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   Abstract 
 

A method for generating exhaustive permutation distribution 
of the ranks in a k-sample experiment is presented. This 
provides a methodology for constructing exact test of 
significance of a rank statistic.The proposed method is linked 
to the partition of integers and in a  combinatorial sense the 
distribution of the ranks is obtained via its generating 
function.The formulas are defined recursively to speed up 
computations using the computer algebra system  
Mathematica. 
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1.0 Introduction 
 
Constructing the exact distribution of a rank statistic is a very vital aspect of inferential statistics as it 
ensures that the probability of making a type I error is exactlyα . But, a major challenge has been the 
availability of computational formulas for generating the associated permutation sample spaces required to 
conduct the exact tests especially when the sample sizes are not small. 
      [27] showed that the permutation approach is the only possible technique of constructing exact tests of 
significance for a general class of problems. The null distribution of statistics obtained through the 
unconditional exact permutation approach in which row and column totals are allowed to vary with each 
permutation turns out to be the most reliable, see [1], [10] and [19]. The unconditional exact permutation 
approach is very much unlike the conditional exact permutation approach of fixing the row and column 
totals, see [4], [13] and [19]. Other approaches to the unconditional exact permutation exist in the literature. 
For a detailed discussion on Monte Carlo methods, see [8], [9], [12] and [20]. The Bayesian and the 
Likelihood approaches can be found in [5] and [29]. All these approaches only give approximate results. 
The purpose of this paper therefore is to provide a method for generating the permutation sample spaces in 
a k-sample experiment. Exact procedures are the best and should always be applied whenever practically 
possible, see [10] and [16]. Permutation tests provide exact results especially when complete enumeration 
is possible, see [22].   
This paper is organized as follows. In section 2, a brief discussion on generating functions is provided, and 
in section 3, the partitions of integers is presented. Section 4 gives the concept of combinatorics and in 
section 5, an efficient method for handling some combinatorial problems is introduced. In section 6,  the 
Mathematica procedures of the proposed method is shown and section 7 gives the conclusion of the paper.  
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      Throughout this paper, command statements appear in a separate font and are written in terms of 
Mathematica 6.0 code. All calculations were performed on an intel Pentium M computer with a processor 
speed of 

ZGH73.1 . 

2.0      Generating Functions 
  A generating function is a polynomial in one or more variables (in expanded form) whose exponents are 
real numbers and coefficients are the numbers being sought. Generating functions are widely used in 
probability theory, see [6], [11], [15] and [26]. Generating functions provide a simple and elegant way to 
describe probability or frequency distributions of discrete statistics and in particular, permutation 
distributions. They are also a computational tool.  
 

Many efficient algorithms, including those described as fast Fourier transform methods, network methods 
and multiple shift methods are different implementations of the recursions needed to evaluate generating 
functions efficiently, see [3]. Usually polynomials have integer exponents only. Since Mathematica works 
well with this kind of “generalized polynomials”, they are used  instead. 
      Generating functions are often used as analytical results in literature. In this paper, it will be shown how 
these generating functions are easily implemented in Mathematica for computing the permutation 
distribution of ranks in a k-sample experiment. 
 
3.0    Partitions of Integers 
 Given an integer n , it is possible to represent it as the sum of one or more positive integers ,ia that is 

n
mxxx +++= ...21

. This representation is called a partition if the order of the ix  is of no consequence. 

Thus, two partitions of an integer n  are distinct if they differ with respect to the ix  they contain. For 

example, there are seven distinct partitions of the integer 5:  
5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. 
       The partitions of an integer have been the subject of extensive study for over 300 years, since Leibnitz 
asked Bernoulli if he had investigated( )nP , the number of partitions of an integer n . Details of  the history 

and the state of the art as of 1920 can be found in [7]. Additional details and later results can be found in 
most combinatorics texts; in particular, see [11], [17] and [25]. The interest in this work is partly motivated 
by the important role played by partitions in many problems of combinatorics and algebra. For 
computational purposes one is often interested in generating all the partitions of an integer, or sometimes 
just those satisfying various restrictive conditions. Several such algorithms, dealing with both the 
unrestricted and restricted cases have appeared in the literature. For the unrestricted cases, see [2], [18], 
[21] and [23]. In the case of the restricted partitions, see [2], [24] and [30]. 
        Generating functions were first applied to partitions by Euler. This technique can reduce the difficulty 
of otherwise complex problems. We use generating functions because they can be manipulated much more 
easily than combinatorial quantities. Euler invented a generating function which gives rise to a recurrence 
equation in ( )nP  given as 

                    )(nP = ( ) ( )( ) ( )( )[ ]132
1132
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Where 1σ ( )n  is the divisor function. For these recurrence equations, see [28]. 

The partition numbers ( )nP  are given by the generating function 

                      ( ) ∑
∞
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 (3.4) 

see Hirschhorn (1999). ( )knP ,  denotes the number of ways of writing n  as a sum of exactly k  terms. 

