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Abstract 
 
Autoregressive (AR) and autoregressive moving average (ARMA) 
processes with multivariate exponential (ME) distribution are 
presented and discussed. The theory of positive dependence is used to 
show that in many cases, multivariate exponential autoregressive 
(MEAR) and multivariate autoregressive moving average (MEARMA) 
models consist of associated random variables. Also, we present special 
cases of the multivariate exponential autoregressive process in which 
the multivariate process is stationary and has well-known multivariate 
exponential distribution.  

 
Keywords: Marshall-Olkin multivariate Pareto distribution; Autoregressive minification processes of 

order 1 and k; Stationary marginal distribution; Joint survival function; Characterizations.  
. 
1.0 Introduction 
Pareto distributions have wide applications in different field such as the field of income and wealth 
modeling as well as failure times, birth rates, mortality rates and reliability models. 
  The multivariate Pareto distributions have important applications in modeling problems involving 
distributions of incomes when incomes exceed a certain limit. For example, income from several sources, it 
is not at all clear that we will be able to confidently visualize marginal features of the distribution. Rather 
we might be able to speculate that for given levels of income sources 2,3,4,…,k the income from source 
will have a Pareto like distribution with parameters perhaps depending on the level of income from the 
other sources, see [1]. 
The univariate Pareto distribution was first introduced by [13]. Some special bivariate Pareto distribution 
with homogeneous scale parameters were studied by [4]. Yeh [19] had studied the characterization of 
multivariate Pareto (III), MP  (n) (III)  already discussed by [2], through the geometric minimization 

procedures. All these results were extended to the Multivariate Pareto (MP( )n
) distribution by [20]. 

Characterizations of multivariate Pareto distribution, using the minimum of two independent and 
identically distributed random vectors, were also studied by [20]. 
  The proofs of these characteristics (given in [20]) were based on the general and the particular solutions of 
the Euler’s functional equations of n≥ 1variables. 
The work of [16] was the first one on first order autoregressive processes with minification structure. 
Subsequently, many authors developed autoregressive minification processes having various marginal 
distributions. [5] introduced additive first order autoregressive processes with bivariate exponential and 
geometric stationary marginal distributions and studied their properties. [7] studied an additive first order 
autoregressive bivariate exponential process. [3] presented autoregressive logistic processes. [17] studied 
multivariate minification processes. [15] introduced and studied stationary bivariate minification processes 
in detail.   
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A minification process of the first order is given by 

                           ( )1min , , 1,n n nX R X nε−= ≥
 
 where   1R >  and  { }, 1n nε ≥ is an innovation 

process of  
 
                   

 
independent and identically distributed random variables.  [9] define a first order autoregressive 
minification process as a sequence having the general structure  

( )
1

1min , 1
n

n
n n

kX with probability P
X

k X with probability P
−

−


=  ∈ −

 

where { }n∈ is an innovation process of independent and identically distributed random variables chosen 

such that { }nX is a stationary Markov process with a specified marginal distribution function ( ).XF X   

  Another form of minification process is the one with structure 

      ( )
1

1min , 1 .
n

n
n n

k with probability P
X

k X with probability P
−

−

∈
=  ∈ −

 

The nature of the structure of { }nX  above is what makes it to be called minification process.  

  Thomas and Jose [17] introduced and studied the univariate Marshall-Olkin Pareto processes. [18] 
developed a new family of distributions that were earlier studied by [11] which is similar to those of [14]. 
In [18], also, AR(1) and AR (k) times series models useful in generating first order and kth order 
autoregressive minification processes having a specified stationary bivariate marginal distribution are 
presented and studied. In that paper, they developed the Marshall-Olkin bivariate Pareto distribution as a 
generalization of the bivariate Pareto distribution of [4]. In that paper, bivariate Pareto AR (1) model and its 
generalization to AR (k) model with MO-BP stationary distribution were constructed. Those models 
developed are analogous to the model studied by [8] where the role of addition is replaced by minimization. 
Recently, [12] presented and studied a bivariate minification process with Marshall-Olkin exponential 
distribution. In that paper, they went ahead to estimate the unknown parameters and also studied the 
asymptotic properties of the estimated parameters. The Marshall and Olkin bivariate Pareto distribution has 
many different applications in the reliability theory and the field of income. This family is a positively 
quadrant dependent. It is proved that this family tends to bivariate exponential Marshall and Olkin type 
with nonlinear transformation.      
       In this paper, we present a Marshall-Olkin multivariate Pareto distribution as an extension of bivariate 
Pareto distribution earlier introduced by [18]. It is similar to the one introduced by [11] and also similar to 
those introduced by [14]. In section 2.0, we introduce the modified multivariate Pareto distribution (MO-
MP) as an extension of bivariate Pareto distribution of [18]. In section 3.0, some characterizations 
properties of Marshall-Olkin multivariate Pareto distribution (MO-MP) are introduced and studied. We 
construct a multivariate Pareto AR (1) model having MO-MP stationary distribution in section 4.0. In 

section 5.0, we generalize it to the thk  order autoregressive model. The models developed here are 
analogous to the models introduced by [18] which in turn are analogous to the ones presented by [8] where 
the minimization takes the role of addition.    
 
