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 Abstract 
 

This study investigates the motion of an infinitesimal mass around the triangular 
equilibrium points 

4,5L in the elliptic restricted three-body problem when the 

primaries are intense emitters of radiation with further consideration that the 
bigger is an oblate spheroid. It is found that the motion around the triangular 
points is stable under certain conditions, which depends on the eccentricity of the 
orbits, oblateness coefficient and the factors due to radiation of the primaries. We 
observe that all these parameters have destabilizing tendencies, consequently 
resulting in a sharp decrease in the region of stability of the triangular points.  

 
 

Keywords:  celestial mechanics. 
 
1.0  Introduction 
The restricted three-body problem with or without radiation and oblateness has received attention especially in the 
two-dimensional case and with respect to its five equilibrium points, i.e. the collinear (or “Eulerian”) points

1 2 , 3,L L L   and the two isosceles triangular (or “Lagrangian”) points 
4, 5L L  (e.g. [1] and [11]). The circular restricted 

three-body problem describes the dynamics of a body having infinitesimal mass and moving in the gravitational 
field of two massive bodies, called, the primaries, which revolve around their centre of mass on a circular orbit. The 
equations of motion are, therefore, most naturally presented in a non-inertial coordinate system that rotates with the 
mean motion of the primaries [8]. In the rotating coordinate system the positions of the primaries are fixed. When 
the primaries’ orbit is elliptic rather than circular a nonuniformly rotating-pulsating coordinate system is commonly 
used. These new coordinates have the felicitous property that, the positions of the primaries are fixed, however the 
Hamiltonian is explicitly time-dependent [16]. 
      The participating bodies in the classical restricted three-body problem are strictly spherical in shape, but in 
actual situations it is found that several celestial bodies, such as Saturn and Jupiter, are oblate. The lack of 
sphericity, or the oblateness, of the planet or star causes large perturbations from the two-body orbit. The motions of 
artificial Earth satellites are examples of this. Many researchers have studied the restricted problem by taking into 
account the shapes (oblateness) of the primaries [4], [12] and [15].  
      The classical restricted three-body problem is not suited to discuss the motion of the infinitesimal when at least 
one of the interacting bodies is an intense emitter of radiation. The character of the action of the radiation pressure 
force pushing the particle away is reduced to a decrease of the mass of the radiating body. In certain stellar dynamics 
problems it is altogether in adequate to consider solely the gravitational interaction force. For example, when a star 
acts upon a particle in a cloud of gas and dust, the dominant factor is by no means gravity, but the repulsive force of 
the radiation pressure. In this connection, it is reasonable to modify the model by superposing a light repulsion field 
whose source coincides with the source of the gravitational field of the main bodies.  
Recent studies of the restricted problem [5], [13] and [14] have included radiation pressure force.  
     The present study aims to examine the motion of the infinitesimal body in the ER3BP when both primaries are 
sources of radiation with oblateness of the bigger primary. 
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     This paper is organized as follows: section 1, which is introduction; section 2 provides the equations of motion 
section 3  
discuss the locations of the triangular equilibrium solutions; while section 4 focuses on their linear stability. The 
discussions and conclusions are drawn in sections 5 and 6 respectively. 
 
 
2.0 Equations of Motion 
The equations of motion of the infinitesimal mass in the elliptic restricted three-body problem when both primaries 
are radiating and the bigger one an oblate spheroid presented below in dimensionless- pulsating-rotating coordinate 
system have the form [10] as: 

                  2 , 2 , ,ξ η ζξ η η ξ ζ′′ ′ ′′ ′ ′′− = Ω + = Ω = Ω
 

 
where Ω

 
is the force function and expressed as  
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where 1q and 2q are radiation factors of the bigger and smaller primaries, respectively. 1r and 2r are distances of the 

infinitesimal mass from these primaries,,A  is the oblateness coefficient of the bigger  primary, n  is the mean 

motion;  e the eccentricity and dashes denotes differentiation with respect to time t . 
The mean motion, n , is given by  
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 (3)                                where a is the semi-major axis of the orbits. 

Since the distance between the primaries is taken as equal to unity then 2 1 1ξ ξ− =
 so that   1ξ µ= − and 2 1ξ µ= −          

  
 

3.0   Positions of triangular Equilibrium points 
 
The positions of the equilibrium points can be found from the equations of motion (1) by putting all velocity and 
acceleration components equal to zero and solving the resulting system,  

                        0ξ η ζΩ = Ω = Ω =    ,                                                                                   

 (4)   

for  , ,ξ η ζ .                              

where 
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The solutions of the first two equations of system (5) with 0, 0η ζ≠ =  provides the positions of the triangular 

points. From the second equation of system (5), we obtain 
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In the absence of oblateness of the bigger primary 
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This result differs slightly by α when oblateness of the bigger primary is considered, so that,  
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Considering only terms in A and 2e and neglecting their product, equation (3) reduces to 
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Equations (6) and (9) and gives  
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Substituting equation (10) in (8), we have 
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where   
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Substituting for α in equation (11), we obtain  