Hence, ( ) 23,5 =P , since the partition of 5 of length 3 are { }1,1,3  and { }1,2,2 . ( )knP ,  can be computed from 

the recurrence relation 

                ( ) ( ) ( )kknPknPknP ,1,1, −+−−=                                                       

 (3.5)                                                                

With        ( ) 0, =knP  for ( ) 1,, => nnPnk  and ( ) 00, =nP , see [28]. 

4.0    Combinatorics 
A large class of problems in Combinatorial Mathematics is concerned with computing the number of ways 
in which some well-defined operation can be performed. The notions of combinations and permutations are 
the simplest and yet 
 
most fundamental concepts in the study of the theory of enumeration. Other enumerative techniques 
include generating functions, recurrence relations, the principle of inclusion and exclusion, Polya’s theory 
of counting. For detailed discussion of these concepts, see [17]. 
       The crucial point in nonparametric test theory is the fact that all possible arrangement of the ranks of 
the observed values are equally likely. The sufficient condition for a permutation test to be exact and 
unbiased against shifts in direction of higher values is the exchangeability of the observations in the 
combined sample, see [10] and [22] noted that when exchangeability may be assumed in the null 
hypothesis

0H , reference null distributions of permutation tests always exist, because, at least in principle, 

they are obtained by considering all permutations of available data.To calculate the distribution density 
{ }( )xX =Pr  of a statistic X  based on ranks, it is therefore only necessary to obtain the number of cases 

satisfying the condition xX = . The combinatorial problems below give an essential idea in achieving this.  
Suppose there are n  observations which are ranked 1, 2, 3,…,n . In how many different ways can one 

divide these n  observations among k  samples such that the  ith sample iT  contains in  observations and 

the sum of the ranks of these in  observations in sample 
iT  is ir  with knnnn +++= ...21  and 

( )?12
1...21 +=+++= nnrrrr k  Let the number be: 

 [ ] { } { }[ ]kk rrrnnnPrlistnlistP ...,,...,:, 2,1,2,1=                                                       

 (4.1) 

We can calculate this number [ ]rlistnlistP ,  by counting the relevant partitions. There are 

( )
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21

21

k

k
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nnn +++
 possible permutations of the n  variates of the k  samples of sizes kini ,...,2,1, =  

which are equally likely with probability

1
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n
. Consider an experiment of two samples with 

three observations in the first sample and two observations in the second sample. The total number of 

distinct arrangements is .10
!2!3

!5 =  Clearly from table 1, { } { }[ ] 27,8,2,3 =P  and { } { }[ ] .14,11,2,3 =P If n  and 

k  are not as small as in this example, this method of enumeration fails because of the large number of 
permutation sample spaces. 
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     Suppose again that there are n  observations numbered in such a way that 1d  of these observations are 

ranked ,1m  2d  have ranks ,...,2m  and ld  have ranks lm  so that ....21 ldddn +++=  We can find 

the different ways that is possible to divide these n  observations among k  samples such that the ith  

sample contains in  observations and the sum of the ranks of these in  observations is ir  with 

lk dddnnnn +++=+++= ...... 2121  and kkk mdmdmdrrrr +++=+++= ...... 221121  

Again, let this number be represented by: 

[ ] { } { } { } { }[ ]kkkl rrrnnnmmmdddQrlistnlistmlistdlistQ ,...,,,,...,,,,...,,,,...,,:,,, 21212121=
            
                                                                                                                                          
(4.2) 
Clearly, (4.2) is a generalization of (4.1), since for ,nl =  we have  

{ } { } { } { }[ ] { } { }[ ]kkkk rrrnnnPrrrnnnnQ ,...,,,,...,,,...,,,,...,,,,...,2,1,1,...,1,1 21212121 =           

(4.3) 

If we let 21 =d  of the 5=n  observations in table 1 be ranked 11 =m . Suppose these are the 

observations with the ranks 1, 2. Also let the remaining 32 =d  observations be ranked ,22 =m  then, all 

possible arrangements of the ranks follows immediately from table 1 and this is given in table 2. However, 
when ties occur in ranking, it is customary to assign average ranks. It is evident from table 2 that 

{ } { } { } { }[ ] 63,5,2,3,2,1,3,2 =Q  and                                                                                                          

{ } { } { } { }[ ] 34,4,2,3,2,1,3,2 =Q . Again, if n  and k  are not as small as in this example, the method fails. 