2.0     Marshall-Olkin multivariate Pareto distribution 
 
Now we consider the multivariate Pareto distribution and distributions related to it, which are generally 
used for modeling socio-economic data.  

Definition 2.1: The random vector ( )1 2, ..., nX X X X= is said to have a n-variate Pareto distribution 

with parameters, ( ) ( )1 20,1 , , ,..., 0np β β β β∈ = >   and the scale parameter 
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( )1 2, ,..., 0,nσ σ σ σ= > and X  is denoted by ( ) ( ), , ,nX MP pσ β: if its survival function is of 

the form  

    ( ) ( )1 2

1

1 , ,...,
X

n

F X
x x xψ

=
+

                                                           (2.1)    

such that  
 
 
                  

 

( ) ( )11 1
1 2

1 2 1 2

1
, ,..., , ,..., n

n nx x x p x p x p x
p

ββ βψ ψ=                               (2.2) 

The equation is true for all , 1,2,...,ix i n=  and particular , 1,2,...,ip i nβ =  where 

0 1; 0, .ip iβ< < > ∀
  

 

Also, ( )1 2, ,..., nx x xψ is a monotonically increasing function in X   satisfying  

( )
1 2

1 20 0 0
lim lim ... lim , ,... 0

n
n

x x x
x x xψ

→ → →
= and ( )

1 2
1 2lim lim ... lim , ,... .

n
n

x x x
x x xψ

→∞ →∞ →∞
= ∞  

The solution of equation (2.2) is ( ) 1 2
1 2 1 2, ,..., ... .n

n nx x x x x xββ βψ = + + +   It is easy to show that the 

univariate marginal distributions of  , 1,2,...,iX i n=  are the univariate Pareto distributions of Pillai 

(1991), by taking ( ) ( )1 1,0,...,0x xψ ψ≡ ,  ( ) ( )2 20, ,...,0x xψ ψ≡ ,…, ( ) ( )0,0,...,n nx xψ ψ≡ . 

As an extension of Marshall and Olkin (1997), the multivariate extension of a family of distributions is 
given as follows: 

Let ( )1 2, ..., nX X X X= be a random vector with joint survival function given 

by ( ) ( )1 2
1 2

1

1 ... n
X

n

F X
x x xββ β

=
+ + + +

. 

Then the modified multivariate survival function is in the form 

   ( ) ( )
( ) ( ) ( )1 2, ,..., 0, 0 1,

1 1

X
X n

X

F X
G X X x x x

F X

α
α

α
= = ≥ < <

− −
                   (2.3) 

is a proper multivariate survival function. The family of distributions in this form is called Marshall and 
Olkin multivariate family of distributions. 
From (2.3), we can see that the modified survival function is  

 ( ) ( ) ( )
1 2

1 2 1 21
1 2

1
, ,..., ; , ,..., 0, 0 1.

1 ... n
n n

n

G x x x X x x x
x x xββ β

α

β α= = ≥ < <
+ + + +

             

(2.4) 
The survival function in the form (2.4) is known as Marshall-Olkin multivariate Pareto distribution denoted 
by MO-MP. The density function is given by 

( ) ( ) ( )1 2
3

1 1
1 2 1 221 1

1
, ,..., 2 1 ... ; 0, , 0, , 0 1.i n

n n

n i i n i i
i i

g x x x x x x x x i iβ ββ β
αβ β α

α
−−

= =
 = Π Π + + + + > ∀ > ∀ < < 

The marginal distributions of iX  are ( ) ( )( ) 21 11 , 0, 0, 0 1.i ii
i i i i ig x x x xβ β

α
β β α
α

−−= + ≥ > < <  

Also,  
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( ) ( )1

1 ,1 , .i

i i

r
r r r
i iE X B rβ

β βα β  = + − <   

Variance of  iX  is given as: 

( )( ) ( )( ) ( )( ) ( )( )2 2
2 2 1 1( ) 1 1 1 1 ; 2, 1,2,..., .i

i i i ii iVar X if i nβ
β β β βα β  = Γ + Γ − − Γ + Γ − > =   

  

