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Abstract 
 

The wave profile for steady, surface gravity Stokes waves in deep water is 
investigated. The expression for wave profile for sixth order is derived 
analytically by substituting the Taylor series approximations for the 
variables in the free boundary conditions. The wave potential is 
represented by Fourier series and the coefficients in the series are written 
as perturbation expansions in terms of a parameter which increases with 
wave height. The expressions are numerically studied and analyzed 
graphically. The sixth order phase speed increases with increasing wave 
steepness δ . It is observed that the wave profile and the phase speed for 
the sixth order are higher than those of lower orders.   

   
 
 

1.0 Introduction 
The theoretical understanding of water waves started with the work of Airy, Stokes and their contemporaries in 

the nineteenth century, [16] and [22]. While linearization about the rest state provided the first insights into 
dynamics of water waves and led to the development of the linear theory, it was observed that actual water wave 
characteristics deviate significantly from the linear theory predictions. This motivated an extensive study of the 
nonlinear wave theory [3].   

Waves on the surface of the ocean with periods of 3 to 25 seconds are primarily generated by winds and are the 
prominent features of the sea surface of the world. These are otherwise known as surface gravity waves. Other wave 
motions that exist on the ocean include internal waves, tides etc. ([16], [19]). 

Whichever section of ocean zone considered, deep water, intermediate or shallow water in extreme conditions, 
the nonlinearity in the wave kinematics is large and has a strong influence on the design parameters [15]. The 
knowledge of these waves and the energy they generate are essential for the design of coastal and deep water 
structures since they are the major factors that influence the geometry of beaches, water ways, shore protection 
measures, hydraulic, and other civil and military coastal structures [11]. Consequently, estimates of wave conditions 
are needed in almost all coastal engineering studies [1].  

Since waves are one of the most complex phenomena in nature, it is not quite simple to achieve a full 
understanding of their fundamental character and behaviour. Engineers build various maritime structures, 
breakwaters and quay walls for ports and harbours, seawalls and jetties for shore protection; platforms and rigs for 
the exploitation of oil beneath the seabed. These are some examples of maritime structures. These structures must 
perform their functions in the natural environment being subjected to the hostile effects of winds, water  wave 
currents, earthquakes, etc. To ensure their designated performance, there is need to carry out a comprehensive 
investigation in order to understand the environmental conditions. The investigation must be as accurate as possible 
so that the effects of the environment on the structures can be assessed rationally. Hence, the need for the study of 
nonlinear waves and other ocean wave’s phenomena cannot be over-emphasized. The influence of long nonlinear 
waves on seabed, offshore structures, and local ecosystem in certain parts of the coastal areas apparently is much 
larger than expected from the linear wave theory.   
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Waves carry energy along with them. Wave energy is being transported along the sea surface. The amount of 
energy at sea each point on the wave train carries is directly related to the amplitude of the wave oscillation at the 
same point and water particle velocity beneath the wave profile. 

Water waves are influenced at every point along their propagation path by the depth of the sea. In deep water, 
waves are able to move freely without regard to the geometry of the submerged terrain and the speed is an 
increasing function of wave length. As the depth decreases, the influence of the sea bottom topography becomes 
significant, causing the wave trains to slow down. 

 
 

 
Stokes wave is a steady periodic wave, propagating under gravity with constant speed in the surface of an 

infinitely deep irrotational flow. The free surface is determined by Laplace’s equation, kinematics and dynamic 
boundary conditions. The latter states  that pressure in the flow at the surface is constant [21]. 

The characteristics of Stokes waves generally in the ocean as applicable to deep and shallow waters have been 
intensively studied in the last one and half century. Stokes in 1847 and some of his contemporaries such as Michell 
in 1893 carried out some studies in the nineteenth century. Since then, there have been tremendous achievements in 
the study of Stokes wave types in ocean engineering. The detailed analysis of the mathematical and physical 
description of the phenomena is readily available in such publications as:  [2], [5], [10], [19], [21], [22] etc. 

Stokes waves properties had been exploited by a number of theorists in numerical and analytical study of 
certain geophysical processes. [7] calculated the force and couple associated with Stokes waves on vertical piercing 
cylinder in both deep water and water of finite depth. This work explained the effect on oil rigs of the propagating 
ocean waves.  

