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   Abstract 
 

An algorithm for generating permutation distribution of ranks in a 
k-sample experiment is presented.The algorithm is based on 
combinatorics in finding the generating function of the distribution 
of the ranks. This further gives insight into the permutation 
distribution of a rank statistics. The algorithm is implemented with 
the aid of the computer algebra system Mathematica. 
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1.0 Introduction 
 

An exhaustive permutation distribution of a test statistic is necessary in the construction of exact tests 
of significance, thus controlling the risk in decision making. The unconditional exact permutation approach 
turns out to be the only possible way of constructing exact tests of significance for a general class of 
problems especially when complete enumeration is possible, see 11], [13] and [15]. But, generating the 
associated permutation sample space in order to apply the permutation test has always been a problem 
especially for fairly large sample sizes. This difficulty is mainly due to the logical and computational 
requirement necessary to develop and implement exact permutation scheme. Hence other approaches have 
been developed over the years. For detailed discussion along these lines, see [4], [5], [6] ad [12] on Monte 
Carlo methods, [2] and [17] on Bayesian and Likelihood approaches. The aim of this paper is to provide an 
algorithm which circumvents the difficulty associated with generating the permutation sample space, thus 
offering possibility of constructing exact test of significance of a rank statistic. Combinatorial problems 
which are very essential in finding the distribution of ranks in a k-sample experiment are clearly stated. The 
generating functions for the distribution of the ranks are obtained and it is shown how these calculations 
can be performed with the computer algebra system Mathematica. It transpires that the use of computer 
algebra opens new horizons for nonparametric statistics. Instead of time consuming calculations with 
recurrences, exact distributions can be found very fast from generating functions with the aid of a computer 
algebra system. 
       This paper is organized as follows. S ection 2 gives a brief discussion on integer partition. Two 
combinatorial problems are stated in section 3. We link these combinatorial problems to the partitions of 
integers. This forms the basis of the proposed algorithm. Section 4 provides the Mathematica 
implementation of the algorithm. In section 5, the computational efficiency of the proposed algorithm is 
investigated. The conclusion of this paper is given in section 6.  Throughout this paper, command 
statements appear in a separate font and are written   in terms of Mathematica 6.0 code. All calculations 
were performed on an intel Pentium M computer with a processor speed of 

ZGH73.1 . 

 
2.0        Integer Partitions 
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A partition of a positive integer n  is defined as away of  writing n  as the sum of positive integers. Let 
( )nP  denote the number of partitions of n . For example, ( ) .75 =P  An explicit formula for ( )nP  valid for 

all positive integers n  was discovered by [14], but since it is a complicated infinite series and is not needed 
for the purpose of this paper, it will be omitted here. However, there exist a simple generating function for 

( )nP , that is, a function which when expanded into a power series ∑
∞

=0n

n
n xC  has its general coefficient 

( )nPCn = . This generating  
 

 
function is given by: 
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 (2.1)       
See [7]. The function ( )nP  is referred to as the number of unrestricted partitions of n , to make clear that 

no restrictions are imposed upon the way in which n  is partitioned into parts. A very interesting and 
perhaps the most interesting part of the theory of partitions concerns restricted partitions, that is, partitions 
in which some kind of restrictions is imposed upon the parts. For further discussions on unrestricted 
partitions, see ([1] and [10]) and in the case of restricted partitions, we refer to([8] and [18]). 
          Now, let ( )knP ,  represents the number of ways of writing n  as a sum of exactly  k terms. ( )knP ,  

can be computed from the recurrence relation 
           ( ) ( ) ( )kknPknPknP ,1,1, −+−−=                                                      

(2.2)                                                                                                      

  With   ( ) 0, =knP  for ( ) 1,, => nnPnk  and ( ) 00, =nP , see [16] 

 
3.0    Combinatorial Problems 
A large class of problems in Combinatorial Mathematics is concerned with computing the number of ways 
in which some well-defined operation can be performed. The notions of combinations and permutations are 
the simplest and yet most fundamental concepts in the study of the theory of enumeration. Other 
enumerative techniques include generating functions, recurrence relations, the principle of inclusion and 
exclusion, Polya’s theory of counting. For detailed discussion of these concepts, see [9]. Usually, a 
generating function that gives the number of combinations or permutations is called an enumerator. 
        Many nonparametric test statistics are of a combinatorial nature, especially those based on ranks. With 
this remark, it becomes obvious that a knowledge of the combinatorics of the permutation distribution of 
ranks in k-sample experiment offers useful insight into the exact permutation distribution of a rank statistic. 

