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 Abstract 

 
This paper investigates the stability of collinear points of a small particle in 

the photogravitational elliptic restricted three-body problem moving in elliptic 
orbit about their centre of mass,  under the influence of radiation pressures of 
the  primaries, together with the gravitational attraction force. Collinear points 
in general are unstable,  however, the inner collinear point L2, is seen to be 
stable in an interval for the mass reduction factor of the bigger primary,  under 
certain conditions depending on the mass ratio, eccentricity and semi-major 
axis of the orbit. Further, a practical application of the motion of a dust grain 
in the case of the binary star system in Capella is also discussed. 
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1.0 Introduction 
The classical circular restricted three-body problem describes the dynamics of a small particle moving in the 

gravitational field of two finite masses, called primaries, which move in circular orbits around their center of mass 
on account of their mutual attraction. The equations of motion therefore, most naturally are presented in a non-
inertial coordinate system that rotates with the mean motion of the primaries [9].  In the rotating coordinate system, 
the positions of the primaries are fixed. When the primaries’ orbit is elliptic rather than circular a non-uniformly 
rotating-pulsating coordinate system is commonly used. These new coordinates have the felicitous property that, the 
positions of the primaries are fixed, however the Hamiltonian is explicitly time-dependent [14]. The infinitesimal 
mass can be at rest in a rotating coordinate frame, at five libration points (three collinear 

1,2,3L and two triangular
4,5L

), where the gravitational and centrifugal forces just balance each other. The collinear points are unstable where as 
the triangular points are linearly stable, when the mass ratio of the primaries is less than the Routhian value [14]. 

This classical restricted three-body problem is not suited to discuss the case when at least one of the interacting 
bodies is an intense emitter of radiation. According to [11] and [12] the problem in such a statement is called the 
photogravitational problem. In certain stellar dynamics problems it is altogether inadequate to consider solely the 
gravitational interaction force. For example, when a star acts upon a particle in a cloud of gas and dust, the dominant 
factor is by no means gravity, but the repulsive force of the radiation pressure. Since a large fraction of all stars 
belong to binary systems, the particle motion in the field of a double star offers special interest. If a satellite flies 
high enough above the Earth and is large enough in size, but at the same time has sufficiently small mass, then the 
radiation pressure has a very strong effect on its motion. The distance of the satellite to the Sun practically is 
unaltered, and so the magnitude of the radiation pressure is practically constant [1]. Following [11] and [12], we 
express the difference between the gravitational force 

gF  and the force due to radiation pressures on the 

infinitesimal body by the means of 
pF such that 

                                ( )11 1p
g p g g g

g

F
F F F F qF

F

 
− = − = − ∈ =  

 

 

where                      
1 1, 1p gF F q∈ = = − ∈ . 

It is obvious that 

i. If 1q = , we would have 1 0∈ = , implying the radiation pressure has no effect. 
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ii. If 0 1q< < , we would have 1 0∈ > , the gravitational force exceeds the radiational one. 

iii. If 0q = , then 1 1∈ = , in this case the radiation force balances the gravitational one. 

iv. If 0q < implies 1 1∈ > , here the radiation force overrides the gravitational one. 

 
 
 Here, q is the reduction coefficient, which determines the resultant effect of the forces of gravitation and light 

pressure on the particle. It turns out [10] that the smaller the absolute dimension of the particles; the stronger the 
effect of non-gravitational factors associated with the solar radiation on the motion. Since individual particles have 
their specific coefficients which do not depend on properties of the emitting primary bodies, a gas-dust cloud similar 
to the Kordylewski clouds [2] is formed in the positions of relative equilibrium. Numerous examples are available in 
the binary star system where both primaries are radiating. For instance, Alpha centauri A and B, and the binary star 
system in Capella.  

   The stability of the collinear points for the circular version of the photogravitational problem was investigated 
in [4], [5]; [13]. It was demonstrated [4] and [5] that for certain values of the reduction coefficients q1 and q2, the 
inner libration point (L2) can be stable, while the outer ones (L1 , L2) are always unstable. The problem of the 
influence of the eccentricity e of the orbits of the primary bodies on the existence of the libration points and on the 
condition of their stability was touched upon to some extent in studies [3] and [8]. In [6] and [7], a simple and 
physically clear pattern of the influence of the small eccentricity of the orbit of the primary bodies on the position 
and stability of the triangular and collinear points was obtained. 

