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Abstract

We present the travelling wave solution for a Susceptible, Exposed, Infective and
Removed (SEIR) epidemic disease model. For this SEIR model, the disease is
driven by both the latent and infective class (the diffusion term isincluded in both
classes). The population is closed.
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1.0 Introduction

There has been a recent impetus for the study atfa$epidemiology, following the planned investrhe
billions of dollars by the United States governmentbiological weapons defence [18] and concerner dhe
potential use of small pox and other diseasesasdical weapons [18].

However, a fundamental challenge in Mathematicalexpiology is determining how the structure of a
population influences disease transmission. Fdaint®, the Severe Acute Respiratory Syndrome (S&RBEmMiIc
spread through twelve countries within a few wemhkd the swine flu has spread through all the centm
(including some parts of Africa, e.g. Badagry irgha, Nigeria) within a few months of its outbreak.

Several scientists including [4] have made sigaiftccontribution in the area of travelling waveusialn for disease
model. He considered the travelling wave solutmmahn SIR epidemic model when the population isetb

Abual-Rub [3] used the idea of travelling wave itréduce vaccination/control for a susceptible anfelctive
(SI) disease model which in turn keeps the numibénfective and susceptible unchanged and speicifibe long
run.

Jing Li and Xingfu Zou [12] formulated a susceptibhfective and removed (SIR) model with a simple
demographic structure for the population livingaispatially continuous environment with the assummgtthat an
infectious disease in a population has a fixechigpteriod and the latent individuals of the pogolaimay diffuse.

Abramson and Kenkre [1] analyzed the propagatibiravelling wave fronts in a simple one-dimensibna
model of the ecology and epidemiology of the Haimtsvin deer mouse.

Lewis et al [14] developed and analyzed a readfiffsion model for the spatial spread of the Whde
Virus.

Burie et al [5] investigated the structure of triéimg waves for a model of a fungal disease profagaover a
vineyard.

Reluga et al [19] formulated the restricted-movetmaadel to describe spatial patterns of diseasestnéssion.

However, in all the works available for review,ettravelling wave solution for an SEIR epidemic mlodas
not investigated. we will consider model formulatiand analysis of an SEIR epidemic model. This fdation
shall take into consideration the spatial spreadiséase. In this model “exposed (latent) but reitigfections”
individuals are denoted by E.

Model Formulation And Analysis

The model shall include diffusion of both the latand infective only. The susceptible class dodsimgdude
the diffusion term because the exposed and infegiypulation are very active in infesting otherividlal in the
total population and they are capable of movingen@, E, | and R must be thought of respectivelythas
population densities of susceptible, exposed, tilecand removed individuals depending on positenwell as
time.
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The SEIR model is given by

oS _ -BIS, oE = BTS-SE+ DaE, a—':JE—y|+D|ﬁ, E:yl (2.1)

ar or &% or 0&? or

In (2.1), the population is closed where birth and-disease related deaths are neglected.

BIS represents the incidence of the diseadis, the rate at which individuals leave the latdass and enters
the infectious class. Als¢ is the rate of recoveryD. and D, represent the diffusion coefficient in the latentia
infectious class respectively.

The initial condition for (2.1) is
SN E-OI-0andR-0asé - C (2.2)

We shall non-dimensionalize (2.1), rescale the tiradable, 7 and spatial variablefz in (2.1) using the
following substitutions.

S __E __ I __ R
ug=—, V=—, W=—, Z=— (2.32)

N N N N

_ _c |V
t=yr, x=¢,|— 2.3b
14 ¢ D (2.3b)
D|fferent|at|ngu vV, Wand of (2.3a) respectively with respect®, E, |, and R, we have

0S= Nou, JE = Ndv, ol =Now and dR=Ndz (2.4)

Also, differentiating each of (2 3b) with respext tand ¢ respectively gives

or :—at and 0¢ = /— 16)4 (2.5)
y y

Substituting (2.3a), (2.3b), (2.4) and (2.5) ir‘ﬂe System (2.1), we obtain after simplication

ou _ - 0
— = - — =R WU -&V + —-,
ot R =R ox°
ow_ azv—v 0z _ _
- Wt— and — =W (2.6)
ot 0X ot
Where R, :,G_N refers to the basic reproductive ratio;

y
SN is the rate at which a single infective introdudeit a susceptible population of si#¢ makes infectious

contacts and! is the expected length of time such an infectes@ains infectiousR, is the expected number of
4

infectious contacts made by such infectifg. is a very important concept in epidemiology.
Also e:é,(s, E,I,R) =(N,0,0,Q-
4

If R, <1 the disease dies out in the spatially uniform eaisiée if R, >1 an epidemic occurs.

Next, we seek a constant shape travelling wave solutioredbtm
u(x,t) = u(s) = u(x+ct), v(x,t)
W(x,t) =w(s) = w(x+ct), Z(xt)

