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Abstract

We extend the notion of generalized conditional expectation and
Martingale onto the set of generalized positive operators (the
extended positive part) of a von Neumann algebra.

1.0 Introduction:

The study of conditional expectation and martingalavergence was initiated by [19,20]. Lance [1ibfaned
the almost sure martingale convergence on von Nearafgebras, he extend the result of [4]. [15faoted the
strong martingale convergence . Using the resu[Bpbn the convergence of modular operathrand modular
conjugation J on von Neumann algebras, [9] gavectimelitions for a generalized conditional expeotatio have
strong martingale convergence on von Neumann agebjil] gave a condition that is independent ef fhtration
as was done in the case of Hiai and Tsukada.isnptipper we attempt to extend these notions ohtoektended
positive part of a von Neumann algebra developef@by

Preliminaries: We recall here the notions and results on genexhliositive operators as discussed in [7].

Definition:

A weight¢ on a von Neumann algebras is a functionp: M, — [0, «] that satisfies,
() p(Ax) = Ap(x) XEM,, 1=>0
(i) p(x +¥) = 0 () + 0(¥) x,y € M,

We say thatp is normal if ¢ (supx;) = sup ¢(x) for any bounded increasing net of positive opesato,);c; -
@ is faithful if p(x"x) =0 = x =0 ,and semifinite if7, is o — strongly dense iM.To any weighty is
associated @ — weakly continuous one parameter group of *-autgrhsm (o).cx on the von Neumann
algebrasM’, called the modular automorphism group.

Definition :
Let M a von Neumann algebra , aid.! its positive predual, a generalized positive ofmeraffiliated with
M is a mapx: M," - [0,] satisfying,
1) ZAP) =A%(P), PpeM} ,1=0
(2) 2P +y)=2(9)+2¥) ¢ eM’
3) X is lower semicontinuous
The set of all such maps is called the extendedipopart of M, or the set of generalized positive operators
denoted byM, . They are “weights” on the predual of a von Nanmalgebra.
The generalized positive operator are added antpted by scalars in a natural way

Definition:
Let ©,y €M, ,aeMand 1 >0 wedefined £+5 , 1% anda*ta by
1) Ax)(¢) = 1% (p) ¢ EM}

(2) E+9)(@) =2(P)+I(p) peEM
©) (@’%a)(¢) = % (aga”)  ,PpeMS’



Remark; a¢a*(x) = ¢p(a*xa) , XEM *) (
hence we haveaga*(1) = ¢p(a*la) = ¢p(a*a) ,leMm **
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Definition:

If (%);e; s increasing net of elementsifi, then % (¢) = sup; £;(¢) , ¢ € M, defines an element it
.In
particular if (%)), is a family of elements i, ,thenz (¢) = ¥, & (¢) € M .

The relationship between operators in von Neumdgebaa and its positive part is given in corolldr$ of
Haagerup paper [7].

Corollary:
Any £ € M, is the pointwise limit of an increasing sequeatbounded operators i, .

Definition:
If €M, ,peMS and(x,)ney N M, withx, 7 % then % (¢) = lim,, p(xp).

Definition: Let £ € M, a weight oriM, is given by
92(@) = lim, ¢z (a,) = limy, , T(Xm. an) = limp,, T(x%q/z anx;/z) ' ae M+
We have a theorem from Haagerup [7] which stageform of the spectral resolution for the geneeali
positive operator.

Theorem: Let M be a von Neumann algebra. Each € M, has a unique spectral resolution of the form
2(P) = [, Adp(er) +o(p) ¢ €M}’
Where (ex)aejo[ IS an increasing family of projections M such that4 — e, is strongly continuous from
right ,and lim,,,e; =1 —p . moreovere, =0 iff £(¢p)>0 forany ¢ e Mt \{0} and ¢; is
faithfulP=0 iff {¢p € M} : % (¢p) < 0}isdense inM;" and ¢; is semifinite.

