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Abstract

A method for generating exhaustive permutation distribution
of the ranks in a k-sample experiment is presented. This
provides a methodology for constructing exact test of
significance of a rank satistic.The proposed method is linked
to the partition of integers and in a combinatorial sense the
distribution of the ranks is obtained via its generating
function.The formulas are defined recursively to speed up
computations using the computer algebra system
Mathematica.
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1.0 Introduction

Constructing the exact distribution of a rank statiis a very vital aspect of inferential statistias it
ensures that the probability of making a type beis exactl;ﬂ. But, a major challenge has been the
availability of computational formulas for genergfithe associated permutation sample spaces rdduire
conduct the exact tests especially when the sasig#s are not small.

[27] showed that the permutation approadhésonly possible technique of constructing exastst of
significance for a general class of problems. Thél distribution of statistics obtained through the
unconditional exact permutation approach in whictv and column totals are allowed to vary with each
permutation turns out to be the most reliable, [$¢€]10] and [19]. The unconditional exact perntiga
approach is very much unlike the conditional exsetmutation approach of fixing the row and column
totals, see [4], [13] and [19]. Other approacheth#éounconditional exact permutation exist in fkerature.
For a detailed discussion on Monte Carlo methods, [8], [9], [12] and [20]. The Bayesian and the
Likelihood approaches can be found in [5] and [2d].these approaches only give approximate results
The purpose of this paper therefore is to provideeshod for generating the permutation sample spice
a k-sample experiment. Exact procedures are the bessteould always be applied whenever practically
possible, see [10] and [16]. Permutation tests ideexact results especially when complete enumerat
is possible, see [22].

This paper is organized as follows. In section Briaf discussion on generating functions is predidand
in section 3, the partitions of integers is presdntSection 4 gives the concept of combinatoria$ ian
section 5, an efficient method for handling somenbimatorial problems is introduced. In section the
Mathematica procedures of the proposed methodisrsland section 7 gives the conclusion of the paper
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Throughout this paper, command statementeapm a separate font and are written in terms of
Mathematica 6.0 code. All calculations were perfednon an intel Pentium M computer with a processor
speed of173GH,

2.0  Generating Functions

A generating function is a polynomial in one oorm variables (in expanded form) whose exponems ar
real numbers and coefficients are the numbers bsinught. Generating functions are widely used in
probability theory, see [6], [11], [15] and [26]e@erating functions provide a simple and elegant twa
describe probability or frequency distributions discrete statistics and in particular, permutation
distributions. They are also a computational tool.

Many efficient algorithms, including those descdhas fast Fourier transform methods, network method
and multiple shift methods are different implemdiotegs of the recursions needed to evaluate generati
functions efficiently, see [3]. Usually polynomidisive integer exponents only. Since Mathematicsvor
well with this kind of “generalized polynomialshey are used instead.

Generating functions are often used as apalyesults in literature. In this paper, it Wik shown how
these generating functions are easily implementedMathematica for computing the permutation
distribution of ranks in a k-sample experiment.

3.0 Partitions of Integers
Given an integem, it is possible to represent it as the sum of onenore positive integers, , that is

N=x +x, +..+x,,. This representation is called a partition if the order efXh is of no consequence.

Thus, two partitions of an integal are distinct if they differ with respect to th§ they contain. For

example, there are seven distinct partitions of the integer 5:
54+1,3+2,3+1+1,2+2+1,2+1+1+10+#1+1+1.

The partitions of an integer have been the subjexttensive study for over 300 years, since Leibnitz
asked Bernoulli if he had investigaﬂé(h), the number of partitions of an integBr. Details of the history

and the state of the art as of 1920 can be found in [7].tidddl details and later results can be found in
most combinatorics texts; in particular, see [11], [1d Eb]. The interest in this work is partly motivated
by the important role played by partitions in many prolsleof combinatorics and algebra. For
computational purposes one is often interested in generatitige gartitions of an integer, or sometimes
just those satisfying various restrictive conditions. é8al such algorithms, dealing with both the
unrestricted and restricted cases have appeared in the literaiutheFunrestricted cases, see [2], [18],
[21] and [23]. In the case of the restricted partitions, sg¢d2] and [30].

