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Abstract

This paper presents the travelling wave solution for an SIR endemic disease
model with no disease related death when the spatial spread of the susceptible
isnot negligible. In this case the disease is driven by both the susceptible and
the infective classes. The population is open since the disease is habitually
prevalent in the population.
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1.0 Introduction

The prevalence of diseases in human populationotdye over emphasized. Spatial models of epidearics
epizootics have existed for at least forty yearsvidle variety of methods have been used for theystd spatially
structured epidemics.

One of the first applications of reaction-diffusitheory to spatial epidemiology was an effort bybNo(1974)
to describe the spread of plague through Europgbamid-fourteenth century. Recently Caraco eR80R) have
used a reaction-diffusion model to describe theigpaspects of Lyme disease transmission. Pertigpsiost well
known and well studied spatial epizootic modehiat tof Kallen et al (1985), which described thetispaynamics
of rabies in fox populations. In its original forthjs model is a simplification of Noble's plaguedel (1974). In
Noble’s plague model, he assumed thaSifis the concentration of fox susceptible to ralidsction and | is the
concentration of rabid fox (fox infested with radjieand also assuming mass action kinetics andtandg period
between infection and symptomatic behaviour themn rdite at which susceptible fox becomes infestdt bei
proportional to both the concentration of suscégtiox and the concentration of rabid fox. Cushoity, a
travelling wave is taken to be a wave which travethout change of shape and this will be our ustderding here.
So, ifa solutionu(X, t) represents a travelling wave, the shape is a aonsthich we denote by c. If we look at

this wave in a travelling frame moving at constemed c, it will appear stationary. A Mathematigaly of saying
this is that if the solution u can be represented a

u(x, t) = u(x + ct) = u(z), where z = x + ct (1.1)
Then u(x, t) is the travelling wave and it moves at constaeespc in the negativ& — direction. Clearly, if
X+ Ct is constant, so isl ; it also means that the coordinate system mor#s spieed c. A wave which moves in
the positive x — direction is of the formu(x—ct) with positive c. the wave speed ¢ generally hahéo
determined. The dependent variable z is sometirabedcthe wave variable. When we look for travejliwave
solutions of an equation or system of equationX iand t in the form
u(x, t) = u(x + ct) = u(z), where z = x + ct (1.2)
We have

ou du ou du
=c—, — =— (1.3)
ot dz ot dx
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So the partial differential equations ¥ and t become ordinary differential equationsin To be physically

realistic, U(Z) has to be bounded for al and non-negative with the quantities with whichave concerned, such

as chemicals, populations, bacteria and cells.
Let us first point out that without reaction thean be no travelling wave. To see this, considsglation of the

form u(x,t) :L(X+d) :LI(Z),Z:X+CI

(1.4)
to the equation,

u, = Du,, (1.5)
which is the diffusion equation, and then we have,
du du
dz? dz
That is
d®u du . . Ou _ _ du
> — C— =0since— =u = —
dz dz ot dz (1.7)
This implies
u(x,t) = A+ Be®’
Cc
_ B(x+(:t) . _
u(x,t) = A+Be since z=x+ct 1.8)

Where A and B are constants. Since u has to beeubfat all X andt, B mustbe zero since the exponential

becomes unbounded aé+Ct — —oo. U(X,t) = A, a constant, is not a wave solution. In markedtresh the
parabolic reaction diffusion equation
u, = Du, + f(u) (1.9)

can exhibit travelling wave solutions, dependingtba form of the reaction/interaction tenfrfu). This solution

behaviour was a major factor in starting the wholthematical field of reaction diffusion theory.
Spatially structured epidemic models are usefulstoothe study of geographic spread. In particidpatial models
can be used to estimate the speed of geograplEadspEstimates of rapidity of disease disseminatéomnin turn, be

used to guide policy decisions. Research has shieatrfor many linear models there is a minimum speé& for
travelling wave solution and that in many biolodficaealistic setting, solutions tend to approaclvancing fronts

that travel no faster tha@ . However, a fantental challenge in Mathematical epidemiology
is determining how the structure of a populatidituiences disease transmission. One important aspéut spatial
structure. For instance, the Severe Acute Respyr@gndrome (SARS) epidemic spread through twetwentries
within a few weeks and the recent swine flu hagagprthrough all the continents (including someaftAfrica,
e.g. Badagry in Lagos, Nigeria) within a few montidts outbreak. Projections of the spatial sprebdn epidemic
will facilitate the assessment of policy alternativ Spatially-explicit models are necessary touatal the efficacy
of movement controls [19]. Models that ignore sglastructure can lead to inaccuracy in the preafictof
population dynamics [19].

