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Abstract

An algorithm for generating permutation distribution of ranksin a
k-sample experiment is presented.The algorithm is based on
combinatoricsin finding the generating function of the distribution
of the ranks. This further gives insight into the permutation
distribution of a rank statistics. The algorithm is implemented with
the aid of the computer algebra system Mathematica.

Key words: Combinatorics, generating function, permutatiorridigtion, rank statistics,
partitions, computer algebra.

1.0 Introduction

An exhaustive permutation distribution of a testistic is necessary in the construction of exastst
of significance, thus controlling the risk in deeis making. The unconditional exact permutationrapph
turns out to be the only possible way of constngctexact tests of significance for a general clafss
problems especially when complete enumeration &sipte, see 11], [13] and [15]. But, generating the
associated permutation sample space in order tly éipp permutation test has always been a problem
especially for fairly large sample sizes. This idiffty is mainly due to the logical and computatibn
requirement necessary to develop and implementt gremutation scheme. Hence other approaches have
been developed over the years. For detailed digsuaong these lines, see [4], [5], [6] ad [12]Monte
Carlo methods, [2] and [17] on Bayesian and Likmbith approaches. The aim of this paper is to proaide
algorithm which circumvents the difficulty assoeidtwith generating the permutation sample spacss, th
offering possibility of constructing exact test gifjnificance of a rank statistic. Combinatorial lpeoms
which are very essential in finding the distributiof ranks in a k-sample experiment are clearliestarhe
generating functions for the distribution of theka are obtained and it is shown how these calout
can be performed with the computer algebra systeath&matica. It transpires that the use of computer
algebra opens new horizons for nonparametric Statisinstead of time consuming calculations with
recurrences, exact distributions can be found fast/from generating functions with the aid of anputer
algebra system.

This paper is organized as follows. S ectibwives a brief discussion on integer partitionvoT
combinatorial problems are stated in section 3.IMWethese combinatorial problems to the partitiaris
integers. This forms the basis of the proposed rdlgn. Section 4 provides the Mathematica
implementation of the algorithm. In section 5, dwmputational efficiency of the proposed algoritiem
investigated. The conclusion of this paper is giiensection 6. Throughout this paper, command
statements appear in a separate font and are rwrite terms of Mathematica 6.0 code. All calcuat
were performed on an intel Pentium M computer &iftrocessor speed 0f73GH, .

2.0 Integer Partitions
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A partition of a positive integeRn is defined as away of writinfl as the sum of positive integers. Let
P(n) denote the number of partitions Bf. For example P(5) = 7. An explicit formula for P(n) valid for

all positive integerdl was discovered by [14], but since it is a compédanfinite series and is not needed
for the purpose of this paper, it will be omitteeiér However, there exist a simple generating fandbr

P(n), that is, a function which when expanded into a\/eﬂoseriesicnxn has its general coefficient
n=0

C, = P(n). This generating

function is given by:

B iP(n)x” =1+x+2x* +3x> +5x* +...

00
n=0

D(l—x")
2.1)

See [7]. The functiorP(n) is referred to as the number of unrestricted fiang of N, to make clear that

no restrictions are imposed upon the way in whithis partitioned into parts. A very interesting and
perhaps the most interesting part of the theoryaofitions concerns restricted partitions, thapastitions
in which some kind of restrictions is imposed upbe parts. For further discussions on unrestricted
partitions, see ([1] and [10]) and in the caseestricted partitions, we refer to([8] and [18]).
Now, letP(n, k) represents the number of ways of writiigas a sum of exactlk terms. P(n, k)
can be computed from the recurrence relation
P(n,k)=P(n-1,k-1)+P(n-k,k)
(2.2)
with P(n,k)=0 for k >n,P(n,n) =1 and P(n,0)= 0, see [16]

3.0 Combinatorial Problems
A large class of problems in Combinatorial Matheosats concerned with computing the number of ways
in which some well-defined operation can be perfmtniThe notions of combinations and permutatioas ar
the simplest and yet most fundamental conceptshin study of the theory of enumeration. Other
enumerative techniques include generating functioesurrence relations, the principle of inclusemd
exclusion, Polya’s theory of counting. For detaileidcussion of these concepts, see [9]. Usually, a
generating function that gives the number of comitdams or permutations is called an enumerator.

Many nonparametric test statistics are edmbinatorial nature, especially those based okstaVNith
this remark, it becomes obvious that a knowledgéhefcombinatorics of the permutation distributain
ranks in k-sample experiment offers useful insigtda the exact permutation distribution of a ratddtistic.