Generating functions were first applied to part#tibg Euler. This technique can reduce the difficulty
of otherwise complex problems. We use generating funchieoause they can be manipulated much more
easily than combinatorial quantities. Euler invented a gingr function which gives rise to a recurrence

equation inP(n) given as

P(n)= Z k+l[P( - 10 k(3k - 1)+ Pl - 12K 3k+1)]

(3.1)

Other recurrence equations include

P(2n+1)=P Z[P n—4k? - 3k)+ P(n - 4k? + 3k} - Z 1)[P(2n+1-3k2 + )+ P(2n +1-3k? +1)
(3.2)

P()=1> a,(n-kP(K)
(3.3)
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Where 0, (n) is the divisor function. For these recurrence &qna, see [28].
The partition number@(n) are given by the generating function

S :iP(n)q“ =1+q+29° +3q® +5q" +A

(0. =

(3.4)
see Hirschhorn (1999P(n, k) denotes the number of ways of writifiy as a sum of exactlK terms.
HenceP(53) = 2, since the partition of 5 of length 3 dra11} and{221}. P(n,k) can be computed from
the recurrence relation

P(n,k)=P(n-1k-1)+P(n-k,k)

(3.5)
With P(n,k)=0 for k >n,P(n,n) =1 and P(n,0) = 0, see [28].
4.0 Combinatorics
A large class of problems in Combinatorial Matheosats concerned with computing the number of ways

in which some well-defined operation can be perfmnThe notions of combinations and permutatioas ar
the simplest and yet

most fundamental concepts in the study of the thexdrenumeration. Other enumerative techniques
include generating functions, recurrence relatiding,principle of inclusion and exclusion, Poly#igory
of counting. For detailed discussion of these cptg;esee [17].

The crucial point in nonparametric test tiyeis the fact that all possible arrangement of rdneks of
the observed values are equally likely. The sudfiticondition for a permutation test to be exaat an
unbiased against shifts in direction of higher ealus the exchangeability of the observations m th
combined sample, see [10] and [22] noted that whechangeability may be assumed in the null
hypothesis , reference null distributions of permutation temtigays exist, because, at least in principle,

they are obtained by considering all permutatiohsawvailable data.To calculate the distribution dgns
Pr{{X =x}) of a statisticX based on ranks, it is therefore only necessagbtain the number of cases

satisfying the conditioX = x. The combinatorial problems below give an esskiatia in achieving this.
Suppose there ar@ observations which are ranked 1, 2, 3N..,In how many different ways can one

divide thesen observations amonlf samples such that tHéh sampleT, containsn, observations and

the sum of the ranks of theda observations in samplg, is I, with n=n,+n, +...+n_ and
F=r +r,+..+r = %n(n +1)? Let the number be:

P[nlist,rlist] = P[{nlynzv...,nk},{rl'rz...,rk}]
(4.2)
We can calculate this numbeP[nIiSt,rIiSt] by counting the relevant partitions. There are
(n,+n, +..+n)
n!n,l...n!

possible permutations of th@ variates of thek samples of sizesniyi =12,...k

-1
nl
which are equally likely with probabilihj . Consider an experiment of two samples with
n'n,l....n/!

three observations in the first sample and two fag®ns in the second sample. The total number of
distinct arrangements i _ 10. Clearly from table 1P[{3,2},{8,7}] =2 and P[{3,2},{1L4}] =1.1f n and
32

K are not as small as in this example, this mettHoehameration fails because of the large number of
permutation sample spaces.
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Suppose again that there dreobservations numbered in such a way tdgtof these observations are
ranked M, d, have ranksm,,..., and d, have ranksmy so thatn=d, +d, +...+d,. We can find
the different ways that is possible to divide théseobservations amondl samples such that thidh
sample containsn, observations and the sum of the ranks of théseobservations isf; with

= + + ...+ = + + +
n=n+n, +..+n =d, +d, +..+d ana" 1T A =AM Hdm, +tdm,

Again, let this number be represented by:

Q[dlist, mlist, nlist, rlist]:= Q[{d,,d,.....d, },{m,m,,...m }{n..n,...n 1{r,. 1p0r J]

4.2)
Clearly, (4.2) is a generalization of (4.1), sifieel = n, we have

Qf1r...3.{12...nL{n.n,,..n  {r. e r = Pl n,.n W en
(4.3)
If we let d; =2 of the N=5 observations in table 1 be ranketh, =1. Suppose these are the

observations with the ranks 1, 2. Also let the rieing d, = 3 observations be rankea, = 2, then, all

possible arrangements of the ranks follows immedigtom table 1 and this is given in table 2. Huewl
when ties occur in ranking, it is customary to @ssaverage ranks. It is evident from table 2 that