2.0 Model Formulation And Notation

We consider spatial spread for an endemic diseasmt-is for a disease which is habitually prevalena
population. In this kind of disease model, we aterested in long term behaviours of the diseas¢hit case, it
will be unreasonable to lump together immune arathdpeople into the same (removed) class, as diféégrences
are now important. The removed class, R should Im@wonsidered as the immune class.

Since we are interested in long term behaviourcarenot neglect birth and disease unrelated deaith. Wths and
deaths included, the population is no longer closed the total population size N will only be a stamt under
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additional assumptions on the birth and death ratés consider a population with birth rate (not papital birth
rate) B and per capital disease-related and disgasdated death rates C and d respectively. Foplaity, we
shall take C and d to be constants, but we shdterdéferent assumptions about B. All births arsuased to enter
the susceptible class (no vertical transmissiomytival transmission is transmission from parenfoitus or new-
born offspring.

The model described above without spatial spread

d—S:bN - B1S-dS,

dr

d—I:,BIS—yI -Cl —dI, (2.1)
dr

dR

— =yl -dR

dr 4

Wherefl is called the force of infectiofg is the infection contact rate (that is the raténédction per susceptible
and per infective) andis the rate of recovery.
The population can approach an endemic steadyfstat® disease related death by letting B = bN,dband C =0

[4].
Equilibrium Analysis

To determine the disease-free steady state andnithemic steady state of the system (2.1), we setigiht hand
side of the system (2.1) to zero excluding theudifin term because wherever in space the disessarfid endemic
steady state is achieved.

7{l-T) - ROV =0
1

(RU-)V=10iev=0 or 0= 2.2)
Ry
& —-mw =0
Where u, v and w depends on x
whenV=0, U=1 and W=0. Also, when

U:i, v:q(l—iJ and W:({l—iJ
Ry Ry Ro

The disease free steady state is(ﬁt, Vv, W) = (u;, 0,0) where u; =1 and the endemic steady state is at

(U, v, W) = (ul v, Wl) whereu, = %, v, =/7(1—%j andW = é{l-%} (2.3)

It is imperative to note that the endemic equilibmi (EE) exists only when 2 1. If R, =1, we obtain the disease
free equilibrium (DFE).

3.0 Spatial Spread Model
We consider the spatial spread of theectife and susceptible. We shall introduce diffasi@rm

D, and D, to represent diffusion coefficients of susceptibled infective respectively into the normal SIR
endemic disease model.
Let B=dN, b=d and C =0 then the model (2.1) becomes,
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9 =bN - SI1S-bS + O°S,

or

E—,Bls—yl -bl + D, 071, (3.1)
oR

— =yl -bR

or 4

whereS=S(£ ,t), 1 =1(£,t), R=R(,1),

O0S and Ol are Laplacian operators in one dimension repregerthe diffusion of the susceptible and
infective densities respectively.

Next, we non-dimensionalised (3.1) and also restisetime variabler and space variablé, by using the
following substitutions

0=>, y=1 W= (32)
N N N
t=(y+b)r and X:gtw/%b 3.3)
The expected length of time an infective remairsdtious is 1
y+b

From (3.2) and (3.3), we obtain
0s= Nou ,0l =Nov, 0T =Now (3.4)

dt = (y+b)or and ax = aa/%b (3.5)

Substituting (3.2), (3.3), (3.4) and (3.5) intol(3and simplifying, we have

ou _ 0%u
Ezﬂ(l_U)_ROUV + 67,
ov 0%
—=(RU-1IV+—, (3.6)
ot (Rou x>
ow
a
Where
N b
RO = 'B , €= y , N =
y+b y+b y+b

4.0 Travelling Wave Solution
We seek for a constant shape travelliageasolution of (3.1) by setting

u(x t) = u(s) =u(x+ect), V(x t)=v(s)=v(x+ct) and
w(x, t) = w(s)=w(x+ct) (4.1)
where c is the wave speed which has to be detedn8wbstituting (4.1) into (3.1), we have
cu'=n(1-u) - Ru+u"
o =(Ru-1)v+v' and .2
oW = ev-nw

where the prime denotes differentiation with respecs. The system (4.2) is to be analysed sulbjette disease
free steady state and the endemic steady sta2e3n (
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We model the spatial spread as a diffusive proagkere both the susceptible and infective classes (i
S(X, t) and I(x, t), which are function of spatial variablg as well as of timet) have diffusion coefficients

