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Abstract 
 
This paper presents the travelling wave solution for an SIR endemic disease 
model with no disease related death when the spatial spread of the susceptible 
is not negligible. In this case the disease is driven by both the susceptible and 
the infective classes. The population is open since the disease is habitually 
prevalent in the population. 
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1.0  Introduction 
The prevalence of diseases in human population cannot be over emphasized. Spatial models of epidemics and 

epizootics have existed for at least forty years. A wide variety of methods have been used for the study of spatially 
structured epidemics.  

One of the first applications of reaction-diffusion theory to spatial epidemiology was an effort by Noble (1974) 
to describe the spread of plague through Europe in the mid-fourteenth century. Recently Caraco et al (2002) have 
used a reaction-diffusion model to describe the spatial aspects of Lyme disease transmission. Perhaps the most well 
known and well studied spatial epizootic model is that of Kallen et al (1985), which described the spatial dynamics 
of rabies in fox populations. In its original form, this model is a simplification of Noble’s plague model (1974). In 
Noble’s plague model, he assumed that if S  is the concentration of fox susceptible to rabies infection and I is the 
concentration of rabid fox (fox infested with rabies) and also assuming mass action kinetics and no latency period 
between infection and symptomatic behaviour then the rate at which susceptible fox becomes infested will be 
proportional to both the concentration of susceptible fox and the concentration of rabid fox.   Customarily, a 
travelling wave is taken to be a wave which travels without change of shape and this will be our understanding here. 

So, if a solution ),( txu  represents a travelling wave, the shape is a constant which we denote by c. If we look at 

this wave in a travelling frame moving at constant speed c, it will appear stationary. A Mathematical way of saying 
this is that if the solution u can be represented as  

                  ( ) ( ) ( )zuctxutxu =+=, , where z = x + ct               (1.1) 

Then ( )txu ,  is the travelling wave and it moves at constant speed c in the negative −x direction. Clearly, if 

ctx +  is constant, so is u ; it also means that the coordinate system mores with speed c. A wave which moves in 

the positive −x direction is of the form ( )ctxu −  with positive c. the wave speed c generally has to be 

determined. The dependent variable z is sometimes called the wave variable. When we look for travelling wave 

solutions of an equation or system of equations in tandx  in the form                  

                  ( ) ( ) ( )zuctxutxu =+=, , where z = x + ct                 (1.2) 

We have  
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So the partial differential equations in tandx  become ordinary differential equations in z . To be physically 

realistic, )(zu  has to be bounded for all z  and non-negative with the quantities with which we are concerned, such 

as chemicals, populations, bacteria and cells. 
Let us first point out that without reaction there can be no travelling wave. To see this, consider a solution of the 

form                                                  ( ) ( ) ( ), ,u x t u x ct u z z x ct= + = = +
               

    (1.4) 

 to the equation,  
 
  

                                 xxt Duu =                   (1.5)                              

which is the diffusion equation, and then we have,                                           

                       0
2

2

=−
dz

du
c

dz

ud
D                                 (1.6) 

That is  

                 
2

2
0 since t

d u du u du
D c u

dz t dzdz

∂− = = =
∂                      (1.7)

 

This implies  

                  ( ) z
D
c

BeAtxu +=,  

                ( ) ( )
, since

c
x ct

Du x t A Be z x ct
+

= + = +                     (1.8) 

Where A and B are constants. Since u has to be bonded for all Btx ,and  must be zero since the exponential 

becomes unbounded as Atxuctx =∞−→+ ),(. , a constant, is not a wave solution. In marked contrast the 

parabolic reaction diffusion equation      
                            )(ufDuu xxt +=

                                (1.9)
 

can exhibit travelling wave solutions, depending on the form of the reaction/interaction term( )uf . This solution 

behaviour was a major factor in starting the whole mathematical field of reaction diffusion theory.  
Spatially structured epidemic models are useful tools in the study of geographic spread. In particular, spatial models 
can be used to estimate the speed of geographic spread. Estimates of rapidity of disease dissemination can in turn, be 
used to guide policy decisions. Research has shown that for many linear models there is a minimum speed *c  for 
travelling wave solution and that in many biologically realistic setting, solutions tend to approach advancing fronts 

that travel no faster than 
*c .                                   However, a fundamental challenge in Mathematical epidemiology 

is determining how the structure of a population influences disease transmission. One important aspect is the spatial 
structure. For instance, the Severe Acute Respiratory Syndrome (SARS) epidemic spread through twelve countries 
within a few weeks and the recent swine flu has spread through all the continents (including some parts of Africa, 
e.g. Badagry in Lagos, Nigeria) within a few months of its outbreak. Projections of the spatial spread of an epidemic 
will facilitate the assessment of policy alternatives. Spatially-explicit models are necessary to evaluate the efficacy 
of movement controls [19]. Models that ignore spatial structure can lead to inaccuracy in the prediction of 
population dynamics [19].  
 
