    (2.25) 

(2.25) is the same as (2.21), hence the result is the same for both equilibrium points.  
 

Discussion And Conclusion 
                                                      
The Characterization of the wave speed using the method of linearity did not work for the SEIR model since the 

infectious class has been broken down into two different classes (Latent and infectious). We conjecture that the 
wave speed for both types of models (SIR and SEIR) will give the same result.  

 Most times, during the period in which the individuals are is in the latent class, they do not show symptoms of 
the disease and as a result do not change behaviour thereby not being able to infest and drive the disease.                                
Disease that can fit into this model includes Rabies which has an incubation period of 150 days. HIV/AIDS has a 
latent period of 3-10 years.                                                                                              We discovered that it is 
difficult to characterize the wave speed for SEIR epidemic model. The reason for not being able to characterize the 
wave speed is probably due to the fact that the disease is driven by two infectious classes i.e. the latent and infective 
classes. Just like the case of Tuberculosis (T.B) which is an SEIR disease, when it becomes an epidemic, it is 
difficult to track down the disease (i.e. to measure the wave speed). When the latent class and the infective are 
driving the disease, it is like a pandemonium, it is full blown epidemic – those who are infected and have not yet 
shown symptoms are spreading the disease just like the infective class. 
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