For example, the distribution of the Wilcoxon RaBkm statisticW, , can be linked to partitions of
integers which has a combinatorial interpretation.
UnderH, : F =G, all rank orders in the combined sample are eqbgiste. Thus,

P(m,n,k)
PrW_ . =k|=——""2=,
( me ) m+n
m
(3.2)
P(m, n, k) denotes the number of ways a subset of {0, 1,.2N} can be chosen withhn elements such

that the elements of this subset add ufKtdn combinatorial terminologyP(m, n, k) is nothing but the

number of partitions of K with at mostm non-zero blocks of maximal sizB, see [1] and [3]. This
connection was already noted by [19], but is haudlgd in the statistical literature.
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In what follows, two combinatorial problems whiclvey essential idea in finding the permutation
distribution of ranks in a k-sample experiment steged.
Problem 1

Suppose therd observations which are ranked 1, 2, 3N..In how many different ways is it

possible to divide thesB observations amonl§ samples such that tHiéh sampleT, containsn,

observations and the sum of the ranks of thé&seobservations in sampld; is I, with

n=n+n,+..+n andr =r, +r, +..+r, = %n(n +1)? Let the number be:
P[nlist,rlist] = P[{nllnzl...,nk},{rllrz...,rk}] Ap
P[nlist, rIiSt] can be calculated by counting the relevant panti

There are(nl Tt nk)! possible permutations of tHa variates of thek samples of sizes
n'n,l....n.!

-1
ni=12..Kk which are equally likely with probabili{y* . The number
’ n'n,l..n.!

P[nIiSt, rIiSt] can be obtained easily for smdil and K by counting the relevant partitions, for
example, P[{3,2},{8,7}] = 2 which requires only 10 distinct arrangements (pans). However,

when N and K are not as small as in the above example, thigodesf obtainingP[nIiSt, rIiSt]
fails because of the large associated permutatiampke spaces. For instance, when
n, =10,n, =7,n, =3, there are 22,170,720 distinct arrangements ofahks. Admittedly, it is

very difficult to carry out this enumeration marlyah order to computeP[nIiSt, rIiSt] :
To overcome this problem, the generating functimmttie number P[nlist, rIiSt] is obtained. Let
X[i] be a variable governing the number of observatiorie ith sample andy[i] be a variable

governing the sum of the ranks of the observationshe ith sample. With this remark, the
generating function for the numbE?[nIiSt, rIiSt] is

dnid= [ bl
(3.3)

However, this method of enumeration is not asdastne would expect due to the fact that the number

terms of the generating function in (3.3) are afesrk” which is not too small even ifand K are not
very large.

To improve on the computational efficiendy®3), letnlist = {nl, n, ,...,nk}. In this case, the new
generating functionp[nlist] for the numberP[nIiSt, rIiSt] have number of terms whose order is only

Multi nomial[nl, nz,...,nk] which is smaller thank" . Clearly, this new generating functiop[nlist]
k

are the coefficients ofrll X[i]ni of the generating functiop[n,k]. To speed up computations, the
1=

generating function p[nlist] is defined recursively as:

pnlist] = p{n,,n,.....n J] :Zy[i]” pl{n,.n,,...n -1...n}]

(3.4)
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Problem 2
Suppose again that there afe observations numbered in such a way tldit of these

observations are rankedn,, d, have ranksm,,..., and d, have ranksm so that
n=d, +d, +...+d,. One can find the different ways that is possildedivide thesen
observations amonl samples such that tHiéh sample containgl, observations and the sum of

the ranks of these n; observations is I with

n=n,+n,+...+n, =d, +d, +...+d,
r=r+r,+..+r,=dm+d,m, +...+d.m,
Let this number be denoted by:
Q[dlist, mlist, nlist, rlist] := Qf{d, ., d,.....d, }.{m,,m,,...m L.{n,n,...n L{r. rhr ]
(3.5
Once again, it is difficult to calculate (3.5pnually if Nand K are not small. To handle the
problem that arises for fairly largéh and Kk, the generating function for the number
Q[dlist, miist, nlist, rIiSt] is derived. This generating function is given by:

g[dlist, miist, k] = h(zk: AT jdi

i=1
(3.6)
The number of terms in (3.6) is still of ordk" and following same argument in problem 1, a

new generating functiorq[dlist, miist, nlist] is introduced. This generating function improves
on the computational efficiency of (3.6) as the bem of terms is only of order
Multinomial [nl, n, ,...,nk]. This generating function is given and definedirsively as:

g[dlist, miist, nlist] = of{d,, d,....d }.{m,m,....m}.{n.n,....n}] =

iZ:)l[i]’“ qfd,.d,.....d, -g,{m,m,,...m}L{n,n,,...n -1...n}]

(3.7)
Obviously, the number Q[dlist,mlist,nlist,rlist] is obtained by selecting the coefficient of

k
I_l y[i]ri of the generating function in (3.7). In what follssthe Mathematica procedures for obtaining
1=

the generating functions in (3.3), (3.4), (3.6) 4Bd7) is provided. With these generating functjothe
numbers in (3.2) and (3.5) are easily obtained.