D, and D, not equal to zero. We do not need to think thatitidividuals are actually diffusing; we can imagin

them as fixed on a lattice with contacts to theiamest neighbours through which the disease prégmgbhe rates
of transition from susceptible to infective and-efmoval from infective are the same as in the nfiedeh model.
To write (4.2) as a system of first order ordindifferential equations, we set

m=u"and m =u" Ason=Vv and n'=V'
The system (4.2) becomes

T

u =m,

m' =cm+ Ruv-7(1-u),

v'=n

n'=cn-(Ru-1)v and
1 (4.3)

w' = E(ev -nw)

In the (u, V, W, m, n) phase space, there is the disease free steady(]st@; 0,0 0) and the endemic steady

state(u*, V*, W*, m*, n*) whereu’” , v and W' have their usual meanings aml =n =0.
To analyse the system (4.3), we determine the Bighres by first considering the Jacobian of theteay (4.3).

0 1 0 0 0
RyVv+7 c Ryu 0 0 (4.4)
J = 0 0 0 1 0
-Rv 0 -(Ru-1) ¢ ©
0 o £ o -2
c c
At the disease-free steady stﬁ.’ie 0, O, 0, O), we have
0 1 0 0 0
U c R o 0 (4.5)
J=| 0 0 0 1 0
0 0 (@-RrR) ¢ 0
0 0 £ o -7
c c
The Eigen values are given by the roots of
-A 1 0 0 0
0 0 -A 1 0 =0
0 0 (@-R) c-4 0O
0 o £ o -7-4
c c

The roots of the characteristic equation of (4ré)@iven by:

R o _cx4c?+4(1-R))
= - -

c’ 2173 2
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cx./C*+4n
Ay Ag =—M—MM
2
Thus, there is an unstable manifold defined byErgen vectors associated with the Eigen valdgsand A,

4.7)

which are positive for allc>0. Furthermore (l 0,00, O) is unstable in an oscillatory manner if

c? <4(R0 —1). So the only possibility for a travelling wave ffito solution to exist with non-negative
u,vand w is if

cz2/R -1 , R >1 (4.8)

With ¢ satisfying this condition, a realistic sadut with a lower bound on the wave speed may exigth tend to
u=lLv=0andw=0ass - —.

Next, we consider the travelling wave front E(SI, V, W, m, n) approaches the endemic steady state

(u*, V*, W*, 0, O). The Eigen values is the roots of

-A 1 0 0 0
Rv +n7 c-A4 Ru 0 0 (4.9)
0 0 -A 1 0 =0
-RY 0 -(Ru'-1) c-4 o0
0 0 £ o -7-)
c c
This gives
A=-1 A% =202 +(Ru - Ry —1+& - +c) A?
c
—¢(RuU —RyY —1)A —(Ru7-Ry*+7) =0 (4.10)
After simplification (4.10) becomes
A*=2cA* +(c* =R, +¢)A2+ (R, DA - (R, ~1)= 0 (4.11)

Applying Descartes’ Rule of signs on (4.11)
Case 1: when &> 1 and/JR,>1

There are three variations in sign implying that plolynomial has three or one positive real zeros.
Case 2: when &< 1 and/JR, <1

Equation (4.11) becomes
A*=2cA* +(c? =R, +¢) A2 =7 (R, ~DA+7 (R, ~1)= 0 (4.12)
There are four variations in sign implying that gfdynomial has four or two or no positive realaer

It implies that the endemic equilibrium is not deafor both cases. It is difficult to characteribe travelling wave
speed.

Discussions And Conclusions

The travelling wave solution for when the spatipfemd of the susceptible is not negligible for theease free
steady state is obtainable that is, it exist. big difficult to characterize the travelling waspeed for the endemic
equilibrium for the SIR model when the diseaserigath by both the susceptible and infective class.

We have found that for the SIR endemic disease muadhen the spatial spread of the susceptible isagligible,

the travelling wave front solution exist with noegative U, V.and W if ¢2 > 4(R0 —1) , R, >1for the disease
free equilibrium. Also that the wave with minimgleed C =2,/R -1 is the only one which can be stable as a
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solution of the original systems of partial diffeti@l equations and in dimensional variable C depenon the

N
initial population sinceR, :ﬂ—. Also, vaccination can be effected for the disefise steady state if N

<< L+b The travelling wave front for the endemic steathte (u*, v,m ,w*) is difficult to characterize since all

the zeros of (4.11) are non-negative.
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