Our aim in this study is to present a description of the necessary conditions for the stability of the collinear 
points in the photogravitational elliptic restricted three-body problem, with a numerical example in the case of the 
binary system in Capella. 

 
2.0  EQUATIONS OF MOTION 

The equations of motion of an infinitesimal mass moving in the gravitational field of the luminous primaries 
revolving in ellipses of eccentricities e  about their centre of mass in a Keplerian, barycentric, pulsating, rotating 
coordinate system have the form (Ishwar 2006, with A=0 & q2≠1). 

ζηξ ζξηηξ Ω=′′Ω=′+′′Ω=′−′′ ,2,2      

 (1) 
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Here, µ, 1-µ are the dimensionless masses of the primaries; ξ1 = -(1-µ), ξ2 = µ are  their abscissa; r1 and r2 are their 
respective distances from the infinitesimal body; e, a and n are respectively, the eccentricity, semi-major axis and 
the mean motion of their elliptic orbits; q1 and q2 are mass-reduction factors; and the primes denote differentiation 
with respect to the eccentric anomaly E of their orbit.  
To locate all the equilibrium points along the 0ξ axis, we denote the expression (Ωξ)η=ζ=0  by f(ξ). The coordinates of 
these points, called collinear points, will be the roots of the equation 
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To find all the real roots of Eq.(2) is a difficult task because of the presence of five parameters: a, e, µ, q1 and q2. In 
order to get rid of this difficulty we find, instead of ξ(a,e,µ,q1 , q2) from Eq. (2), say, q1 as a function of ξ for fixed 
values of a, e, µ and q2. 

Assuming 1ξξ ≠ , and solving Eq. (2) for q1, we have, 






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−−−

−
−
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222
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 (3) 
The  figures below display a simple and physically clear pattern of the influence of the eccentricity of the orbit of the 
primaries for the fixed value of µ=0.5  and various selected values of q2 ≤ 1, e < 1 and a ≤ 1, as given by Eq.(3). The 
variations in q1(ξ,q2,µ,a,e) for fixed values of q2 (0,1,-2,-4) are shown in figures 1,2,3,&4 respectively for increasing 
values of eccentricity and semi-major axis.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The family of curves of q1 for q2 = 0  
with increasing eccentricity e and semi-major axis a . 
 

 

 Fig.3. The family of curves of q1 for q2 = -2  
 with increasing eccentricity e and semi-major axis a . 
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Fig.2. The family of curves of q1 for q2 = 1  
with increasing eccentricity e and semi-major axis a . 
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  3. STABILITY 
    The question of the real existence of the equilibrium points is tightly connected with the question of their 
Lyapunov stability. In the classical three-body problem, all the collinear libration points are unstable, but in our 
problem the positive reply is possible: 

If q , q2 are both positive, the inner libration points may be stable in the range. 

3

10
2

1
2003

10
2 )1(

9

5

99

8 ξξ
µ
ξ

µ
ξξξ −≤≤






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In order to investigate the motion, we assume that the coordinates of the collinear point be (ξo,0,0) and the 
infinitesimal body be displaced to the point (ξo+δ, β, γ), where (δ, β, γ) are small displacements. Then substituting 
these quantities in Eq.(1) and expanding in a Taylor’s series, we obtain the linear variational equations as: 

.,2,2 000
ςςηηξξ γγβδβδβδ Ω=′′Ω=′+′′Ω=′−′′     

 (4) 

 

Here only linear terms in δ ,β, γ have been considered. The second partial derivatives of Ω are denoted by subscripts. 
The superscript 0 indicates that the derivative is to be evaluated at the collinear point (ξ0, 0, 0). 
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 (5) 

It is here noticed that the above are calculated under the values of ξ0 , q1 ,q2 , a, e, satisfying Eq.(2). 