4.0 Mathematica Session
In this section, the Mathematica procedures witimerical examples for obtaining the generating

functions and the numbelfs’[nlist, rIiSt] , Q[dIiSt, mlist, nlist, rlist] given above is presented.
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xlist[k ] :=Table[x[i], {i, 1, k}];
ylist[k ] :=Table[¥[i], {i, 1, k}];
pI1, & ] :=xlist[k].ylist[X];
ple k. 1:=pln, k] =plr-1, k] »xdist[k].ylist[k] "=
qi{d }, {m }, & ]:= {xlist[k].ylist[k]"m) " d;
q[diist , miist , k ]:=q[dlist, mlisk, k] =
q[{First[dlisE]}, {First[mlist]}, k] q[Rest[dlist], Rest[miist], k]

Expand[p[5, 211
)11 900 2] 2y pla ) exa) ez vl vl e e v pler ey w2 i vl e gz vt prert ey i v e
x( (2 yl M ier s 2y g2yl vlar e 2win wier v pien e ey v yier 2w e v e e riey v v
x( w2 v yier s 2y w2 vy v exiy g2 v e s e e wia e axin i v wian e e ey it
x(1 (20 v (2 ex it xg2) w0 e 1 2 i w2 ex g2 e w2l el i) e pla e 2 v 12 v vl P exier 2

Expand[g[{2, 3}, {1, 2}, 3]]

21111 s 210 (2] wl) pl2] + 3x0 (2] i) w2l o) w2y i) i) e w2y e i) e 3] 2 e )t il ) e e

6x1] x[21 9101 gl2)" ex2) (2l w000 w2 o 0] w2 o0 P2l s 20 w2 Il yl) i) (2 e 2 g3 w0 e 09) e 2x () 2] 3] w100 w2 w030 +
6x[1]x[2]x[3] ¥121" v12] ¥13] + 61121 (21 23] y121 y12] w131+ 62010 k(20 (3] w(1)* y121 030 + (LT (2] (3] 710" w120 03] + 2x (1) (2] 0[] w1 w2y (3] +

2x(2] (3] v12l v13] + 311 13 w21 I3l o203 w00 931 ¢ 600 x 2] %131 yI2T 9120 9031 ¢ 6001 2] 3] w20 gl2) a3 e 3w e l) ki3 w0 ) v
3x1] (2] x[31 w2 yl2] w131 e 22 e 2 3 ) w20 w030 e 30 il 3] w2 ylal ea e 6l wl) 13 gl vlal eian « 3xa) xla) i3 vl el
6x(1]x(2]'x[3] v121 v121 9031 + 3xl21 03] w12t via1 ez w30 w2 w131 e lar w3 0 w131 s 0] w2 230 w10 vl w131 e 12w 2] 3 ) vl2 s 4
L2x (L] (2] w31 w0 020 w130 e 62l o3 0 2 v30 s il w3l il val e anlal 030 v P e 3] 13 vl s sl 12 k130 0L w2 w13
3x1] (21 %31 w01 12l w31 e 3 el xl2l 131 vl L) w13l e iy ki) 1131 vl vl2] i e Sl w2l i i 2 vian wiar ai e v+

3xl2] x[31" 912 131 e 011 131 L1 9130 ¢ S ILT k(2] k031 wI1) w121 7131 + 6x(L) (2] x(3) (L) w2 wia e 62 w030 w02 wed e w0l i vl i 4