Fenton [4] obtained the solution of Stokes waves to fifth order using numerical approach. [12] obtained the 
solution of Stokes waves in the water of finite depth in form of solitary waves, which propagate into the adjoining 
estuary as bores. [14] obtained the form of fifth order approximation using the analytical approach to ensure that the 
theoretical approach is very close to the observed wave forms in the ocean.   

Further, [13] obtained the effects of wave steepness on the potential and kinetic energies of Stokes waves.   
In this study, Stokes sixth order theory is derived by substituting Taylor series approximations for the variables 

in the free boundary conditions; the order of solution depends on the number of Taylor series terms included.  
For practical problems, an application-oriented method which attempts to obtain accurate solutions even for 

high waves are based essentially on numerical methods, and thus not presented in analytical forms. In problems 
where the waves are not very high, it is usually more reasonable to use approximate analytical forms, such as 
cnodial theory for shallow and intermediate water or Stokes theory for deeper water. 

 The essential feature of Stokes theory for periodic steady waves is that the coefficients in these series can be 
written as perturbation expansions in terms of a parameter which increases with wave height. Stokes used wave 

steepness factor ak=δ , as the leading term in a Fourier series, in which the wave number, k = L2Π ; L = 

wavelength, and a is the wave amplitude [4]. 
       
Fenton [4] obtained the expression for the free surface profile to fifth order as 
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in shallow water as kd → 0  where d is the mean depth of the water. 
By considering the deep water limit for equation (1.1), the expression for )x(η , the height of the free surface 

above the mean sea level in deep water becomes 
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Using Airy’s linear theory, the wave speed is determined from the relation  c = kw ,  

For the Stokes fifth order theory , c  is expressible as: 

   

1
22 4c   (1  a c   a c ) tanhkd                                                                                           (1.31 2 )g

k
 = + +  

                                                                           

where d is the distance from the seabed to the still water level (SWL). 
If the Airy wave theory is treated as the first order theory, the wave profile and velocity of the Stokes wave 

theory can be expressed as follows: 

                     
m

 f cos nmnn 1
η θ= ∑

=
        (1.4) 

m
 F cosh nkz cosn    mnn 1

u θ= ∑
=

       (1.5)                                  

where the subscript n expresses the mode order, i.e. n = 1,2,3,5 denotes the first order, the second order, the 
third order and the fifth order theories, respectively [17] where: η is wave profile, u is horizontal velocity of water 
particles.  

Jamaloddin [8] adopted the method of solution for the Stokes’ fifth order theory in the form    
51

F cos ( )    n
1k

n kx wt
n

η = −∑
=         (1.6)

 

Where η  is the instantaneous vertical displacement of sea surface from the still water level (SWL). 

The waves derived from linearized equations based on the small-amplitude assumptions were sinusoidal, 
assuming that the water depth is constant or infinitely large. However, the waves of the sea are often not of small 
amplitude. 

This study is to further investigate the analytic form of the wave profile of sixth order Stokes waves and to 
compare it with those of lower order. This is expected to throw light on the limiting wave height in deep water. 
 

2.0   Sixth order Stokes   waves  

The fluid medium is assumed to be irrotational and incompressible .

Let  and  be the velocity potential and stream function respectively.φ ψ

Review of earlier development 
 

Following  [10], the following  apply

2 2
                       0          

2 2x z

φ φ∂ ∂+ =
∂ ∂               (2.1)

 

   

2 2
                   0                                                               

2 2x z

ψ ψ∂ ∂
+ =

∂ ∂         (2.2)

 

To solve eqn  (2.2), the boundary conditions are: 
    0   for   z                                                                           ψ η= =    (2.3) 

     k    for   z    -                                                                    1 hψ = =
   (2.4)

 

 p    k    for   z                                                                        2 η= =
   (2.5)

 

       (x,t) is the wave profileη η=  
Dynamic boundary condition is 
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          (2.6)

 

General solution for eqn (2.2) is 

( ) ( )kz -kz    c z    c     c coskx    c sinkx c e     c e  51 2 3 4 6Ψ = + + + +
  (2.7)