Ql{23.{1.2.{32}.{53] =6 and
Qf(23.{12.{32}.{44}] =3. Again, if n andk are not as small as in this example, the methitsd fa

5. An efficient method
To overcome the problems associated with the metfoehumeration in section 4, the t concept of
generating functions is introduced. The aim hereoidind the generating functions for the numbers

P[nlist, rlist] and

Q[dlist, mlist, nlist, rIiSt] respectively. Letx[i] be a variable governing the number of observations
the ith sample andy[i] be a variable governing the sum of the ranks efdhservations in théth
sample. With this remark, the generating functiofr the numbers P[nlist,rlist] and
Q[{dlist, mlist, nlist, rl iSt}] respectively are:

dnid= ] So0b] |
g[dlist, mlist, k] = ”( x[l]y[l )

(5.1)

(5.2)
Obviously, the numbersP[nIiSt,rIiSt] and Q[dlist,mlist,nlist,rlist] are the coefficients of

Iillx[i]ni y[i]ri of the polynomial p[n, k] and q[dlist,mlist,k]. Hence, we get the numbers

P[nlist,rlist] and Q[dlist,mlist,nlist,rlist] by selecting the coefficients oﬁ «[i]" yfi]" - The
generating functions in (4.1), (4.2), (5.1) an@)%re implemented in Mathematica é.O and the phoes
are given in section 6. With this algorithm, itpsssible to solve the combinatorial problems pased
section 4 and other problems which are very diffituhandle manually.
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6.0 Mathematica procedures
This section contains the Mathematica procedurescédculating the numbersP[nIiSt,rIiSt] and

Qldlist, mlist, nlist, rlist]

6.1 Mathematica Commands
xlist[k_]:=Table[x[i],{i,1,k}];
ylist[k_]:=Table[y]i].{i,1,k}];
p[1,k_]:=xlist[K].ylist[K];
p[n_.k_]:=p[n,K]=p[n-1,K]*xlist[K].ylist[K]"*n
g[{d_}.{m_}.k_]:=(xlist[K].ylist[K]*"m)"d;
g[dlist_,mlist_,k_]:=q[dlist,mlist,K]= g[{First[dli st]},{First[mlist]},k]
g[Rest[dlist],Rest[mlist],k]

P[nlist_,rlist_]:=

Module[{n,r,k},

n=Plus@ @nlist;

r=Plus@ @rlist;

k=Length[nlist];

Iffr On (n+1)/2, Fold[Coefficient,Exgnd[p[n,K]],
Union[xlist[k]*nlist,ylist[K]"rlist]],

Print["r O n (n+1)/2"]]]

Qldlist_,mlist_,nlist_,rlist_]:= Module[{d,n,r,k}, d=Plus@@dlist;
n=Plus@ @nlist; r=Plus@ @rlist;

k=Length[nlist];

If[n Ud && r Cdlist.mlist, Fold[GHficient,Expand[q[dlist,mlist,K]],

Union[xlist[k]*nlist,ylist[K]"rlist]],
Print["'n 0 d1+...+dlorr J d1 m1+...+dl mI"]]]

Numerical examples
Expand[p[3,3]]=

*[11 01"+ 1) (2 w110 yi2] +x (2] xl2) vIT vl2) e e i2] w0l vial e x 0y xl2] w0 vi2) ex L w2 w2 e x0) v 2] plal vzl +xi2) vi2) +
x[L]*%(3] (11" w13 +x (L] (2] (3] 7111 v(21 9(3] e (L (2] (3] w20 p 120 ¥I3] wxl2) w (3] w20 g 03]+ (L] (3] w11 yl31 ex L] x[2] % (3] 711 w12 913"
®[L]x(2] (3] 7020 7120 y131 ex(2) v 3] vi2 pial e (L] (3] w110 w130 ex 00 k(30 110 0130 e (L) k120 %3] wIL p(2] 031 +x (L] x(2] (3] w(1) y12) ¥(3]° +
x(2* 131 ¥120 v13) e x(2D %03 12 w0l e w2l k(30 v i) w31t ex 2] w030 w120 w3 e k(1) %031 w100 w030’ +xi2) k(31 w120 1031 4203 p13)°