3x(1] 2031 9101 w131+ 20T kL2 w031 gl wl2] 9130 o2l o w20 w3+ 32 w3 vl2l w03 s 20 w3 o) w30 e 22 w3 2l w03l g3’ 0
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pL{nt }] :=y[1]" (=t (il + 1} f2};
plrtist ] :=p[rlist] =
Module[{n, k, id, nlistnew, pos, sub},
n=PFusod plisk;
k= Length[nlist];
id = IdentityMatrix[k];
nlistnew = Delete[nlisk, Position[nlisk, 0]];
pos = Flatten[Position[riist, 5 f: 7= 011;
sub = Table[¥[i] — ¥[pos[[i]1]1]1, {i, 1, Length[pos]}]:
If[FreeQ[nlist, 0],
Expand[Sum[y¥[i] *np[alist-id[[1]]1], {i, 1, kK}]1],
pInlistnew] /. sub]]
gql{d }, {m }, nlist ] := Apply[Multinomial, nlisi] «
Apply[Times, ylist[Length[nlis£]]" {m nlist}];
qldiist , mlist , plisk ] :=qg[dlist, mlisk, nlisk] =
Module[{d, n, k, id, dlistnew, nlistnew, pos, sub},
d = Plug @@ diisk;
n=Plusod nlisk;
k= Length[nlist]:
id = TdentityMatrix[k];
dli=tnew = Append[Drop[diist, -1], Last[diisE] - 1]:
nlistnew = Delete[nlisE, Position[=nlzisk, 0]]:
pos = Flatten[Position[miisE, 5 f: 7= 0]11;
sub = Table[¥[i] - ¥[pos[[i]11], {i, 1, Length[pos]}]:
Yhich[d zn, Print["n= dl+ +d1"]; Abort[],
' {Free(Q[nlisk, 0]}, q[dlisk, mlisk, nlistnew] f. sub,
| (FreeQ[dlist, 01}, q[Drop[dlist, 1], Drop[miist, —1], nlist],
Free([nmlisk, 0] &&Free}[diisE, 0],
Expand[Sum[¥[i]"Last [m?ist]
gq[dlistnew, mlisk, nlist_id[[i]11], {i, 1, k}1111
pPL{&, &}]
v g2 exa yl2) e 2y 2 eswn) M ylar ™ e sy el e v P yla ® e g iz 5P 2 ® e 22w iz * s aayrn)* vle ¥ ey 2 f eyt yiz) ¥
xR O 1 R LA O A O3 D T A R TV 00 T WS U0 R LN Ve AR A B D TR 00 R NS TS WP LB D
L DT R 3 DR [ NS OO T AR T U 1 AR IR VR (AR 3 Vs (A R B Rl AR S VRS TR Y VRS TR 1 S T
s19v111 " yi21" + 515910 iz s aso w11 yra ™ e asg w1 w2 ™+ 6L yi0 w2 s a0 10 a2 ™ vy iz s via ™ s sge i vz amw i vz
2eayLl " y(e)" + asslL® yizr® a2ty Pyt e1sayin ™ v « 16410 vl e 1w e ey ™ v ® s o wiar® e v P vz s ez f vie
4oyl yl2™ e 30w viar® s yin Fyle ™ ezzw i ¥ iz o150 vz P en v F v e rein f i ® esvnn vz esvn P via® eevin via® eei M vial” v v

gl{3, 3, 2}, {1, 2, 3}, {3, 4, 3}]

100

Wyl vzl w13 e a0yl i) w3 e 30ty izl visr +s0vi iz wia e 0wt s e g0y vzt vt e Lsn gL vz v

011 vl2) v03 e 220y w20 w0t 280 g2 w3t 0Ly w2 s e 25wl w2 v s’ « Loyt i) s 0L i) ) e

2011 vl2) 131 e 2m0 w2 v e s0 w0 w2t s e 38 vl e s e 20 ) e 20 w2l a0 36000 e e )’ +

101 wl2) w031 e 380 Pl el e ooy w20 s 20 02 i)+ 0L i) s 15w w2 s’ s0wln) 2 w3’ + 3000 w2 )
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5.0 Computational efficiency
In this section, the computing efficiency ofp[n,k], p[nlist] and q[dlist,mlist,k],
gldlist, mlist,nlist] for calculating the numberd[nlist,rlist] and Q[dlist, mlist, nlist, rlist]

respectively.
Table 5.1: Computation time in Mathematica in secods

dlist,miis,nlistrlist nlistrlist P[niig, | Q[diis, | pinK pinlis] | qrdiist, | qrdlist,mist,n
rlist] mligt,nlis mistk] | list]
t,rlist
(5.4,61,{1,2,31.08,71.{ | {12,81,{120 | 3436 | 1400 0.047 4333 | 0.016 | 4.719
17,14} .90} x1071 x107"
{2,3.1,41,{1,2,3,4}{5,3 | {8,7,5},{90, | 102404 | 132 34.33 9.35 0.032] 1.377
21,{13,9,5} 70,50} x107"

From the table above, it is clear thpfnlist] and q[dlist, mIiSt,nIiSt] are superior top[n,k] and
q[dlist, mlist, k] respectively since their computations are fagtence, calculatingP[nIiSt, rIiSt] and
Q[dlist, mlist, nlist, rIiSt] for fairly large values ofi andk can be achieved within reasonable time.

6.0 Conclusion
Presented in this paper is an algorithm for gdimegyahe permutation distribution of ranks in adagple
experiment. The method described is fast as reddmlehe numerical examples given in this artiCéher

calculations for the number@[nlist, rIiSt] and Q[dlist, miist, nlist, rIiSt] can be obtained in a similar

fashion. The proposed algorithm gives insight ifiing the exact permutation distribution of a kan
statistic in a combinatorial sense.
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