 

 c (i    1, 2,  3,  4,  5, 6)  are constants 
i

=  

Since the fluid depth is assumed to be infinite   

 c     0,  and  c     -c6 1= =  

( ) kz      -cz    c     c coskx    c sinkx c e52 3 4∴ Ψ = + + +
    (2.8)

 

A possible form of stream function is obtained if c     0  and  c     04 2= =
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 (divide through by c)

c c kz53       -z      cos kxe                                                                      (2.10)c
c

Ψ
= +

 

c c53    let      
c

kz      -z      e cos kx                                                                           (2.11)
c

β

β

=

Ψ
∴ = +

 

But when     0,  z    ηΨ = =  
k

 -     e coskx    0                                                                                   (2.12)
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k
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ηη β=  
By perturbation methods involving (x,t) , the following were obtained:η  
First order approximation  

 ( )     -acoskx                                                                                               (2.14)xη =  
Second  order approximation 

21( )      -acoskx    ka cos2kx                                                                 (2.15)2xη = +  

Third  order approximation  
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Fourth  order approximation  
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Fifth Order approximation  
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1 313 4 5 4k cos 4kx  -  k cos 5kx.             
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a a+  

Analytic derivation of 6th order  
The fifth order solution of Stokes waves is of the form 

kz 2kz 3kz       - z        e  coskx           e  cos2kx         e  cos3kx     (2.18)
c

ψ
β γ α= + + +  

 (     0   at   z      )   ψ η= =  
Including the next term in the Fourier expansion for  and adjusting the coefficient,we haveψ  

kz 2kz 3kz       - z        e  coskx           e  cos2kx        e  cos3kx    
c

ψ
β γ α= + + +  

4kz   e cos 4kx                                                                                                   (2.19)ξ+  
5By assumption,          o ( )α β=  

Dynamic boundary condition is 
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2 2 8kz 2 2 3kz 2 4kz 16k  e  cos 4kx    4k   e  coskxcos2kx   6k   e  coskxcos3kx    ξ β γ β α+ + + +  
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Adding  eqns (2.22) and (2.24) 
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4kz      8k  e  cos4kx  ξ−
          

 (2.25) 
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2g 2 2 2kz 2 2 4kz 2 2 6kz 2 2 8kx        1     k  e     4k   e       9k  e  16k  e
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η
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γ α ξ
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            (at    z       )η=  

2g 2 2 2kz 2 2 4kz 2 2 6kz 2 2 8kx       k  e     4k   e       9k  e  16k  e
2c

η
β γ α ξ+ + + +  

2 3kz 2 4kz 2 5kz4k   e  coskx       6k   e  cos2kx   8k   e  cos3kx β γ β α β ξ+ + +  

2 5kz 2 6kz 2 7kz kz    12k   e coskx    16k   e cos2kx    24k   e coskx - 2k  e  coskx    γ α γ ξ αξ β+ + +  

2kz 3kz 4kz  -      4k  e  cos2kx       6k  e  cos3kx    8k  e  cos4kx   k                                             (2.27)5γ α ξ− − =  

then putting    z         when         0  in eqn (2.19) )η ψ= =  

k 2k 3k 4k
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η η η ηβ α γ α γ ξ αξ
η η η ηβ γ α ξ
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2k 3k 3k -    2k  e  cos2kx       4k  e  cos3kx    6k  e  cos4kx       k                                          (2.29)5
η η ηγ α ξ− − =  
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k 2k 3k 4k
Substituting for     e coskx     e cos2kx     e cos3kx   e  cos4kx 

we have

η η η ηη β γ α ξ= + + +
 

2g 2k 4k 6k 6k 3k2 2 2 2 2 2 2 2 2   k  e     4k  e    9k  e  16k  e  4k   e  coskx  
2c

4k 5k 5k2 2 2            6k  e cos 2kx  8k  e cos3kx  12k   e coskx 

η η η η η ηβ γ α ξ β γ

η η ηβα βξ γ α

+ + + + +

+ + +

 

6k 7k2 2  16k   e cos2kx  24k  e coskx   -    2k

2k 3k 4k
          -    2k  e  cos2kx       4k  e  cos3kx    6k  e  cos4kx        k                                (2.30)5