 
5.    An efficient method 
To overcome the problems associated with the method of enumeration in section 4, the  t concept of 
generating functions is introduced. The aim here is to find the generating functions for the numbers 

[ ]rlistnlistP ,  and  

[ ]rlistnlistmlistdlistQ ,,,  respectively. Let [ ]ix  be a variable governing the number of observations in 

the ith  sample and [ ]iy  be a variable governing the sum of the ranks of the observations in the ith  

sample. With this remark, the generating functions for the numbers [ ]rlistnlistP ,  and 

{ }[ ]rlistnlistmlistdlistQ ,,,  respectively are: 
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Obviously, the numbers [ ]rlistnlistP ,  and [ ]rlistnlistmlistdlistQ ,,,  are the coefficients of  

[ ] [ ]∏
=

k

i

rn ii iyix
1

 of  the polynomial [ ]knp ,   and [ ]kmlistdlistq ,, . Hence, we get the numbers 

[ ]rlistnlistP ,  and [ ]rlistnlistmlistdlistQ ,,,  by selecting the coefficients of [ ] [ ]∏
=

k

i

rn ii iyix
1

. The 

generating functions in (4.1), (4.2), (5.1) and (5.2) are implemented in Mathematica 6.0 and the procedures 
are given in section 6. With this algorithm, it is possible to solve the combinatorial problems posed in 
section 4 and other problems which are very difficult to handle manually. 
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6.0   Mathematica procedures 
This section contains the Mathematica procedures for calculating the numbers [ ]rlistnlistP ,  and 

[ ]rlistnlistmlistdlistQ ,,, . 
6.1   Mathematica Commands 

xlist[k_]:=Table[x[i],{i,1,k}]; 
ylist[k_]:=Table[y[i],{i,1,k}]; 
p[1,k_]:=xlist[k].ylist[k]; 
p[n_,k_]:=p[n,k]=p[n-1,k]*xlist[k].ylist[k]^n 
q[{d_},{m_},k_]:=(xlist[k].ylist[k]^m)^d; 
q[dlist_,mlist_,k_]:=q[dlist,mlist,k]= q[{First[dli st]},{First[mlist]},k] 
q[Rest[dlist],Rest[mlist],k]     

 
P[nlist_,rlist_]:= 
Module[{n,r,k}, 
n=Plus@@nlist; 
r=Plus@@rlist; 
k=Length[nlist]; 
If[r �n (n+1)/2,                     Fold[Coefficient,Expand[p[n,k]],                                  
Union[xlist[k]^nlist,ylist[k]^rlist]], 
Print["r � n (n+1)/2"]]] 

 
Q[dlist_,mlist_,nlist_,rlist_]:= Module[{d,n,r,k}, d=Plus@@dlist;                                
n=Plus@@nlist;                                          r=Plus@@rlist; 
k=Length[nlist]; 
If[n�d && r �dlist.mlist,                                Fold[Coefficient,Expand[q[dlist,mlist,k]],                                     
Union[xlist[k]^nlist,ylist[k]^rlist]], 
Print["n � d1+...+dl or r � d1 m1+...+dl ml"]]] 

 
Numerical examples 
Expand[p[3,3]]=  
 

 
Expand[q[{3,2},{1,2},3]]= 

 
P[{8,8},{70,66}]= 515 
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Q[{3,4,5,3},{1,2,3,4},{6,4,5},{16,10,12}]= 26355 
Other results can be obtained in a similar fashion. 
7.   Conclusion 
This paper provides a method for generating the permutation distribution of the ranks of a k-sample 
experiment. The algorithm discussed in this article enables us to handle the combinatorial problems posed 
in section 4 and other problems that are very difficult to calculate manually. Therefore, it is possible to 
manage with larger sample sizes within reasonable time. For example, it takes only 0.015 seconds to 
compute P[{8, 8},{70, 66}]  
and 0.219 seconds to calculate Q[{3, 4, 5, 3},{1, 2, 3, 4}, {6, 4, 5},{16, 10, 12}]. These calculations require 
12,870 and 630,630 distinct arrangements of the ranks respectively. 
      Finally, the proposed method show promises of being applied to the computation of exact distribution 
of  rank statistics. This is the next challenge. 
 
Table 1. Permutation of the ranks of a 2 sample experiment  

         1T          1r           2T           2r  
       1,2,3          6          4,5           9 
       1,2,4         7          3,5           8 
       1,3,4         8          2,5           7 
       2,3,4         9          1,5           6 
       1,2,5         8          3,4           7 
       1,3,5         9          2,4           6 
       2,3,5        10          1,4           5 
       1,4,5        10          2,3           5 
       2,4,5        11          1,3           4 
       3,4,5        12          1,2           3 
 
Table 2. Permutation of the ranks of a 2 sample experiment 

         1T           1r           2T           2r  
       1, 1, 2          4         2, 2          4 
       1, 1, 2          4         2, 2          4 
       1, 2, 2          5         1, 2          3 
       1, 2, 2          5         1, 2          3 
       1, 1, 2          4         2, 2          4 
       1, 2, 2          5         1, 2          3 
       1, 2, 2          5         1, 2          3 
       1, 2, 2          5         1, 2          3 
       1, 2, 2          5         1, 2          3 
       2, 2, 2          6         1, 1          2 
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