              

( ) ( )( )2 2
3 32 2

1 1 11r a q e A A a q
−= − − +                                                                      (13) 

Performing same procedure for22r  we get

 
               ( ) ( )2

32 2
2 2 1r aq e A= − −                                                                                       (14)                                                                      

From equations of system (2) with 0ζ = we have 

                 2 2
1 2 2 2 1r r ξ µ− = + −                                                                                          (15) 

substituting equations (13) and (14) in (15) we get 
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These points (16) are denoted by 4L and 5L respectively, and form two simple triangles with the line joining the 

primaries  
 

 
Fig.1.---Positions of the Triangular Equilibruim points L4 and L5 for (1)  
q1 = 0.3, q2=0.25 (2) q1 = 0.6, q2=0.5 when µ=0.4, A=0.3, a=0.8 & e=0.7 

 
 
4.0   Linear Stability Of Triangular Points  
 
The stability of linear systems of ordinary differential equations with constant coefficients is determined by the 
Eigen values. Due to the perturbations induced by the radiation pressure forces of the primaries and oblateness of the 
bigger primary, the position of the infinitesimal mass would be displaced a little from the equilibrium point. If the 
resultant motion of the infinitesimal mass is a rapid departure from the vicinity of the point, we can call such a 
position of equilibrium point an “unstable one”, if however the body merely oscillates about the equilibrium point, it 
is said to be a “stable position”    (in the sense of Lyapunov). 

      We denote the equilibrium points and their positions as L ( )0 0,ξ η . Let a small displacement in ( )0 0,ξ η  be

( ),u v . Then we write  

                                     0 uξ ξ= + , and 0 vη η= + .                                               (18)                                                               
 Substituting these values in equations (1), we obtain the variational equations,  
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The characteristic equation corresponding to (19), is 

( ) ( )24 0 0 2 0 0 04 0ξξ η η ξξ η η ξηλ λ− Ω + Ω − + Ω Ω − Ω =                                                      (20) 

Where the superscript 0 denote evaluation of the partial derivatives at the equilibrium points,( )0 0,ξ η . 

 The partial derivatives computed at the triangular points are 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1.5

-1

-0.5

0

0.5

1

1.5

ξ

η

L4

L5

2
1

1

2



Corresponding author: E-mail;   umaraishetu33@yahoo.com ,  Tel. +2348036786146  
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 145 - 150 

Stability of Triangular Equilibrium Points in…   Jagadish Singh and  Aishetu Umar   

( ) ( )
( )

( )
( )

( )
( )

( ) ( )

( ) ( ) ( )

2
31

2

2 2 2 2
3 3 3 3

2
3

2 2 2 2
3 3 3 3

2
2*0 2

11 1 1

2
1

22 2 2

3 1 3 1 9 1 3 1 3 1
1

2 24 4 4

33 3 3 3

224 4 4

e A q
e

qaq aq aq

qe A

qaq aq aq

ξξ
µ µ µ µ µ

µµ µ µ µ

−  − − − − −
Ω = − + + + −



+ + − − +


     (21)

 

( ) ( ) ( )
( )

( )
( )

( )
( ) ( )

( )
( ) ( )

2 23 31
2

2 2 2 2
3 3 3 3

2 2 2 2
3 3 3 3

2*0 2 1

1 21 2

2 2

1 2 1 2

3 1 3 1 3 1 33 3
1

2 2 2 24 4

3 1 3 13 3

4 4 4 4

q q
e

q qaq aq

A eA e

aq aq aq aq

ηη
µ µ µ µµ µ

µ µµ µ

−  − − −
Ω = − + − + + −



− −
+ − −


 

( ) ( )
( )

( ) ( )
( )

( )
( ) ( )

( )
( )

2
31

2

2 2 2
3 3 3

2
3

2 2 2 2
3 3 3 3

2*0 2
0

11 2

2 2
1

2 1 2 1

3 1 3 1 3 1 3 3
1

2 222 2

3 1 3 13 3

2 2 2

q
e

qaq aq

e Aq e

q aq aq aq

ξη
µ µ µ µ µη

µ µµ µ

−  − − −
Ω = − + − − −


− −
+ + − +


  

Substituting the above equation of system (21) in the characteristics equation (20) and restricting ourselves only to 

the linear terms in 2 1 2 3, , , ,ande A β β β
 
for 1 1 2 2 31 , 1 , 1q qα β β β= − = − = − , we have 
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Similarly 
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Equation (22) is a quadratic equation in2λ , which yields 
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For stable motion, we require λ  to be pure imaginary i.e., motion must be bounded and periodic, so we choose 

1 2, ,µ α α  such that 2 0λ < , we get 
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and the discriminant   
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when 0A = , equation (16) becomes 