η ηγ ξ αξ η
η η ηγ α ξ

+ +

− − =
 

2g 2k 2k 3k 4k2 2   k  e  -  2k   - 2k  e  cos2kx    4k  e  cos3kx   6k  e cos4kx  0 
2c

η η η η ηβ η γ α ξ+ − − ≈
 

 (2.31) 

6 (neglecting  o( ) and above   ) β .  Recall from  (2.28)    

k 2k 3k 4k
         e  coskx           e  cos2kx        e  cos3kx      e  cos4kx 

η η η ηη β γ α ξ= + + +  

Making  coskx  the subject  of  the  formula , 

k 2k 3k 4k
 e  coskx             -    e  cos2kx     e  cos3kx  -   e  cos4kx                                   (2.32)

η η η ηβ η γ α ξ= −  

- k 2k 3k 4k-1coskx        e (    -    e  cos2kx         e  cos3kx-   e  cos4kx)  
η η η ηβ η γ α ξ= −

  (2.33) 

2cos2kx        2 cos kx    -     1   =
             (2.34) 

3cos3kx        4cos kx    -     3coskx    =
       (2.35) 

4 2cos4kx        8cos kx    -     8cos kx = +  

2- k 2k 3k 4k-1cos2kx       2   e (   -   e  cos2kx     e  cos3kx-   e  cos4kx   -   1         
η η η ηβ η γ α ξ= − 

 
 

- 2k 4k  6k  8k-2 2 2 2 2 2 2 22   e   (        e  cos 2kx       e  cos 3kx     e  cos 4kx
η η η ηβ η γ α ξ= + + +  

 

2k 3k 4k
 -   2   e  cos2kx   -   2   e  cos3kx -   2   e  cos4kx  

η η ηη γ η α η ξ    ...)   -   1      +
  

 
(2.36)

 
 

- 2k 2k  4k-2 2 -2 2 2 -2 2 2          2   e          2    e  cos 2kx     2  e  cos 3kx  
η η ηβ η β γ β α= + +  

 6k k 2k-2 2 2 -2 -2 -2  2  e  cos 4kx- 4    cos2kx  -  4   e  cos3kx  -4   e  cos4kx    -     1          
η η ηβ ξ β γ η β αη β ξη+

 
(2.37) 

2k 2k - 2k 2k-2 2 -2 2 2   -2k  e  cos2kx     -  2k  e  (2   e          2    e  cos 2kx   
η η η ηγ γ β η β γ⇒ = +  

 4k  6k-2 2 2 -2 2 2 -2   2  e  cos 3kx    2  e  cos 4kx- 4    cos2kx 
η ηβ α β ξ β γ η+ +  

k 2k-2 -2  -  4   e  cos3kx   -4   e  cos4kx    -     1)  

4k-2 2 -2 3 2    -4k      4k  e cos 2kx     -  

η ηβ αη β ξη
ηβ γ η β γ= −

     

 (2.38)
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 6 k  8k 2k-2 2 2 -2 2 2 -2 2 4k   e cos 3kx -4k   e cos 4kx  8k   e cos2kx   

3 k 3 k 2k-2 -2                8k    e cos3kx   8k    e cos4kx   2k  e  

η η ηβ γ α β γ ξ β γ η
η η ηβ γ αη β γ ξη γ

+

+ + +
  

 (2.39)

 

2k-2 2  -4k           2k  e                                                                                                                             (2.40)    

                                  

ηβ γ η γ= + +
6   (neglecting terms of o( )  and above )β

 

2cos2kx  2cos kx-1   = -2k-2 2     2 e    1               
ηβ η= −

      
 (2.41) 

3cos3kx  4cos kx-3coskx = -3k -k-3 3 1    4 e    3 e        
η ηβ η β η−= −

     
 (2.42) 

4 2 cos4kx  8cos kx-8cos kx 1= + -4k -2k-4 4 2 2       8 e    8 e 1         
η ηβ η β η−= − +

   
 (2.43) 