Remark; if % (¢) <0 forany ¢ € M," then a there exist positive bounded operdterM,, such that
% (@)= ¢(K) ,p € M and

2
% (wg) = { IK2€l™ e pki/2y
o0 otherwise

2.0 Generalized conditional expectation:

Let M be a semifinite von Neumann algebra amdits von Neumann subalgebra . Then there exist a
conditional expectatiot from M ontoN' which is a projection of norm one,having the propei) E(axb ) =
akE(x)b ,ii) E(x")E(x) < E(x"x), iii) E(x") = E(x)" ,iv) E is order preserving (Tomiyama[ 16,17]) . The
conditional expectatione (x) = w3 (Emy(x) E), in Takesaki [13] exist only whe® is globally
invariant under the modular automorphism graxfp associated with the faithful normal weight Generalized
conditional expectation of Accardi and Cecchini §&gffined byE(a) = n~1! (juo P jy m(a)jy quP) always exist
but it is not a projection of norm one neither daeenjoy the useful property€(axb) = aE(x)b, a,b €
N and x € M. In Goldstein [5] he extends the conditional exaton E to the extended positive part of a von
Neumann algebra. Here we extends the generalizeditmmmal expectatiolf to the generalized positive operators.
We denote our extended generalized conditionalaatien by€ .

We showed that is invariant with respect to a given normaight on M, .To show the possibility of

extending the generalized conditional onto the gaized positive operators, we follow the arguinef the proof
in [5], which of course is the same even for a galieed conditional expectatiah



Theorem 1 The £ restricted toM, extends uniquely to a mag of M, onto N, which is positive,
additive, order-preserving and normal and sasisfie (£2)(¢) = £(¢ © £)

Proof: Following Goldstein [5] we have;
Let X € M, ,x, € M, and x, 7 X since £ is positive,Ex, 7y for somey € N,
Put éx =9 ,if z, €M, , z, 7%, then for eackp € M, .
lim, ¢(x,) = lim, ¢(z,) ie x,—2z,—-0 ,0—weakly
Where &éx,, — £z, - 0, ¢ - weakly, and thudim,, ¢(x;,,) — lim,, ¢(Ez,)— 0 0 — weakly
Implies £z, 7 £ %
We have (€ 2)(¢) = lim, ¢(Ex,) = (¢ © &)
Hence, (é 9?)((]3) = ®(¢ © &). Itis obvious that€ is positive , additive and also normal.

To show that € is invariant with respect to a faithful normal wiei we have the following,
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Theorem 2 Let M be a semifinite von Neumann algebra avidts von Neumann subalgebra an@?, and
N, be their respective extended positive part suah ¥, c M, , then

Pz =@zo&. _ N
Proof : Let x € M, we define a weight oM, by
1/2 1/2)

»2(@) = limn Pz (all) = limy, p T(Xm- @n) = limp 5 T(Xp ~ Xy ae ]‘:/Z:+ _
Let &:M, — N, be our extended generalized conditional expectativ M, onto N, ifdce
M, ,% €N, then x,, 7% anda, » & with x,, € N, anda, € M,
02(@) = £(2.8) = limT(rm. E(ay)) = lim (/€ (@n)xy ")

= lim,, TCe/ *lim,p(Eay)x?) = limy, T(x € (@)x/?)

= lim,, 7(€(@) (x2pxY/?)) = lim,, T (é(a) (e W 2)))

= lim,, ‘r(é’(ﬁ)q,’)(xm)) = ‘r(é’(&) lim,, q,’)(xm)) =1 (é(ﬁ)f)

0:(@) =1 (E@3%) = 9z(€2)

Hence g =@p0&
Here we have used the relation given in remark &riyl the assumption that the increasing sequemeeseH-

adjoint (i.e densely defined aN, andMy).
Theorem 3 If ¢, is a weight onM, and £ , € are the generalized conditional expectations'bn and

M, respectively then  ¢z(£a) = pe(a(¢ © E))
Proof: ¢¢(£a) = @:(lim, p(Ea,)), where a,, € M, a, 7 @
02(£2) = (xp/* lim,, p(Ean)xp/?) = limy, T(xp 2 p(Ean)xy!?)
(p,?(é’d) = lim,, ‘r(x,;/z@) ° E)an)x,il/z) = T(x,il/z lim, (¢ o S)anx,il/z)
92(£2) = t(x/* Al © Ox,*) = H(ax{* (¢ 0 O)xy{"))
2(€2) = 2@((¢ ° E)xm) = 9z(A(P © £))
2(€2) = pz(a(gp &)