2.0   Model Formulation And Notation                                          
We consider spatial spread for an endemic disease - that is for a disease which is habitually prevalent in a 
population. In this kind of disease model, we are interested in long term behaviours of the disease. In this case, it 
will be unreasonable to lump together immune and death people into the same (removed) class, as their differences 
are now important. The removed class, R should now be considered as the immune class.  
Since we are interested in long term behaviour, we cannot neglect birth and disease unrelated death. With births and 
deaths included, the population is no longer closed and the total population size N will only be a constant under 
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additional assumptions on the birth and death rates. We consider a population with birth rate (not per capital birth 
rate) B and per capital disease-related and disease-unrelated death rates C and d respectively. For simplicity, we 
shall take C and d to be constants, but we shall make different assumptions about B. All births are assumed to enter 
the susceptible class (no vertical transmission). Vertical transmission is transmission from parent to foetus or new-
born offspring. 
The model described above without spatial spread                                      

,

,

dS
bN IS dS

d
dI

IS I CI dI
d
dR

I dR
d

β
τ

β γ
τ

γ
τ

= − −

= − − −

= −

                                   (2.1) 

Where βI is called the force of infection, β is the infection contact rate (that is the rate of infection per susceptible 
and per infective) and γ is the rate of  recovery.   
The population can approach an endemic steady state for no disease related death by letting B = bN, b = d and C = 0 
[4]. 
 
Equilibrium Analysis  
   
To determine the disease-free steady state and the endemic steady state of the system (2.1), we set the right hand 
side of the system (2.1) to zero excluding the diffusion term because wherever in space the disease free and endemic 
steady state is achieved.  

  ( ) 01 0 =−− vuRuη  

  ( )
0

0

1
0..01

R
uorveivuR ===−                              (2.2) 

  0=− wv ηε  

Where u, v and w depends on x        
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It is imperative to note that the endemic equilibrium (EE) exists only when Ro > 1. If Ro =1, we obtain the disease 
free equilibrium (DFE). 
 
3.0   Spatial Spread Model 
          We consider the spatial spread of the infective and susceptible. We shall introduce diffusion term 

Is DandD  to represent diffusion coefficients of susceptible and infective respectively into the normal SIR 

endemic disease model. 

 Let dNB = , 0== Canddb  then the model (2.1) becomes,  
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                                              (3.1) 

Where ( ) ( ) ( ) ,,,,,, tRRtIItSS ξξξ ===  

IandS ∇∇  are Laplacian operators in one dimension representing the diffusion of the susceptible and 

infective densities respectively. 

Next, we non-dimensionalised (3.1) and also rescale the time variable τ  and space variable ,ξ  by using the 

following substitutions 

 
N

R
w

N

I
v

N

S
u === ,,                   (3.2)    

  ( )
D

b
xandbt

+=+= γξτγ           (3.3) 

The expected length of time an infective remains infectious is
b+γ

1 . 

From (3.2) and (3.3), we obtain  

  wNTvNIuNs ∂=∂∂=∂∂=∂ ,,                  (3.4)  

  ( )
D

b
xandbt

+∂=∂∂+=∂ γξτγ         (3.5)  

 
Substituting (3.2), (3.3), (3.4) and (3.5) into (3.1) and simplifying, we have  
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Where  
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4.0   Travelling Wave Solution 
          We seek for a constant shape travelling wave solution of (3.1) by setting  

  ( ) ( ) ( ) ( ) ( ) ( ) andctxvsvtxvctxusutxu +==+== ,,,   

( ) ( ) ( )ctxwswtxw +==,        (4.1) 

where c is the wave speed which has to be determined. Substituting (4.1) into (3.1), we have  

  

( )
( )