Also,  from eqn (2.31 ), 
2g 2k 2k 3k2 2   k  e  -  2k  - 2k  e  cos2kx     4k  e  cos3kx 

2c

η η η ηβ η γ α+ −

4k
  6k  e  cos4kx     0 

ηξ− ≈  

Substituting the values obtained  above for cos2kx ,  cos3kx  and cos4kx gives 

2g 2k2 2 -2 2 -3 3         k  e    -    2k    -    4k           16 k  
2c

η ηβ η β γ η αβ η+ − 2k-4 4 2 2-48k k e      0 
ηξβ η β+ ≈

 
(2.44) 

2k
Applying Taylor's series  for   e

η

2 2 3 3 4 42g 4k  8k  16k  2 2 5         k  1       2k                    o( )  
2 2 6 24c

η η η η
β η η+ + + + + +

 
 
 

-2 2 -3 3 -4 4 -    2k    -    4k           16 k -  48k       0          (2.45)η β γ η αβ η ξβ η− ≈
5 2 3 6 2 42g 4k  2k  2 2 3 2 4 2 2      k    2k      2k                

2 3 3c

η β η β η
β β η β η+ + + + +

-2 2 -3 3 -4 4  -    2k    -    4k           16 k -  48k        0         (2.46)η β γ η αβ η ξβ η− ≈

( )
5 22g 4k3 2 4 2 -2 2 -3 3          2k     -   2k        2k     -    4k           16 k   

2 3  c

β
β η β β γ η αβ η+ + + −

  
       

6 22k -4 4 2 2          48k        k          0   
3  

β
ξβ η β+ − + =

 
  
       

 (2.47) 
 

Equating coefficients  of  powers of η ;    
2g 3 2 :         2k   -   2k          0
2c

η β+ =    (2.48)    
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2 4 2 -2:    2k     -    4k           0           η β β γ =       (2.49) 

1 4 3             k           
2

γ β⇒ =
        (2.50)

 

5 28k  3 -3:              16 k          0                      
6  

β
η αβ− =

     (2.51)
 

1 5 4               k       
12

α β⇒ =
        (2.52)

 

6 22k4 -4:          48k          0           
3  

β
η ξβ− =

      (2.53)
 

1 6 5               k                
72

ξ β⇒ =
       (2.54)

 

2 2 3    2k  -2 k  
2c

g
β= = 2 22k(1  -  k )   β                     (2.55) 

2 2 2     c k(1   -   k )              g β=         (2.56) 

1 2          c
2 2(1   -   k )

g

k β
=

(-1)(-2) (-1)(-2)(-3)2 2 2 4 4  6 6         (1       k        k     k  ...)                        (2.57)
2! 3!

g
c

k
β β β= + + + +  

2 2 2 4 4  6 6         (1       k        k     k   ...)  sixth  order phase velocity                  (2.58)
g

c
k

β β β= + + +  

From  eqn (2.28); 
k 2k 3k 4k

         e coskx      e cos2kx      e cos3kx   e cos4kx    
η η η ηη β γ α ξ= + + +  

 Recall:   
1 4 3            k  
2

γ β= , 
1 5 4            k

12
α β= , 

1 6 5           k   
72

ξ β=  

1 1 1k 2k 3k 4k4 3 5 4     e  coskx   k e  cos2kx   k e  cos3kx   ecos4kx       (2.59)
2 12 72

η η η ηη β β β= + + +  

2 3 4 5let                                 ...                                        (2.60)0 1 2 3 4η η β η β η β η β η β= + + + + +  

k 2k 3k 4k
Utilising Taylor's  series  for  e   , e  , e  , e  

η η η η
and substituting  in  eqn   (2.59),gives 

2 3 4 5 6                                           50 1 2 3 4η β η β η β η β η β η β+ + + + +  

3 3 4 41 k k2 2        ( 1      k      k                      ...)coskx  
2 6 24

η η
β η η= + + + + +  

2 2 3 3 4 41 4k 8k 16k4 3     k  (  1  2k                    ...)cos2kx 
2 2 6 24

η η η
β η+ + + + +  

2 2 3 3 4 41 9k  27 k  81k5 4      k (  1      3k                  ...)cos3kx   
12 2 6 24

