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Abstract

This paper investigates the stability of collinear points of a small particlein
the photogravitational elliptic restricted three-body problem moving in elliptic
orbit about their centre of mass, under the influence of radiation pressures of
the primaries, together with the gravitational attraction force. Collinear points
in general are unstable, however, the inner collinear point L, is seen to be
stable in an interval for the mass reduction factor of the bigger primary, under
certain conditions depending on the mass ratio, eccentricity and semi-major
axis of the orbit. Further, a practical application of the motion of a dust grain
in the case of the binary star system in Capella is also discussed.
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1.0 Introduction

The classical circular restricted three-body problgescribes the dynamics of a small particle mownthe
gravitational field oftwo finite masses, called primaries, which moveingular orbits around their center of mass
on account of their mutual attractionhe equations of motion therefore, most naturatly presented in a non-
inertial coordinate system that rotates with themmotion of the primaries [9]. In the rotatingoadinate system,
the positions of the primaries are fixed. When phienaries’ orbit is elliptic rather than circularr@n-uniformly
rotating-pulsating coordinate system is commonkdu§ hese new coordinates have the felicitous ptppleat, the
positions of the primaries are fixed, however tharitonian is explicitly time-dependent [14[he infinitesimal
mass can be at rest in a rotating coordinate fratriéve libration pointgthree coIIinearLLzYBand two trianguIa[‘L5

), where the gravitational and centrifugal forces helance each other. The collinear points are blestahere as
the triangular points are linearly stable, whenrttass ratio of the primaries is less than the Rantialue [14].

This classical restricted three-body problem isswted to discuss the case when at least oneedhtlracting
bodies is an intense emitter of radiation. Accogdio [11] and [12] the problem in such a statenigrdalled the
photogravitational problemin certain stellar dynamics problems it is altogetmadequate to consider solely the
gravitational interaction force. For example, wizestar acts upon a particle in a cloud of gas ast, the dominant
factor is by no means gravity, but the repulsiveedoof the radiation pressure. Since a large fvactif all stars
belong to binary systems, the particle motion ia field of a double star offers special interekt katellite flies
high enough above the Earth and is large enougiz@ but at the same time has sufficiently smalssn then the
radiation pressure has a very strong effect omrmitdion. The distance of the satellite to the Suacpically is
unaltered, and so the magnitude of the radiati@ssure is practically constant [Hollowing [11] and [12], we
express the difference between the gravitationa:\d:efoFg and the force due to radiation pressures on the

infinitesimal body by the means Gfpsuch that

— FP —_ —_
Fy = Fy = Fy| 1= 25| = F, (1-0,) = oF,
g

where 0,=F,/F,, q=1-0,.
It is obvious that
i. f =1, we would havel, = 0, implying the radiation pressure has no effect.
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ii. If 0< g <1, we would havé], > 0, the gravitational force exceeds the radiatiome.o
iii. If 9 =0, therlJ,;=1, in this case the radiation force balances theitgtional one.

iv. If g <Oimpliesl]>1, here the radiation force overrides the gravitelmne.

Here, q is the reduction coefficient, which detigs the resultant effect of the forces of graidtaiand light
pressure on the particle. It turns out [10] tha $#maller the absolute dimension of the partidies;stronger the
effect of non-gravitational factors associated wifte solar radiation on the motion. Since individparticles have
their specific coefficients which do not dependpoaperties of the emitting primary bodies, a gastaloud similar
to the Kordylewski clouds [2] is formed in the pamis of relative equilibrium. Numerous examples available in
the binary star system where both primaries aritiad. For instance, Alpha centauri A and B, amel binary star
system in Capella.

The stability of the collinear points for theatilar version of the photogravitational problensvivestigated
in [4], [5]; [13]. It was demonstrated [4] and [Biat for certain values of the reduction coeffitseq and g, the
inner libration point (L) can be stable, while the outer ones (LL,) are always unstable. The problem of the
influence of the eccentricity e of the orbits oé thrimary bodies on the existence of the librapomts and on the
condition of their stability was touched upon tar&oextent in studies [3] and [8]. In [6] and [7]sEnple and
physically clear pattern of the influence of theadineccentricity of the orbit of the primary bodies the position
and stability of the triangular and collinear psimtas obtained.

Our aim in this study is to present a descriptibrihe@ necessary conditions for the stability of dwdlinear
points in the photogravitational elliptic restridtéhree-body problem, with a numerical examplehia tase of the
binary system in Capella.

2.0 EQUATIONS OF MOTION

The equations of mation of an infinitesimal massving in the gravitational field of the luminous mraries
revolving in ellipses of eccentricities about their centre of mass in a Keplerian, baryeg pulsating, rotating
coordinate system have the form (Ishwar 2006, #ith & g,#1).