The positive real parts of the roots of the characteristic equation of the system (4) will be absent if 
20,0,0 ≤−+−≥≤≤ ηηξξζζξξξξ ccandccc    (6) 

To analyze these inequalities conveniently, we express q2 present in coefficient (5) in terms of q1 by means of Eq. 
(2).  For this, Eq. (2) yields  
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The substitution for q2 into Eq. (5) reduces Eq. (6) to 
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 (7) 

   Where ξ0 is the abscissa of the collinear point satisfying Eq.(2 ), and ξ1 = µ-1. Eq. (5) shows that the condition cζζ 
≥ 0 cannot be satisfied if simultaneously q1< 0 and q2< 0. This implies that stability is impossible when none of the 
stars attracts the particle. 

Now, we show that none of the external collinear points is stable. For this, it will be sufficient to prove that at least 
one of the inequalities (7) does not hold. From the middle two inequalities (7) together with ξ0 < ξ1 < 0, we can get 

an interval for q1:   
 

2
3 320
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q n
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Also, from Eq. (2) and q2 ≤ 1 we have, -
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 (9) 
This determines the domain of existence of the collinear points in question. We see here that inequality (8) fails in 
the domain (9). Therefore, all collinear points are unstable for ξ0 < ξ1. Further, from the second of inequalities ((7) 
and ξ0 > ξ2 we can derive 

3

10
2

1 ξξ −≥ nq . But if ξ0 > ξ2, the above inequality will be true only if q1 > 1, which has no any physical sense. 

Hence, the external collinear points are unstable. 
Now, we examine the stability of the internal libration points lying in the interval 
 ξ1< ξ0 < ξ2. In this case, inequalities (8) are valid. So we consider the last of inequalities (7), which is satisfied by 
the value of q1 decided by one of the inequalities  
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Considering these inequalities together with (8), we find the following interval for q1: 
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This is a solution of the system (7) and thus guarantees the stability of the internal collinear points to a first 
approximation. Hence, inequalities (10) are the only necessary conditions for stability. 

4 A Practical Application 

Considering the binary star system in Capella, in the constellation Auriga, with masses 2.6Msun and 2.7Msun 
respectively; about 43 yrs from the Earth.  Capella has an Absolute magnitude 0.4 and an Apparent magnitude 0.08. 

So, the Absolute Bolometric magnitude is -6.52 and .51.0149.0
21

2 =−=
+

= µµ thatso
MM

M  

The mass reduction factor for the bigger primary for κ=1 say, is 
ρa

q
1

0956594.011 −=  [calculated on the basis 

of Stefan-Boltzmann’s law [15], 
Ma

PA
q

ρ
κ−= 1  , where M is the mass and P the luminosity of the star; a and ρ are 

the radius and density of a moving body; κ is the radiation pressure efficiency factor of a star; 
CG

A
π16

3=  is a 

constant]. Let the radius and density of some dust grain in Capella be respectively, a=2x10-2cm and ρ=1.4g/cm , 
then q1=-2.414. The luminosity of the bigger primary is thus 0.45x104 Psun  where Psun  is the luminosity of the Sun. 
ξ1=µ-1=-0.51 and from ξ1<ξ0<ξ2 we assume ξ0=-0.24, e=0.25 and a=0.6  in, the last of Eq.(1) n2=1.83249. Then 
from Eq.(10) we obtain the necessary interval for the stability of the internal collinear point:  0.031964 ≤ q1 ≤ 
0.036069. 

5. Conclusions 

Considering both primaries as sources of radiation in the elliptic restricted three-body problem, we found that the 
outer collinear points remain unstable. Only the inner collinear point for certain values of the reduction coefficient 
q1 given by Eq.(10) is stable. This agrees with [5] with e=0 in our problem. It can be seen (figures 1,2,3 & 4) that a 
growth of the eccentricity leads to a reduction of the size of the domain of necessary stability, agreeing with [16].  

 Further, a numerical investigation for the motion of a dust grain in the binary star system in Capella shows the 
reduction coefficient to be negative on account of the small size of the particle. It also provides a necessary interval 
for the stability of the inner collinear point: 0.031964 ≤ q ≤ 0.036069. 
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