Corresponding author: E-mail;   umaraishetu33@yahoo.com ,  Tel. +2348036786146  
Journal of the Nigerian Association of Mathematical Physics Volume 17 (November, 2010), 145 - 150 

Stability of Triangular Equilibrium Points in…   Jagadish Singh and  Aishetu Umar   

7
0

4
e≤ ≤                                           (24) 

In the case when equation (23) is not satisfied, the characteristic roots will be either real or complex conjugate. In 
the case of complex roots, the positive real part leads to instability of the investigated equilibrium points. 
Now from equation (), we have 
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The necessary conditions for the stability of the triangular points (23, 25) have thus been derived. The solution of the 

quadratic equation 0∆ = ; i.e., when the discriminant vanishes for µ gives the critical value Cµ  of the mass 

parameter given as 

( ) 2
1 2

1 23 1 13 2 4 14
1 1

2 27 9 69 27 69 27 69 9 69
C A eµ β β α

   = − − + − + − −               

      (26)  

The equation (26) represents the effect of radiation pressures of the primaries and oblateness of the bigger primary 

and eccentricity on the critical mass valueCµ . 

It is seen from equation (26) that the radiation pressure(s) and oblateness always have a destabilizing tendency 
which confirms the results of [1], [2] and [13] when eccentricity is taken as zero. Hence, the overall effect of 
radiation pressures, oblateness and eccentricity always result in a decrease in the region of stability of the triangular 
points. 
 
5.0   Discussion 
    

The system (1) of equations of motion is different from those obtained by [17] due to the introduction of 
oblateness of the primaries and absence of eccentric and true anomaly. We observe that the assumption that the 

primaries are oblate in shape still permits the existence of the triangular points4,5L  ; though these points are 

affected by the oblateness coefficientsA . If we put 0A = and 0e = , the triangular points (16) will fully coincide 
with those of [6]. If the smaller primary is taken as a non radiating one and both primaries are spherical; the points 
(16) will be analogous to that of [7] in the absence of eccentric and true anomaly.  

In the case when eccentricity ( 0e = ) i.e. when orbits are circular, the equation (12) fully coincide with that of 

[6] and [13]when 0A = ; [2] when 0A = and 2 0β = ; the classical case of [16] when the primaries are spherical 

(i.e. 0A = ) and non emitters of radiation, i.e.
1 2 0β β= = . 

 
 

The characteristic equation of the triangular points obtained by [7] is different from our characteristic equation 
(14), due to oblateness of the radiating primaries and absence of eccentric and true anomaly. On ignoring 
eccentricity ( 0e = ) i.e. if orbits are circular; the equation (14) differ from that of [1] due to the perturbations in the 

Coriolis and centrifugal forces; analogous to that of [13]; differs from the characteristic equation of [2]  due to the 
inclusion of oblateness of the primaries and radiation tendency of the smaller primary; and reduces to the classical 
case of [16], when the bigger primary is spherical and both non emitters of radiation. 

Equation (29) gives the critical values Cµ for different values of oblateness, radiation pressures and eccentricity. 

The critical mass ratios are a tool in determining the region of stability and also serve as the technicalities in 
analyzing the behaviors or effects of these parameters on the motion of the infinitesimal mass around1the triangular 

equilibrium points. When eccentricity is absent (i.e.
 

0e = ), Cµ  differ from that of [1] due to the perturbations in 

the Coriolis and centrifugal forces; same as worked out by [14]; different from  the critical mass of [2] due to the 
presence of oblateness of the primaries and radiation pressure of the smaller primary; and reduces to the classical 
case of [16], when the primaries are spherical and non emitters of radiation. 
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It is observed from the critical mass parameterCµ , that the radiation pressure(s) of the primaries have 

destabilizing tendency which validates the findings of [2], [3], [6], [7], [9], [13] and [17] that the radiation pressures 
of the primaries always have a destabilizing effect. We also observe form the critical mass ratio that oblateness of 
the bigger primary also possesses a destabilizing tendency and this verifies the results of [1] and [13]. The 
eccentricity is like seen to possess a destabilizing behavior on the stability of motion around the triangular 
equilibrium points and confirms the assertions of [7] and [17]. The overall effect is that the region of stability of the 
triangular points in the photogravitational elliptic restricted three-body problem decreases fast.  
 
6.0   Conclusion 

The stability of the triangular libration points is investigated in the photogravitational elliptic restricted three-
body problem, in which the two primary bodies radiating and the bigger an oblate spheroid. The conditions of 
stability of the triangular libration points are obtained and the stability regions are determined in the space of the 
parameters of mass, eccentricity, radiation pressures and oblateness. It is found that radiation pressures, oblateness 
of the primaries and the eccentricity exert a significant quantitative influence on the stability regions. Consequently 
the overall effect of the destabilizing behaviors of the radiation pressures, oblateness of the bigger primary and the 
eccentricity on the region of stability of the triangular points in the photogravitational elliptic restricted three-body 
problem decreases the region of stability fast. 
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