0

0

1

1

cu u R uv u

cv R u v v and

cw v w

η

ε η

′ ′′= − − +

′ ′′= − +
′ = −

                                               (4.2) 

where the prime denotes differentiation with respect to s. The system (4.2) is to be analysed subject to the disease 
free steady state and the endemic steady state in (2.3). 
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We model the spatial spread as a diffusive process where both the susceptible and infective classes (i.e.
( ) ( )txIandtxS ,, , which are function of spatial variable x  as well as of time t ) have diffusion coefficients 

Is DandD  not equal to zero. We do not need to think that the individuals are actually diffusing; we can imagine 

them as fixed on a lattice with contacts to their nearest neighbours through which the disease propagates. The rates 
of transition from susceptible to infective and of removal from infective are the same as in the mean field model.  
To write (4.2) as a system of first order ordinary differential equations, we set  

  umandum ′′=′′=  Also vnandvn ′′=′′= .   
The system (4.2) becomes  

  ( )0

,

1 ,

u m

m cm R uv u

v n

η
′ =
′ = + − −
′ =
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( )
0 1

1

n cn R u v and

w v w
c

ε η

′ = − −

′ = −
                              (4.3) 

In the ( )nmwvu ,,,,  phase space, there is the disease free steady state ( )0,0,0,0,1  and the endemic steady 

state ( )***** ,,,, nmwvu  where *** , wandvu  have their usual meanings and 0** == nm .  

To analyse the system (4.3), we determine the Eigen values by first considering the Jacobian of the system (4.3).  
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At the disease-free steady state ( )0,0,0,0,1 , we have  
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The Eigen values are given by the roots of  
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The roots of the characteristic equation of (4.6) are given by: 
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          (4.7)  

Thus, there is an unstable manifold defined by the Eigen vectors associated with the Eigen values 32 λλ and  

which are positive for all 0>c . Furthermore ( )0,0,0,0,1  is unstable in an oscillatory manner if 

( )14 0
2 −< Rc . So the only possibility for a travelling wave front solution to exist with non-negative 

wandvu,  is if  

  1,12 00 >−≥ RRc           (4.8)    

With c satisfying this condition, a realistic solution with a lower bound on the wave speed may exist which tend to 

00,1 === wandvu  as −∞→s . 

Next, we consider the travelling wave front as ( )nmwvu ,,,,  approaches the endemic steady state 

( )0,0,,, *** wvu . The Eigen values is the roots of  
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This gives    

( )4 3 * * 2 2
0 0, 2 1c R u R v c c

c

ηλ λ λ η λ= − − + − − + − +  

( ) ( )* * *
0 0 0 01 * 0c R u R v R u R vλ η η− − − − − + =       

(4.10)            

 After simplification (4.10) becomes 

( )4 3 2 22 ( 1) ( 1) 0O O Oc c R c c R Rλ λ η λ η λ η− + − + + − − − =     (4.11)
 Applying Descartes’ Rule of signs on (4.11) 

Case 1: when RO > 1 and ORη >1 

There are three variations in sign implying that the polynomial has three or one positive real zeros.  

Case 2: when RO < 1 and ORη <1 

 
Equation (4.11) becomes 

( )4 3 2 22 ( 1) ( 1) 0O O Oc c R c c R Rλ λ η λ η λ η− + − + − − + − =     (4.12) 

There are four variations in sign implying that the polynomial has four or two or no positive real zeros. 
It implies that the endemic equilibrium is not stable for both cases. It is difficult to characterize the travelling wave 
speed. 
 
Discussions And Conclusions  
 
The travelling wave solution for when the spatial spread of the susceptible is not negligible for the disease free 
steady state is obtainable that is, it exist. but it is difficult to characterize the travelling wave speed for the endemic 
equilibrium for the SIR model when the disease is driven by both the susceptible and infective class.   
We have found that for the SIR endemic disease model, when the spatial spread of the susceptible is not negligible, 

the travelling wave front solution exist with non-negative wandvu,  if ( ) 1,14 00
2 >−≥ RRc for the disease 

free equilibrium. Also that the wave with minimal speed 12 0 −= RC  is the only one which can be stable as a 
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solution of the original systems of partial differential equations and in dimensional variable C depending on the 

initial population since 
b

N
R

+
=

γ
β

0 . Also, vaccination can be effected for the disease free steady state if N

β
γ b+<< . The travelling wave front for the endemic steady state ( )**** ,,, wmvu  is difficult to characterize since all 

the zeros of (4.11) are non-negative.  
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