η η η
β η+ + + + +  

2 2 3 3 4 41 16k  64k  256k6 5  k (  1      4k                  ...)cos4kx                      (2.61)
72 2 6 24

η η η
β η+ + + + +
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2 3 4 5 6     [ 1    k(              )50 1 2 3 4β η β η β η β η β η β η β= + + + + + +  

 
2k 2 3 4 5 6 2    (                 )50 1 2 3 42

η β η β η β η β η β η β+ + + + + +

3k 2 3 4 5 6 3    (                 )50 1 2 3 46
η β η β η β η β η β η β+ + + + + +

4k 2 3 4 5 6 4    (                  )50 1 2 3 424
η β η β η β η β η β η β+ + + + + +

5k 2 3 4 5 6 5    (                 )  ] coskx50 1 2 3 4120
η β η β η β η β η β η β+ + + + + +

1 4 3 2 3 4 5 6     k  [ 1      2k (             )50 1 2 3 42
β η β η β η β η β η β η β+ + + + + + +

2 2 3 4 5 6 2     2k  (                      )50 1 2 3 4η β η β η β η β η β η β+ + + + + +
34k 2 3 4 5 6 3   (                      )  50 1 2 3 43

η β η β η β η β η β η β+ + + + + +

42k 2 3 4 5 6 4   (                      )50 1 2 3 43
η β η β η β η β η β η β+ + + + + +

54k 2 3 4 5 6 5   (                       ) ] cos2kx50 1 2 3 415
η β η β η β η β η β η β+ + + + + +

1 5 4 2 3 4 5 6    k [ 1     3k (              )50 1 2 3 412
β η β η β η β η β η β η β+ + + + + + +

29k 2 3 4 5 6 2    (              )50 1 2 3 42
η β η β η β η β η β η β+ + + + + +

1 6 5 2 3 4 5 6    k [ 1     4k (              )50 1 2 3 472
β η β η β η β η β η β η β+ + + + + + +

2 2 3 4 5 6 2   8k (              )50 1 2 3 4η β η β η β η β η β η β+ + + + + +

32 3 2 3 4 5 6 3k (              )50 1 2 3 43

32 3 2 3 4 5 6 4       k (              ) ]cos 4kx                      (2.62)50 1 2 3 43

η β η β η β η β η β η β

η β η β η β η β η β η β

+ + + + + +

+ + + + + +

2 3 4 5Equating coefficients of ,   ,    ,     and     we  haveβ β β β β

 

2k3 2:                   (k            ) coskx                                                           (2.65) 2 1 02
β η η η= +

 

2k2 2        (k(k cos kx)           cos kx) coskx
2

= +  

3 2 3         k  cos  kx                                                                                                         (2.66)    2 2
η =
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3k 14 2 3 3:           (k  k     ) coskx   k cos 2kx                                           (2.67)3 2 0 1 06 2
β η η η η η= + + +  

 

3k 12 3 3      k coskx    k coskx     coskx   k cos 2kx3 2 0 1 06 2
η η η η η= + + +

3 2 3 2 2     kcoskx (k cos kx  )       k ( coskx ) (kcos kx) (coskx)
2

= +
3k 13 3    (coskx) coskx          k cos 2kx
6 2

+ +

(2.68)
33 k 13 4 3 4 4 3    k cos kx      k cos kx      cos  kx       k cos 2kx                                                     (2.69)

2 6 2
= + + +

8 13 4 3           k cos  kx        k  cos 2kx                                                                                                (2.70)3 3 2
η = +

2 3k k5 2 2 2:    (k k    ) coskx    4 3 1 0 2 0 12 2
β η η η η η η η= + + +

4k4 k cos 2kx  cos 3kx0 12
η+ +   (2.71) 

31 1 5 34 5 4 4 4 4 k  cos kx  k  cos kx  k  cos3kx   k coskx                                                      (2.72)4 6 24 6 4
η = + + +

3 4 4k k k6 2 2 3 5:     (k  k    ) coskx  5 4 1 2 0 2 0 1 02 8 120
β η η η η η η η η η= + + + +

1 14 5 2 5 5(k   k ) cos 2kx  k cos3kx k cos4kx  1 0 04 72
η η η+ + + +      (2.73)

