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Abstract 
 
In this study, we examine the unsteady state of a two step exothermic chemical reaction in a 
slab, taking the diffusion of the reactant into account and assuming a temperature 
dependent pre-exponential factor. The nonlinear partial differential equation governing the 
transient reaction-diffusion problem is solved numerically using a semi-discretization finite 
difference technique. We observed that the maximum temperature is obtained in 
bimolecular type of reaction. It was established that the steady state solution was reached at 
t= 0.5 which allow us to see the influence of other parameters coming into the model. 
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Nomenclature 
T       absolute temperature,                  T0       initial temperature, 
Tw      wall temperature,                                     t        time, 
k        thermal conductivity                                Q1      first step heat of reaction 
Q2      second step heat of reaction                     A1      first step reaction rate 
A2       second step reaction rate                         E1      first step activation energy 
E2       second step activation energy,                 R       universal gas constant, 
C2       second step initial concentration             h        Planck’s number 
K        Boltzmann’s constant                              a        slab half width,  
y        normal coordinate                               cp       specific heat at constant pressure 

 m         numerical exponent       r       activation energy ratio parameter 
 b          slab initial temperature 
 
Greek symbols  
λ Frank-Kamenetskii parameter 
λc           critical parameter 
ε    activation energy parameter  
β   two step reaction parameter  
θ             dimensionless temperature  
ρ             density, 
υ             vibration frequency 

 
1.0 Introduction 

      Some combustion research problems have been considered as fluid mechanism problems that include heat release by 
chemical reactions. Accordingly, It was observed in [1] that this was useful to some extent for designing stationary 
combustion processes but was not sufficient for ignition, quenching or pollutant cases, thus, the coupling of large reaction 
mechanism, fluid flow and combustion; of fluid mechanism of turbulent flow with density change by heat release is 
necessary for the treating of ignition and quenching. In nature, and particularly in industry, rapid exothermic reaction 
processes which take place with the evolution of large amounts of heat are considerably important. Such processes have long 
been called combustion processes. Thermal runaway is one of the most interesting topics in the study of nonlinear partial 
differential equations arising in combustion theory [2]. Many authors have investigated several idealized problems of  
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combustion in a chemically reacting flow system as a one step reaction model [3-7]. Although this assumption may be 
true for some problems, however, in most combustion processes a single reaction step is not sufficient to describe flame 
propagation [8-9]Similarly, the combustion taking place within k-fluid is treated as a two step irreversible chemical reaction 
of methane oxidation as follows [10-14]: 
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Our purpose here is to determine when the unsteady energy equation reach a steady state (i.e. the value of t that will 

make the solution reach a steady state) .It is an extension of Olanrewaju [14].  
2.0    Mathematical Formulation 

We consider a two step exothermic chemical reaction of combustible materials in a slab, taking into account the 
diffusion of the reactant and the temperature dependent variable pre-exponential factor (see Fig. 1).  

 

                                              T=Tw                                       y  = a  

                                                    y  
                                      Combustible material                              x 
 

T=Tw                                             y  = -a 
                                Fig. 1. Sketch of the physical model. 
 
Following [2, 8, 9, 11], the equation for the heat balance in the original variables can be written as 
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with the initial and boundary conditions given as 
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where T is the absolute temperature, T0 is the initial temperature, Tw is the wall temperature, t is the time,  k is the 
thermal conductivity of the material, Q1 and Q2 are the heats of reaction in the first and second step, A1 and A2 are the reaction 
rate constants in the first and second step, E1 and E2 are the activation energies in the first and second step, ρ is the density, R 
is the universal gas constant, C1 and C2 are the initial concentration of the reactant species in the first and second step, h is the 