511_2,71:951,7!!_'_25!:(2”’ Z":Q(
(1)
With the force function
1

Q=Q- ez)_{;(fz +n?) + nlz{Wth a-ma, 'u)qZH

r P

2= (6= &) +n+ % (i = 12).
., _ (Q+ed)”
a(l-e?

Here,l, 1u are the dimensionless masses of the primafies;-(1-u), & = u are their abscissa; andr, are their
respective distances from the infinitesimal boeyaandn are respectively, the eccentricity, semi-majoisaaid
the mean motion of their elliptic orbitg; andq, are mass-reduction factors; and the primes defitferentiation
with respect to the eccentric anomalyf their orbit.

To locate all the equilibrium points along thgdxkis, we denote the expressi@h),-~o byf(&). The coordinates of
these points, called collinear points, will be thets of the equation

f({):% 5_% ﬂch(f—zi)Jqu(l—ﬂ)(fg—fz) 0
a-ey | M| |§-4) £-&)
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To find all the real roots of Eq.(2) is a diffictéisk because of the presence of five parameteesu, g andgy. In
order to get rid of this difficulty we find, instéaf &(a,eu,q; , &) from Eq. (2), say, gas a function of for fixed
values of a, eq and g.

Assumingé # &, and solving Eq. (2) for;, we have,

_e-al) . a-ma,é-¢&)
MO, 7(5 — &) én |£ ~ £2|3
3)

The figures below display a simple and physiceléar pattern of the influence of the eccentrioityhe orbit of the
primaries for the fixed value @f=0.5 and various selected valuespk 1, e < landa <1, as given by Eq.(3). The
variations ingy(&,0p,1,a,8 for fixed values ofy, (0,1,-2,-4)are shown in figures 1,2,3,&4 respectively forrgasing
values of eccentricity and semi-major axis.

g: = 1
== e=0.5;a=0. 1
g q: ]
== e=0.1;a=0.
8 0.6 - =>¢=e=0.53=0.5
e=0.2;a=0. —#—e=0.1a=0.8
? e=0.2a=0.9
circular 0-2 1 —¢—circular
§ \ | |
0.5 - 02 * -0.2 0.2 £
Fig. 1. The family of curves af, for g, = 0 Fig.2. The family of curves af; forg, =1 _
with increasing eccentricity e and semi-major axis with increasing eccentricity e and semi-major axis
1 -
g: = -2 =.4
q1
=>¢=e=0.5a=0.
0.5 - 5
=fe—e=0.13=0. =>e=e=0.5a=0.5
0 8 —a—e=0.12=0.8
e=0.2a=0. ' P
e=0.23=0.9
-1 -0. 2 0 0.2 9 02
—&—circular
05 - =—&—circular
_1 J
Fig.3. The family of curves af; for g, = -2 Fig.4. The family of curves af, forg, = -4 _
with increasing eccentricity and semi-major axia . with increasing eccentricitg and semi-major axia
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3. STABILITY
The question of the real existence of the duyiim points is tightly connected with the questiof their
Lyapunov stability. In the classical three-body kdean, all the collinear libration points are unstgakbut in our
problem the positive reply is possible:

If q, op are both positive, the inner libration points nieystable in the range.

8,6 54&
9 9u 9 u

n2|<(o _<(1|3{ —1)82} SO n2|<to _<t1|3

In order to investigate the motion, we assume that coordinates of the collinear point (%,0,0) and the
infinitesimal body be displaced to the po(@§+d, B, y), where §, B, y) are small displacements. Then substituting
these quantities in Eq.(1) and expanding in a Tray/keries, we obtain the linear variational equaias:

5 -2p =&, 420 = 0, Y =
(4)

Here only linear terms i 5, y have been considered. The second partial deresatfQ are denoted by subscripts.
The superscript 0 indicates that the derivative ise evaluated at the collinear pdify, O, 0.

— _NoO — _NoO — _NO
Let C; = Q&r,c,m— Q,mand C;; = Q. Then

C =
& nz

_ 1 (1—62)_;[1’]2 + 20, + 2(1- u1)q,
|

fo_flr’ |<(o_<(2|3
1 -1 M @-4)q
c, =——(@-€*)?n*- L - 2
nn n2 [ |$0 _ {l|3 |$0 _ {2|3]
_1 2\-i MO d-4)q,
C, =—@1-€e) > 5+ 5
“ oo [|{0_51| |<to_52| ]

®)
It is here noticed that the above are calculatetbuthe values of, , ¢ O, . a, € satisfying Eq.(2).