%
@
3.0 Martingales:
Let M, be the extended positive part of a semifinibd Weumann algebraM , with a normal weight
@z(*) =lim, 7(x,, -) .We have the following notations,
ng ={REM, : () =1(xn ) <w} , (M) =(Ap)i(Ag)s .Let (7 #;) be the GN.S
representation o, induced by ¢; , and ny: (fig), » H; s the canonical injection map. Theﬁﬁ¢)+ =
{9?(7,:3?@ € (ig)} ﬂ(ﬁ¢)+} is the extended positive part achieved left éfitbalgebra andia(ﬁ&) is its
extended left positive part von Neumann algebra. Ndge the following, modular operat(if@ , modular
conjugation]}, and the modular automorphia?ﬁ@ are associated wiip; .We fix an increasing nétv, )} of



closed subsets of the extended positive part cdraNeumann algebraf, . For eacha € [0,] let, be a
normal weight on(V;,)} such that the restriction of the weight to (IV,)} is given by i, = P and
(V)% satisfy the following conditions
L (V)Y S WVp)h @ <B
2. M, = ( ae[o,cgji(‘Na){l\-)
3. (Vo)h = (Vo)A
For eachr € [0,0] andy, on(N,)} wetake @)+ =ngN (V,)} where
Tl’\ - {x € M+ (px() - T(xm ) < w} and (fﬁa)+ = (ﬁa)i(ﬁa)+ :

The G.N.S representation o)} is given by s, 7,) and left Hilbert algebra is given Hill,) =
{Ry: X, € (Ay): N(Ay)4} , the modular operatdy, , modular conjugatiof, and the modular automorphisz?ﬁ“)
are associated witlp, . Then A is an increasing net of family of subspaces®f" . LetP, be the orthogonal
projection of £+ onto H} with H* =UHS , then B, € f,(N,)4 ) .Then the generalized conditional
expectation £,: M, > (W)} is given by E,@)(@) = 7z (JaPal ps e (®) Ty Ja)

Where p(l = hmn ¢(Pna)' ja = llmTl ¢(]na) Yﬁgl = hmn (T[na)

Hence our generalized conditional expectatifiy onto (N,)} is given by

Ea(®)($) = 1y ¢ (Wl UnaPrc Sz Tz () Iy Jna) )
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The sequencg€,) is called a martingale if, whenever < 8, Epla= Esép =€, .
If we let @ — o ,then we have), — 1, , hence we have the following map

€0 M, - (NV,)4 . Before we state the Hiai-Tsukada type strongtingale convergence conditions for an
increasing filtrations. We will give a detailecopf of lemma (1) in[9].

Lemma L If %€ (Ap),, thené(®) €ny and 7, (é(ﬁ)) = joPlp 1p(®) .
Proof: Let % € (7ip), then €(R) €fy , choose andb;}in muN (V)} with b; 7 1
We have% (E®) = tim; j3r5(b)ig np (E®)) = limy (ﬁfb(b-))'n@ (¢®)
= lim (E(x)) n(p(b ) = llm] g (S(x)) n(p(b )Q = lim; fiy, (E(x)) g (b )n(p(l)
é(’?))fa (ﬁa(bi)) Jana(D) = lim; g, () 75 (ﬁ@(bj))'fa Jo ©@
= tim; 7t (E®)) 7, (ﬁa(bj))r Q = lim; g, (€®)) 75(b)) Jp @ = lim; 725 (£(®)) 74(b))2
m; ( (b

AS)

8 x
= lim; (JaPlyy(®) T, T 1o (b)) = lim; (TPlafa(®) Jp na (b)) = limy, (A@p (ﬁa(")), %(bj)>
(

Il
=
N
<
=)
~>
©
—~
D
hS
~
o
N—r
~
\., )
N
=
e
=
hS
~
[S=Y
N~
|
=
\)o
=)
~>
©
Yauny
D
©
N
=
N—r
~—~
~>
o))
D
o))
N
=
N~
>
©
e}
N———

= lim; (17,13 i (7 (Ag,(b-)) (ﬁa(x)) ’Q) = tim; J3P j (75(b;x)) @
= limjfaﬁjq, fip(b; x)) ne(1) = llm]]U,P](p (1) 1
% (é(’?)) = lim; 3P jong(bx) = 5Pl np(x0)
We now state, the Hiai- Tsukada type strong maateagconvergence for the generalized conditional

expectations on the generalized positive opesdttre increasing case) in our setting.
Theorem 4:The following conditions are equivalent for therieasing case