For example, the distribution of the Wilcoxon Rank Sum statistic nmW ,  can be linked to partitions of 

integers which has a combinatorial interpretation. 

        Under ,: GFH O =  all rank orders in the combined sample are equiprobable. Thus, 

                ( ) ( )
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 (3.1)       

( )knmP ,,  denotes the number of ways  a subset of {0, 1, 2, …, n } can be chosen with m  elements such 

that the elements of this subset add up to .k  In combinatorial terminology, ( )knmP ,,  is nothing but the 

number of partitions of  k  with at most m  non-zero blocks of maximal size n , see [1] and [3]. This 
connection was already noted by [19], but is hardly used in the statistical literature. 
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            In what follows, two combinatorial problems which give essential idea in finding the permutation 
distribution of ranks in a k-sample experiment are stated. 
Problem 1 

Suppose there n  observations which are ranked 1, 2, 3,…,n . In how many   different ways is it 

possible to divide these n  observations among k  samples such that the  ith sample iT  contains in  

observations and the sum of the ranks of these in  observations in sample iT  is ir  with 

knnnn +++= ...21  and ( )?12
1...21 +=+++= nnrrrr k  Let the number be: 

  [ ] { } { }[ ]kk rrrnnnPrlistnlistP ...,,...,:, 2,1,2,1=                                                  (3.2)              

    [ ]rlistnlistP ,  can be calculated by counting the relevant partitions.  

           There are ( )
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[ ]rlistnlistP ,  can be obtained easily for small n  and k  by counting the relevant partitions, for 

example, { } { }[ ] 27,8,2,3 =P  which requires only 10 distinct arrangements (partitions). However, 

when n  and k  are not as small as in the above example, this method of obtaining [ ]rlistnlistP ,  

fails because of the large associated permutation sample spaces. For instance, when 

3,7,10 321 === nnn , there are 22,170,720 distinct arrangements of the ranks. Admittedly, it is 

very difficult to carry out this enumeration manually in order to compute [ ]rlistnlistP , . 

To overcome this problem, the generating function for the number   [ ]rlistnlistP ,  is obtained. Let 

[ ]ix  be a variable governing the number of observations in the ith  sample and [ ]iy  be a variable 

governing the sum of the ranks of the observations in the ith  sample. With this remark, the 

generating function for the number [ ]rlistnlistP ,  is  

                       [ ] [ ] [ ]∏ ∑
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 (3.3)               
However, this method of enumeration is not as fast as one would expect due to the fact that the number of 

terms of the generating function in (3.3) are of order nk  which is not too small even if n and k are not 
very large. 

       To improve on the computational efficiency of (3.3),  let { }.,...,, 21 knnnnlist =  In this case, the new 

generating function [ ]nlistp  for the number [ ]rlistnlistP ,   have number of terms whose order is only 

[ ]knnnlMultinomia ,...,, 21  which is smaller than  nk . Clearly, this new generating function [ ]nlistp  

are the coefficients of [ ]∏
=

k

i

niix
1

of the generating function[ ]knp , . To speed up computations, the 

generating function  ][nlistp  is defined recursively as: 

                                { } [ ] { }[ ]∑
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(3.4)               
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Problem 2 

 Suppose again that there are n  observations numbered in such a way that 1d  of these 

observations are ranked ,1m  2d  have ranks ,...,2m  and ld  have ranks lm  so that 