Planck’s number, K is the Boltzmann’s constant, υ is vibration frequency, a is the slab half width, y  is distance measured in 
the normal direction to the plane cp is the specific heat at constant pressure and m is the numerical exponent such that m={-2, 
0, ½} represent numerical exponent for Sensitised, Arrhenius and Bimolecular kinetics respectively ([8]). The following 
dimensionless variables are introduced into Eqs. (2.1)-(2.3): 
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and we obtain the dimensionless governing equation together with initial and boundary conditions as   
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where λ, ε, β, r, b represent the Frank-Kamenetskii parameter, activation energy parameter, two step exothermic reaction 
parameter, activation energy ratio parameter and the initial temperature parameter respectively. In the following section, Eqs. 
(2.5)-(2.7) are solved numerically using a semi-discretization finite difference method so as to convert resulting partial 
differential equations to ordinary differential equations.  
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3.0   Computational Approach 
The discretization of the governing equations is based on a linear Cartesian mesh and uniform grid on which finite-

differences are taken. Firstly, a partition of the spatial interval [0, 1] is introduced. We divide it into N equal parts and define 
grid size 1/y N∆ =  and grid points ( 1)iy i y= − ∆ , 1 1i N≤ ≤ + . The first and the second spatial derivatives in Eqs. (2.5)-

(2.7) are approximated with second-order central differences. Let ( )i tθ  be an approximation of( , )iy tθ , then the semi-

discrete system for the problem reads: 
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with initial conditions  (0)i bθ = ,  1 1i N≤ ≤ +  .      (3.2) 

The equations corresponding to the first and last grid points are modified to incorporate the boundary conditions, i.e. 
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In Eq. (3.1), there is only one independent variable, so they are ordinary differential equations. Since they are first order, 
and the initial conditions for all variables are known, the problem is an initial value problem. The MATLAB program ode45 
is employed to integrate sets of differential equations using a fourth order Runge-Kutta method. 

 
4.  Discussion of results 
We have assigned numerical values to the parameters encountered in the problem in order to get a clear insight into the 

thermal development in the system. At initial stage, the temperature of the slab is assumed to be the same as wall temperature 
and parameter b =0. It is very important to note that β =0 corresponds to a one step chemical reaction case; an increase in the 
value β > 0 signifies an increase in the two step chemical reaction activities in the system.  

Fig. (2) illustrates the evolution of the temperature field in the system. For fixed values of various thermophysical 
parameters, the slab temperature increases rapidly with time until it attains its steady state value. Generally the temperature is 
maximum along the slab centerline and minimum at the wall satisfying the boundary conditions. Fig. (3) shows that the slab 
temperature is highest during bimolecular reaction and lowest for sensitized reaction. In Figs. (4) and (5), we observed that 
the slab temperature generally increases with increasing value of Frank-Kamenetskii parameter (λ) and two step reaction 
parameter. This can be attributed to an increase in the rate of internal heat generation activities due to chemical kinetics in the 
system.  

 
5. Conclusion 
We have examined the unsteady state of a two step exothermic reaction and our results show that the slab temperature is 

highest during bimolecular reaction and lowest for sensitized reaction. Similarly, the temperature increases across the slab as 
Frank- Kamenetskii parameter increases. In conclusion, we note that when t= 5, the solution reached  a steady state and that 
is why we fixed t=5 to investigate the effects of other parameters coming into the problem. 

 
Acknowledgements 
POO would like to thank Professor Makinde for the opportunity given me to learn MATLAB under his supervision at 

Cape Peninsula University of Technology, South Africa. 

 
Fig.2: Temperature profiles: b=0; λ =0.3; ε =0.4; 
 β = 0.1; m=0.5; r = 0.1;  ______ t = 0.1; 
 ooooo t = 0.5; ++++ t = 1; ……t = 5. 
 

Fig.3: Temperature profiles: b=0; λ =0.3; 
ε =0.4; β = 0.1; t=5; r = 0.1;  ______ m = -2; 
ooooo m = 0; ++++ m = 0.5 
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Fig.4: Temperature profiles: b=0; λ =0.3; ε =0.4; 
 t = 5; m=0.5; r = 0.1;  ______β  = 0; 
 oooooβ = 0.1; ++++ β = 0.2; ……β = 0.3 
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Fig.5: Temperature profiles: b=0; β =0.1; 
ε =0.4; t = 5; m=0.5; r = 0.1;  ______λ = 0.1; 
oooooλ = 0.2; ++++  λ= 0.3; ……λ= 0.4 
 