Expand[q[{3,2},{1,2},3]]=
*[L gL+ 311 w2 w10 v12) + 2200 w20 w0 w2l « 3x L) kl2) v i) s 60 2l v byl ex Ly w2 i ver e ke i e
sx(1) x(2) vl w2l e x w2 i w2l s 2x 0 w2l e vzl a2 ey viz) e xi2) vl2) e 3x 0t k(3] w10 w3] #6x(1) k120 %131 v vI2] v13] 4
6x[1] x(2] % [3] ¥IL1*vI21 93] + 3x(1] x (2] (3 IL y120 Y031+ 12110 % (20 k130 w11 w120 w130 3 (1] w121 (3] ¥I11 9121 903 « 6x (1] (2] (3] w10 w020 130
6x[1] %121 (3] ¥1L1 91207 ¥03] + 3x(20 03] 020 1030 + 2L (3] 710 w130% + 3x 00 (30 w1 w031 + 601 w[2) %13 w100 wl2] w031 + 310 k(2] %131 w12) yl2] wI3]' +
2x(1] (2] w31y vI2r g3 s 6] iz ] vy il ysn e 60 2l 3 0 w2 sl S0 2 w3 pin) ple) w3 e 2] 2] k3] w0 vier e s
6x[L] (2] k(31 (LI Y21 w131 « 6x 0] x(2D (3] TIL w120 Y031 # 3xlL izl (31 L] 121 y131* 2xi2) (3 iz w0a) + 3x 2] k(30 yi2) pI3) e 61 w3yl a0l o
%L %031 w100 130 s L) 120230 w100 wi2] 030 Ly 2] g3l w20 w2y w3 e ey i) g3 win) 2 wis s e 2y =2 w00 w0 2 via) e
L[] %120 (30 w10 yl2) vl3) + 2y wpar yl2r v ez it pla i en ) w3 o) vian e 6 it w3 pI0 w13 a0 2 w3yl i) il
6x[1] x (21 k(31" ¥IL1 v(2] w03 e 3L 2 (3] w0l wl2) w30 e 6 00 20 k(30 wiL] vi2l i3]t etel 03 w120 wisn e mxar i3 20 wian e 3w 0y w3 vl sy 4
2x(1) (31 00 w031 6Ll = 2] k(3 v (L vI2) 1030+ 3 f2) w130 w120 w30 e 2xl2r w130 v 2l yI3 e 30 w3 0] w31 s w020 k030 2] w3 e 3 i)

P[{8,8},{70,66}]=515
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Ql{3,4,5,3},{1,2,3,4},{6,4,5},{16,10,12}]26355
Other results can be obtained in a similar fashion.
7. Conclusion
This paper provides a method for generating thenptation distribution of the ranks of a k-sample
experiment. The algorithm discussed in this artetables us to handle the combinatorial problensego
in section 4 and other problems that are verydliffito calculate manually. Therefore, it is poksitp
manage with larger sample sizes within reasonabie.tFor example, it takes only 0.015 seconds to
compute P[{8, 8},{70, 66}]
and 0.219 seconds to calculate Q[{3, 4, 5, 3},{1324}, {6, 4, 5},{16, 10, 12}]. These calculatismequire
12,870 and 630,630 distinct arrangements of thiesreaspectively.

Finally, the proposed method show promiseBeifig applied to the computation of exact distidiu
of rank statistics. This is the next challenge.

Table 1. Permutation of the ranks of a 2 sample exgiment

T I T, r
1,2,3 6 4,5 9
1,24 7 3,5 8
1,34 8 2,5 7
2,34 9 15 6
1,25 8 34 7
1,35 9 2,4 6
2,3,5 10 14 5
1,45 10 2,3 5
2,45 11 1,3 4
3,45 12 1,2 3

Table 2. Permutation of the ranks of a 2 sample exgriment

T n T F
1,1,2 4 2,2 4
1,1,2 4 2,2 4
1,2,2 5 1,2 3
1,2,2 5 1,2 3
1,1,2 4 2,2 4
1,2,2 5 1,2 3
1,2,2 5 1,2 3
1,2,2 5 1,2 3
1,2,2 5 1,2 3
2,2,2 6 1,1 2
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