....21 ldddn +++=  One can find the different ways that is possible to divide these n  

observations among k  samples such that the ith  sample contains in  observations and the sum of 

the ranks of these in  observations is ir  with    

lk dddnnnn +++=+++= ...... 2121

kkk mdmdmdrrrr +++=+++= ...... 221121                                                                                                         

 Let this number be denoted by: 

[ ] { } { } { } { }[ ]kkkl rrrnnnmmmdddQrlistnlistmlistdlistQ ,...,,,,...,,,,...,,,,...,,:,,, 21212121=
  (3.5)                                                                                                                                                                                                                                                           
   Once again, it is difficult to calculate (3.5) manually if n and k  are not small. To   handle the 

problem that arises for fairly large n  and k ,  the generating function for the number  

[ ]rlistnlistmlistdlistQ ,,, is derived. This generating function is given by: 

                      [ ] [ ] [ ]∏ ∑
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 (3.6) 

The number of terms in (3.6) is still of order nk  and following same argument in problem 1, a 

new generating function [ ]nlistmlistdlistq ,,  is introduced. This generating function improves 

on the computational efficiency of (3.6) as the number of terms is only of order 

[ ]knnnlMultinomia ,...,, 21 . This generating function is given and defined recursively as: 

 

[ ] { } { } { }[ ]== kll nnnmmmdddqnlistmlistdlistq ,...,,,,...,,,,...,,,, 212121

 [ ] { } { } { }[ ]∑
=

−−
k

i
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m nnnnmmmdddqiy l

1
212121 ,...,1,...,,,,...,,,1,...,,                       

 (3.7) 

Obviously, the number  [ ]rlistnlistmlistdlistQ ,,,  is obtained by selecting the coefficient of 

[ ]∏
=

k

i

riiy
1

of the generating function in (3.7). In what follows, the Mathematica procedures for obtaining 

the generating functions in (3.3), (3.4), (3.6) and (3.7) is provided. With these generating functions, the 
numbers in (3.2) and (3.5) are easily obtained. 
 
4.0   Mathematica Session 
In this section,  the Mathematica procedures with numerical examples for obtaining the generating 

functions and the numbers [ ]rlistnlistP , , [ ]rlistnlistmlistdlistQ ,,,   given above is presented. 
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5.0   Computational efficiency 
In this section, the computing efficiency of [ ]knp , , ][nlistp  and [ ]kmlistdlistq ,, , 

[ ]nlistmlistdlistq ,,  for calculating the numbers [ ]rlistnlistP ,  and [ ]rlistnlistmlistdlistQ ,,,  

respectively.  
Table 5.1: Computation time in Mathematica in seconds 
dlist,mlist,nlist,rlist nlist,rlist P[nlist,

rlist] 
Q[dlist,
mlist,nlis
t,rlist 

p[n,k] p[nlist] q[dlist,
mlist,k] 

q[dlist,mlist,n
list] 

{5,4,6},{1,2,3},{8,7},{
17,14} 

{12,8},{120
,90} 

3436 1400 0.047 4.333
1610−×

 

0.016 4.719
1710−×  

{2,3,1,4},{1,2,3,4},{5,3
,2},{13,9,5} 

{8,7,5},{90,
70,50} 

102404 132 34.33 9.35 0.032 1.377
1710−×  

 

From the table above, it is clear that ][nlistp  and [ ]nlistmlistdlistq ,,  are superior to [ ]knp ,  and 

[ ]kmlistdlistq ,,  respectively since their computations are faster. Hence, calculating [ ]rlistnlistP ,  and 

[ ]rlistnlistmlistdlistQ ,,,  for fairly large values of n and k can be achieved within reasonable time.  

 
6.0    Conclusion 
 Presented in this paper is an algorithm for generating the permutation distribution of ranks in a k-sample 
experiment. The method described is fast as revealed by the numerical examples given in this article. Other 

calculations for the numbers [ ]rlistnlistP ,  and [ ]rlistnlistmlistdlistQ ,,,  can be obtained in a similar 

fashion. The proposed algorithm gives insight into finding the exact permutation distribution of a rank 
statistic in a combinatorial sense. 
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