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Abstract 
 
We revisited the paper of Mahmoud et al, on the hydromagnetic boundary layer 
micropolar fluid flow over a stretching surface embedded in a non-Darcian 
porous medium with radiation.We show that even when the thermal conductivity 
depends linearly or quadratically on temperature the problem still has a unique 
solution.    

 
 

1.0 Introduction 
The boundary layer flow of a micropolar fluid past a semi-infinite plate has been studied by [10] whereas a 

similarity solution for boundary layer flow near stagnation point was presented by [6]. The boundary layer flow of 
micropolar fluid past a semi-infinite plate was studied by [1], taking into account the gyration vector normal to the 
xy -plane and micro inertia effects. [9] studied hydromagnetic boundary layer micropolar fluid flow over a 
stretching surface embedded in a non-Darcian porous medium with radiation. Flow and heat transfer of a micropolar 
fluid past a continuously moving plate were studied by [12]. By drawing the continuous strips through a quiescent 
electrically conducting fluid subject to a magnetic field, the rate of cooling can be controlled and final product of 
desired characteristics can be achieved. [8] studied micropolar flow over a porous stretching sheer with strong 
suction or injection. [4] investigated thermal radiation and buoyancy effects on hydromagnetic flow over an 
accelerating permeable surface with heat source or sink. [11] discussed the effect of thermal radiation on MHD 
asymmetric flow of an electrically conducting fluid past a semi-infinite plate. 

All the above studies were confined to a fluid with constant viscosity. However, it is known that this physical 
property may change significantly with temperature. [3] analyzed a two dimensional mixed convection flow of a 
viscous incompressible fluid of temperature dependent viscosity past a vertical plate. [7] studied the influence of 
fluid property variation on the boundary layers of a stretching surface. [2] discussed the effect of radiation on free 
convection flow of a fluid with variable viscosity from a porous vertical plate. In this work, we present a variable 
thermal conductivity flow of a micropolar fluid over a stretching surface in a non-Darcian porous medium. 

 
2. Mathematical Formulation 
Consider a steady, two-dimensional laminar flow of an incompressible, electrically conducting micropolar fluid 

over a continuously moving stretching surface embedded in a non-Darcian porous medium which issues from a thin 

slit. The x -axis is taken along the stretching surface in the direction of the motion and y -axis is perpendicular to it. 

We assume that the velocity is proportional to its distance from the slit. A uniform magnetic field 0B is imposed 

along y -axis. Then under the usual boundary layer approximations, the flow and heat transfer of a micropolar fluid 

in porous medium with non-Darcian effects included are governed by the following equations; 

The equation of momentum is given by   
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 (2.1) 
The continuity equation is 
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The angular momentum equation is 
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And finally the energy equation is 
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 (2.4) 
with the following boundary conditions 

             ,:0 axuy ==      ,0=v      ,wTT =       ,0=N  

                ,0: →∞→ uy      ,∞→ TT      ,0→N       
 (2.5) 

Where ( )Sυ µ ρ= +  is the apparent kinematic viscosity,µ is the coefficient of  dynamic viscosity,S is a 

constant characteristic of  fluid,N is the microrotation component, ( )1 0k S ρ= >  is the coupling constant, ( )1 0G >  

is the microrotation constant,ρ is the fluid density,uand vare the velocity components along xand y directions 

respectively,ϕ  is the porosity,k is the permeability of the porous medium,c is Forchheimer’s inertia coefficient,T

is the temperature of the fluid in the boundary layer,T∞ is the temperature of the fluid far away from the plate,wT is 

the temperature of the plate,K is the thermal conductivity, pC is the specific heat at constant pressure, σ  is the 

electrical conductivity, 0B is an external magnetic field, and rq is the radiative heat flux. 

Using the following transformations: 
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(2.7) 

where 0σ is the Stefan-Boltzmann constant and 0k is the mean absorption coefficient. 

Using the above transformations we have as thus, 
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Thus equation (2.1) above becomes,    
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         ( ) ( ) 0'1''''''' 21 =+−+−++ − ffRDLgfff a λ                                                
 (2.8) 

Equation (2.3) reduces to,   ( )'' 2 '' 0Gg g f− + =                                                            

 (2.9) 
With � being constant equation (2.4) takes the form 
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With   ( )0 1k k αθ= +   equation (2.4) reduces to,  
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and eventually becomes    
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With   ( )2

0 1k k αθ= +     and    ( )θ θ η= ,  

 equation (2.4) reduces to,   
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  (2.12) becomes: 
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  where 
1L k υ= denotes the coupling constant parameter, 1

aD kaϕυ− =  denotes the inverse Darcy number, 

( )2
0 0R B aσ ρ= denotes the magnetic parameter, c xλ ϕ= denotes the inertia coefficient parameter 

1G G a υ= denotes the microrotation parameter, ( )r pP C kυρ= denotes the Prandtl number  

( ) ( )4
0 04pF C k Tρ υ σ ∞=  denotes the radiation parameter, ( )wr T T T∞ ∞= − is the relative difference between 

the   temperature of the surface and the temperature far away from the surface. 
The corresponding boundary conditions are:  

             ( ) 00 =f ,  ( ) 10' =f ,  ( ) 10 =θ ,  ( ) 00 =g , ( ) 0' =∞f , ( ) 0=∞θ , ( ) 0=∞g  
 
3.0  Existence And Uniqueness 
 
 Theorem 1: Problem (2.11) subject to initial conditions ��0� � 1, ���0� � 	� �� � 0� has a unique solution 

in � � 
��, �����, ��, 0 � � � 1, 	� � ����� � 0, � � 0� 
 
Theorem 2: Problem (2.13), subject to initial conditions ��0� � 1, ���0� � 	� �� � 0� has a unique solution 

in � � 
��, �����, ��, 0 � � � 1, 	� � ����� � 0, � � 0�. 
 
Remark: For the proof we need the following ; 
 
Let 
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Theorem: [5] 
 
Let D denote the region 
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are continuous in D, then (3.1) has a unique solution. 

We are now in a position to prove theorem 1 
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are continuous. Hence by [5], theorem (1) holds. 

Proof of Theorem 2 
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are continuous, hence by [5], the problem has a unique solution.   
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Conclusion 
The resulting equation governing the flow of a micropolar fluid over a stretching surface in a non Darcian 

porous medium with variable thermal conductivity were shown to have a unique solution, even when the thermal 
conductivity is linear and also when it is quadratic.   
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