V(x+ct)
z(s) = z(x+ct) (2.7

Where S= X+ Ct

u(x,t) ,v(xt) , wx,t)and Z(x,t) are travelling waves which moves at a constant speed c in the
negative X -direction with positive c.
Substituting (2.7) into (2.6), we have
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ca'=-Rwu, o=Rwu-ev+V', oW =¢gv-w+w', cZ=w (2.8)
where the prime (*) denotes the differentiation with respest fithe system (2.8) is to be analysed subject to the
boundary conditions
us) -1 ass— -, U(S) -U as s—
v(s), w(s) - 0 as s tw (2.9)

z(s) -0 as s— -», z(S) -z and s
In order to linearize (2.8), we rearrange the second anddgjrdtions of (2.8) and divide through by the first
equation in (2.8). This gives
o + &v-Vv' =Rwu

oV +ev—V' - R,wu
so. cu R,wu
{3) auw
d_V + £ - ld(V) = -1
du c du c du
Integrating across, we have
2
& 1,
VH— — =V = -Uu+A
2c C
Therefore,
2
v':c{v+u +€2V——A}
c (2.10)
Also,
oW - ev-w = -w
ow -aev-w _w
cu’ R,wu
v
dw e (2 1 d(w) 1
du c du C du R,u
Integrating across
2
& 1 1
w-— - =-w = —log,u + B
2c Cc R,
2
&V
W = c{w—z———loge u- B}
c 2.11)
Also, dividing the last equation of (2.8) by the firgg have
Z -1 dz 1
—' - — o _—
u du R,u
Integrating, we have
(2.12)

z=- iIogeu +D
R
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A, Band D in (2.10), (2.11) and (2.12) respectively amstants of integration to be determined by (2.9). Since

u, v, and Wapproach limit a&® oo , then it implies that/ and W do as well. So,
V'(s), W(s) - 0 as s o (2.13)

Applying (2.9) and (2.13) on (2.10), (2.11) and (2.48S - —® , gives
A=1, B=0, D= 0. Hence (2.10), (2.11) and (2.12) becomes

2 2
Z:—%bgeuzz(u)’ V':c{v+u+ﬂ—1} and W:c{w—%—ilogeu} (2.14)
C

2c R
To determine the wave speed, we analyse (2.14) and
, 1
u=-=-wu (2.15)
Cc

Applying the second boundary condition gs- o, we have thatl, + W, =1 where u, = I Z, so
that

|-z =exptRz,) (2.16)
Since Z :%Ioge u thatislog,u=-R;z or u=exp(-R,z).

(5.1.16) will always have the solutiod, =0 representing no epidemic. IIRO <1, then there is no other

positive  solution, whereas if Ro >1 then there is another solution Z, satisfying
0<z<land R (1-z) = Ry, <1
It follows that in this spatially inhomogeneous case thenebeano epidemic i}, < 1. Let us takeR, >1,

so that0 < u, < 1 < 1. The only critical points of (2.14) and (2.15) afd,, 0, 0) and (1, O, 0. To

analyse this, we determine Jacobian matrix of

, -1 . £Vv? vt 1
u=—wu, V=clvtu+—-1|, wW=clw-—-—logu (2.17)
c 2c x R
The Jacobian matrix is
—lw 0 —Eu
c c
(2.18)
c c(1+ ﬂj 0
c
c
-— -&v c
R,u
At the critical (1, 0, 0), we have
1
0 0 -—
c
c
-— 0 C
Ry

where J” denotes evaluation of J at the steady state Next, we detehmiegen valuesl which are the roots
of
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C c-A1 0 =0 (2.20)

(2.20) implies

A® — 2cA? +(C2__jA + L =0 (2.21)

Now, we simply look for conditions that will make the t®of the polynomial in (2.12) negative, which are the
criteria for the critical point (1, 0, 0) to be asymptoticadtgble. To determine this, we use the popular Routh-

Hurwitz Conditions.
The Routh-Hurwitz Conditions for the roots of (2.2&)have negative real parts, requir%/] < 0. This

holds if.

-2¢c > 0, é> 0, - z[cz —i] - Cs¢ (2.22)

R/) R

It is obvious that if the second inequality of (2.22)dsoplthe first and third do not hold except< 0 which
again violates the second inequality. Since the Routh-Hu@dtaditions are not satisfied, we have no travelling
wave front solution which approach the steady state (),& 8 — —.

For the steady state (1, 0, 0), it is difficult to charaztetie travelling wave speed probably due to the fact that
we are dealing with more than one infested class. Our analyerescarried out via the method of linearization

around the equilibrium point.
However, determine if the wave speed of the second equilibroint pan be characterized, we substitute

(u, 0, 0) into (2.18).

0 0 - i
cu,
J=l ¢ C 0 (2.23)
_L 0 (o}
Rou
The Eigen values! of the second equilibrium poir(ul, 0, O) is the roots of
-A 0 —Eu1
Cc
c c—A 0 =0 (2.24)
-y o0 c-/
Ro

From (5.1.24), we obtain
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1 1
A®—-2cA + (cz ——] A+—c=0 (2.25)
R Ry
(2.25) is the same as (2.21), hence the result is the saetlh equilibrium points.
Discussion And Conclusion

The Characterization of the wave speed using the method of §ndiarihot work for the SEIR model since the
infectious class has been broken down into two different cldtsdésnt and infectious). We conjecture that the
wave speed for both types of models (SIR and SEIR)gividl the same result.

Most times, during the period in which the individuats is in the latent class, they do not show symptoms of
the disease and as a result do not change behaviour therelpeing able to infest and drive the disease.
Disease that can fit into this model includes Rabies which hascahation period of 150 days. HIV/AIDS has a
latent period of 3-10 years. We discovered that it is
difficult to characterize the wave speed for SEIR epidemic maddthel.reason for not being able to characterize the
wave speed is probably due to the fact that the disease is byivesn infectious classes i.e. the latent and infective
classes. Just like the case of Tuberculosis (T.B) which iSER disease, when it becomes an epidemic, it is
difficult to track down the disease (i.e. to measure the vgpeed). When the latent class and the infective are
driving the disease, it is like a pandemonium, it is fldiwn epidemic — those who are infected and have not yet
shown symptoms are spreading the disease just like thevefetdss.
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