906 13 13 1 5 6 5 5 5 5 5 3k  cos kx k cos4kx   k  cos2kx   k  cos kx   2k cos kx 5 120 24 24 24
η = + + + +

1 3 5 2 5 3 5 2 5 5 2-  k  cos kx  2k  cos kx-  k  cos kx   k cos4kx   k  cos kx 
75 4

+ + +    ( 2.74 )  

From eqn (2.60), 2 3 4 5 5
η      βη    β η     β η      β η      β η    β η   50 1 2 3 4= + + + + + , 

Substituting for  η , η ,η ,η ,η  and η  50 1 2 3 4  

32 2 3 2 3
η       β coskx     β k cos kx     β k cos kx    

2
= + +

8 14 3 4 3   β ( k cos kx            k cos 2kx) 
3 2

+ +

31 1 5 35 4 5 4 4 4 4  β ( k cos kx   k cos kx  k cos3kx  k coskx)  
6 24 6 4

+ + + +

906 13 13 1 6 5 6 5 5 5 5 5 3  β ( k  cos kx k cos4kx k  cos2kx k  cos kx 2k cos kx
120 24 24 24

+ + + + +

1 3 5 2 5 3 5 2 5 5 2 -  k  cos kx  2k  cos kx-  k  cos kx k cos4kx k cos kx)   
75 4

+ + +     (2.75) 

Substituting for the  identities, we have: 
9 191 5813 2 5 4 3 2  (     k  k  k ) coskx
8 48 192

η β β β β= + + +

1 11 1 13272 4 3 5 4 6 5  (  k k  k  k  ) cos2kx
2 6 48 384

β β β β+ + + +
3 235 3893 2 5 4 6 5 (  k k  k ) cos3kx
8 96 384

β β β+ + +
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1 1 94594 3 5 4 6 5 (  k  k  k )cos4kx  
3 192 4800

β β β+ + +
31 1 1515 4 3 2 6 5 (  k  k ) cos5kx  k  cos6kx
96 384 640

β β β+ + +

1 1 52 4 3 5 4 6 5  (  k     k k  k )
2 64 8

β β β β+ + + −         (2.76) 

9 191 5813 2 5 4 6 5let   a (    k   k   k ) 
8 48 192

β β β β= + + +        (2.77) 

2 3 4 5 6let   c a  c a  c a  c a  c a  c a51 2 3 4 6β = + + + + +       (2.78) 

 
 

2 3 4 5 6a  c a  c a  c a   c a  c a  c a51 2 3 4 6= + + + + +
9 2 2 3 4 5 6 3   k ( c a  c a  c a  c a  c a  c a  )51 2 3 4 68

+ + + + + +

191 4 2 3 4 5 6 5  k ( c a   c a    c a  c a   c a  c a )  ... 51 2 3 4 648
+ + + + + + +     

 (2.79)
581 5 2 3 4 5 6 6   k ( c a  c a   c a  c a  c a  c a )51 2 3 4 6192

+ + + + + +  

2 2   a      and        aβ β≅ ≅  

9 191 5813 2 5 4 6 5   (a a  k a k a k )coskx
8 48 192

η = + + +
1 11 1 13272 4 3 5 4 6 5( a k a k a  k a  k ) cos2kx
2 6 48 384

+ + + +

3 235 3893 2 5 4 6 5( a k a k a  k ) cos3kx 
8 96 384

+ + +
1 1 94594 3 5 4 6 5 ( a k a k a k )cos4kx
3 192 4800

+ + +

31 1 1515 4 3 2 6 5 ( a k a k ) cos5kx  a k cos6kx
96 384 640

+ + +
1 1 52 4 3 5 4 6 5  ( a k   a k a k a k ) 
2 64 8

+ + + −  

 (2.80) 

Shifting the axes vertically , the additive constant becomes zero.Also, translating the axes  laterally by ,π
the signs of termscontaining odd multiplesof kx are reversed,we then have 