(i) Uy (ﬂa)+(c 1U,) is a core oh/?
(ii) s —lim, €, (%) = £,(%) forevery %€ M,
(iii) ||n¢ (éa(f)) — 7, (ew(f))” -0 forevery %en,
Proof: ()= (ii)
Let £eM, and Ee€ Htwithé, 7EeH* andx, € M,

|72 (€a®) & = 7, (£.)) €| = timngp || (EnaCin)) En = 7o (o)) |
=limy® (| oo (ena) Pan = Teo (EnaCin) ) En = o (EnaCin) ) Puin = 7o (En ) ) |
< lim,® ”nw (sn_a)Pafn — Ty (Sn,a (xn)) & ” + lim, @ ”nw (sn_a)Pafn — Ty (Sn_a(xn)) &, ”
Him® || oo (B ) Puin = 7o (€ ) ) |

< limnq)””m(gn,a)(Pafn - fn)” +limn¢ ||”oo(5n,a)Pa€n TN (Sn,a(xn)) fn”
Now since m,, is isometric and,,, —» £,,, asa —» o from [9] then ,we haver, € M, &,.(x,;) =x,
and also ifB, - P, asa —» « ,we have P, (§,) = &,,

hence
< @ NG (Pasn — S
+limn¢ ” ]n,aPn,a]n,(p”n,zp (xn)]n,(p]n,apn,afn - ]n,oo Pn,oo]n,zp”n,(p (xn)]n,zp]n,oo Pn,oo fn ”
Since $ime, (lim,®(Jn,aPra)) = (limn@(Jne0Prco))
and #im, (lim, 8( Boo)) = (limp@( Proo))
we have,

< limy @ |GG — ED

+llmn®” ]n,oo Pn,oo]n,(pnn,(p (xn)]n,(p]n,oo fn - ]n,oo Pn,oo]n,(pnn,(p (xn)]n,(p]n,oo Pn,oo fn ”

< limy @ |G I — )

+limn®” ]n,ooPn,oo]n,zpnn,(p (xn)]n,(p]n,oofn _]n,ooPn,oo]n,zpnn,(p (xn)]n,(p]n,oopn,oofn” -0
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Therefore, | i, (éa(a?)) E—n, (ém(a?))ge” - 0, hence s — limyé,(®) = £,(®), for every & € M,
For (iii) = (i)
Suppose that , Bm,(lim,?(JnePue)) = (limpy@(JnwPrwo)) :
hence , $im,(lim,@(Jna Poa Jne Pro)) = (limpy®(Jnwo Pue)) , take the generalized conditional
expectation as follows ,
Epot (N)h = (V)G and€o, i ()4 = (Vo)
If %€ (R); N(AL), and for eachy, €., (R) € (Ae): N(Ae)+
Now since gim, (limp®(JnaPra)) = (im,@(Jne))
then ”n@(é\oc,a(f)) - 77(7)(55)” = limn¢”(]n,apn,a]n,oon(ﬁ(xn)) - nrp(xn)” -0
hence,
827 (19 (210 ®)) = 22 (15 (2o ®) )
= [16(6%2(21a®) = 15(6%,, (2..®)|
= 762, (fna®)Q — 287, (20.(D)Q||
< #2672 (na@®)Q — (E0n®)||
< [|6%. || 1(Ena@®) = (@)l = 0
where is takenQ is identify withQ, thus (iii) = (i) is proved. For(ii) = (iii) the argument is easily adapted
from [9].

Summary:



The trace functional in the construction of Haagek, space was implemented by a generalized positive
operator, likewise a kind of generalized conditioggpectation called operator valued weights isréef using the
notions of generalized positive operator .We dap anlarged the stochastic base in noncommutativehastic
integrals, if we replac#/, with (W)} then we will have an enlarged stochastic base$v, c (V,)}. Hence a
stochastic procesk,” adapted to an expected filtratiéiV}, )} becomes a martingale X," € D(ép) and &

X, = X,;A for B < a , and our stochastic integral define with respedhis martingale will extend those defined
on filtration JV;, of von Neumann algebras.
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