The positive real parts of the roots of the chamastic equation of the system (4) will be abseft i
Cp 0,06 <0,cp 20 and J-c, +,/-C, <2 (6)

To analyze these inequalities conveniently, we esg, present in coefficient (5) in terms qf by means of Eq.
(2). For this, Eq. (2) yields
3
- |‘t 0~ ¢ 2|
A=), =4,

; [ £ - Gl 51)]
2 ) 0

|Eo - El|3

The substitution for ginto Eq. (5) reduces Eq. (6) to
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Cer = —iz(l—ez) 2 n? + 260" _ ZHay ~|<0
n L (fo—,u) (fo_,u)|<to_£1| |

Cpp = —iz(l—ez)_% n? - fn”__ Hhn = [0
n L (fo—,u) (Eo_,u)|§ro_§rl| |

_ oy $ HOy
ey _ >0
Cc = A€ [(fo ) (&, - p)lé, - EH
0 - M[Q{O A&, - )1~ eﬂql +
ou
M[%g (& - - 208, +16 01606, - - 62;}} =0
ou

(7)

Wheref, is theabscissa of the collinear point satisfying Eq.(a@nd¢; = p-1. Eq. (5) shows that the conditiop ¢
> 0 cannot be satisfied if simultaneougly 0 andg,< 0. This implies that stability is impossible whemeoof the
stars attracts the particle.

Now, we show that none of the external collinedn{sois stable. For this, it will be sufficient ppove that at least

one of the inequalities (7) does not hold. Fromrtiedle two inequalities (7) together with< & < 0, we can get
an interval for g

n2
o6& sa =l -¢f
(8)
_ 2
Also, from Eq. (2) andgg 1 we have, &n°(&, —&)° —(1- y)(%} < uq
0 62

)
This determines the domain of existence of tharmdkr points in question. We see here that inetyugd) fails in
the domain (9). Therefore, all collinear points anstable foi, < &;. Further, from the second of inequalities ((7)
andé&, > &, we can derive

3
G = n2|4(o _£1|
Hence, the external collinear points are unstable.
Now, we examine the stability of the internal litiwa points lying in the interval
&< & < &. In this case, inequalities (8) are valid. So wesider the last of inequalities (7), which is siadid by
the value of gdecided by one of the inequalities

. But if & > &, the above inequality will be true onlydf > 1, which has no any physical sense.
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0 < @[& + (& - 1e’]

Gy = N’[&; ~ ffg i 5_;_ g(%_l)ez}

Considering these inequalities together with (8),find the following interval fog;:

3l 8 & 5 ¢ 3
e 6l g g g (G -0 s as el 10)
This is a solution of the system (7) and thus guaes the stability of the internal collinear peinb a first
approximation. Hence, inequalities (10) are the melcessary conditions for stability.

4 A Practical Application

Considering the binary star system in Capella, he tonstellation Auriga, with masses 2&Mand 2.7M,,
respectively; about 43 yrs from the Earth. Capledia an Absolute magnitude 0.4 and an Apparent itaign0.08.

So, the Absolute Bolometric magnitude is -6.52 ape- ﬁ = 049 sothat 1- u = 051.
1 2

The mass reduction factor for the bigger primany«fel say, isq =1 - 0.0956594 1 [calculated on the basis
ap

of Stefan-Boltzmann’s law [15]q =1- AkP , whereM is the mass anB the luminosity of the stag andp are
apM
the radius and density of a moving bodhyis the radiation pressure efficiency factor oftar;sa = 3 is a
16 nCG

constant]. Let the radius and density of some dusin in Capella be respectivelg=2x10%cm andp=1.4g/cm,
theng,=-2.414 The luminosity of the bigger primary is th@ig5x106 Py, whereP,,, is the luminosity of the Sun.
¢&1=H-1=-0.51 and from¢<&<&, we assume=-0.24, e=0.25anda=0.6 in, the last of Eq.(1m2:1.83249 Then
from Eq.(10) we obtain the necessary interval fog stability of the internal collinear point0.031964< q; <
0.036069.

5. Conclusions

Considering both primaries as sources of radiatiotine elliptic restricted three-body problem, verifid that the
outer collinear points remain unstable. Only theeincollinear point for certain values of the retibrt coefficient
0. given by Eq.(10) is stable. This agrees with [fhve=0 in our problem. It can be seen (figures 1,2,3 &ét a
growth of the eccentricity leads to a reductionhef size of the domain of necessary stability, @iggewith [16].

Further, a numerical investigation for the motimna dust grain in the binary star system in Capshows the
reduction coefficient to be negative on accourthefsmall size of the particle. It also providesegessary interval
for the stability of the inner collinear point: 31964< q< 0.036069.
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