9 191 5813 2 5 4 6 5 -(a  a k a k a k )coskx
8 48 192

η = + + +
1 11 1 13272 4 3 5 4 6 5  ( a k  a k a k a k ) cos2kx
2 6 48 384

+ + + +

3 235 389 1 1 94593 2 5 4 6 5 4 3 5 4 6 5-( a k   a k  a k ) cos3kx  ( a k  a k  a k )cos4kx
8 96 384 3 192 4800

+ + + + +

31 1 1515 4 3 2 6 5 ( a k a k )cos5kx  a k cos6kx 
96 384 640

− + +       

  (2.81) 

1 1 52 4 3 5 4 6 5The term  ( a  k    a  k a k a  k )   is ignored to agree with the
2 64 8

+ + − observed wave form by suitable

choice of origin. 

1 11 3 2352 4 3 3 2 5 4   -   coskx  ( k k )cos2kx  -  ( k   k ) cos3kx
2 6 8 96

a a a a aη = + + +

1 31 1514 3 5 4 6 5 k  cos4kx  k cos5kx  k cos6kx
3 96 640

a a a+ − +       

 (2.82) 
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9 191 5813 2 5 4 6 5while  the term   -  a  k  - a k  - a k    0
8 48 192

=

because, a linear wave term cannot contain terms  involving the product of wave amplitude. 
Eqn (2.82) is the desired sixth order Stokes waves profile. It is a superposition of the first to fifth order in addition to 
extra term having wave amplitude six times that of the linear solution. 
Eliminating the additive constant by an appropriate vertical translation of the coordinates, the profile of the Stokes 
wave contains components of different wavelengths propagating at the velocity c. It is no longer sinusoidal.  
 
Following Kinsman (1965), the expressions for third and fourth order Phase speed are as follows: 

2 2 2   (1   k )                                ;  Third  order phase speed                                                       (2.83)

12 2 2 4 4     (1   k    k )      ;  Fourth  order phase  
2

g
c

k

g
c

k

β

β β

= +

= + + speed                                                     (2.84)

 

The phase speed for fifth order Stokes waves as obtained by Oyetunde & Okeke (2004)  is: 

2 2 2 4 4   (1   k    k )   ;   Fifth order phase speed  
g

c
k

β β= + +                

(2.85) 
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Fig. 1 :  Sixth order Stokes waves profile.                        Fig. 2:  First, second and third order Stokes waves profile 
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Fig. 3:  Fourth, fifth and sixth order Stokes waves profile.    Fig. 4:  First to sixth order Stokes waves profile 

2 2 2 4 4  6 6  From   (2.58)          (1    k    k k )    sixth order phase speed    
g

c
k

β β β= + + +  

Following Kinsman (1965), the phase speed in deep water can be written in terms of wave steepness δ  for third to 
sixth orders as follows: 

1

2 2 2c  (1    )           ; Third  order phase speed
g

k
π δ= + 

  
       (2.86) 

1
12 2 4 4 2  (1     )        ; Fourth  order phase  speed 
2

g
c

k
π δ π δ= + + 

  
    (2.87) 

1

2 2 4 4 2    (1             ; Fifth order phase  speed
g

c
k

π δ π δ= + + 
  

     (2.88) 

1

2 2 4 4 6 6 2    (1       )    ; Sixth  order phase speed 
g

c
k

π δ π δ π δ= + + + 
  

    (2.89) 
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Fig. 5: phase speed and wave steepness for 3rd to 6th order 

Co   ,        typical depth of shallow watergh hoo
= =  

It can be observed that the phase speed increases as the wave steepness increases from third order to sixth order.  
However the maximum wave steepness is 0.61 
 
Findings and conclusion 
As the order increases, the wave profile increases and the phase speed equally increases. However, the higher the 
order, the closer the solution to the real wave profile in the physical form in oceanography. From the analytical 
derivation of the sixth order Stokes wave, there is no much difference between the theoretical wave form of the fifth 
order and sixth order wave profile as shown in the graph. Similarly, there might not be much difference between the 
fifth and the sixth order in the application to the observable physical wave form.  
 
However, the approximate solutions at higher order Stokes might necessarily converge (breaking amplitude) as 
observed from the analytic derivation of sixth order when compared with lower orders. Numerical form of the 
solutions might be of better accuracy at higher orders. 
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