( ) ( )1 1 2
1 1 1 1 12 1,2 1,1 ; , 1,2,..., .i j

i i j i ji jE X X B B i j n and i jβ β

β β β β βα
+ −

  = + − + − − = ≠   

 
 
 

From the above information, we can get the correlation between .i jX and X  

    Similar multivariate distribution can be developed by considering multivariate Weibull and exponential 
survival functions. For instance, a multivariate Weibull distribution has a survival function of the form    

        ( )
1

i

n

X i
i

F X EXP xβ

=

 = − 
 
∑  where 

1

i

n

i
i

xβ

=
∑  satisfied the conditions specified above. Then the 

Marshall- 
 
 
Olkin multivariate Weibull distribution has the survival function given by 

       ( )
( )

1

1

1 2, ,..., ; .

1 1

n
i

i
i

n
i

i
i

x

n
x

e
G x x x

e

β

β

ββ

β

=

=

−

−

∑

=
∑

− −

                                               (2.5) 

Theorem  2.1 :  Let 
( ) ( ) ( )( ){ }1 2, ,..., , 1n
i i iX X X X i= ≥ be a multivariate sequence of non-negative 

random vectors independently and identically distributed as Marshall-Olkin multivariate Pareto, then  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1
1 21 1 1 2 2 2

1 2 1 2 1 2min , ,..., , min , ,..., ,..., min , ,...,n n n nn n n
n n n nZ X X X X X X X X Xβ β β

α α α
 =
 

; ( )0, 1,2,..., , 1, ,i i n n nβ α> = > >  is asymptotically distributed as multivariate Weibull as n  goes 

to infinity. 

Proof:-   If X  is distributed as MO-MP, then from equation (2.4), we have   

( ) ( )1 2
1 2 1

1 2

1
, ,..., ; ,

1 ... n
n

n

G x x x
x x xββ β

α

α =
+ + + +

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1
1 1 1 1

1 2 1 2 1 1 2, ,..., min , ,..., ,..., min , ,...,nn
n n nn n

Z n n n nF x x x P X X X x X X X xβ β

α α
 = > >
 

 

                             ( ) ( ) ( )( )1 1 1
1 2

1 2, ,..., n

n
n n n

nG x x xβ β β

α α α
− − − =   

 

                             ( )1 2
1 2 ...

1

1
n

n

n

x x x

n

β β β+ + +

 
 =
 + 

.                                                                     (2.6) 
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As n  goes to infinity, equation (2.6) tends to 
( )1 2

1 2 ...
.

n
nx x x

e
β β β− + + +

  
Hence the proof is complete. 
From the [10] and discussed in detail by [6] with subsequent representation by [18], we can easily verify 
that Marshall-Olkin multivariate Pareto distribution is in the domain of attraction for minimum of the 
multivariate Weibull distribution.  
 
 
 
 
 
 
3.0     Characterizations 

The following theorems provide the characterizations properties of Marshall-Olkin multivariate Pareto 
distribution (MO-MP). Proofs of these theorems are also given in this section. 
 
Theorem  3.1:  Let N be a geometric random variable with parameter p such that 

{ } 1 , 1, 2 , 3 , . . . , 0 1, 1 .nP N n p q n p q p−= = = < < = − Consider a 

sequence ( ) ( ) ( ) ( ){ }1 2 3, , , . . . , , 1n
i i i iX X X X i ≥ of independent and identically distributed 

random vectors with common survival function ( )1 2, , . . . , ,nF x x x where N and 

( ) ( ) ( ) ( ){ }1 2 3, , , . . . , , 1n
i i i iX X X X i ≥ are independent for all 1 .i ≥ Let  

 
( ) ( ) ( )1 2

1 2
1 1 1
m in , m in , . . . , m in .n

i i n i
i N i N i N

U X U X U X
≤ ≤ ≤ ≤ ≤ ≤

= = = Then the random vectors 

( )1 2, ,..., nU U U are distributed as Marshall-Olkin multivariate Pareto if and only if 

( ) ( ) ( ) ( ){ }1 2 3, , , . . . , , 1n
i i i iX X X X i ≥ have the multivariate Pareto distribution. 

 
Proof:   Suppose  

( ) ( )1 2 1 1 2 2, , . . . , , , . . . ,n n nR x x x P U x U x U x= > > >  

                                     ( ) 1
1 2

1

, ,...,
n

n
n

n

F x x x pq
∞

−

=

 =  ∑  

                                     ( )1 2, ,..., npF x x x= ( )
1

1
1 2

1

, ,...,
n

n
n

n

F x x x q
∞ − −

=

 
 ∑  

                                     
( )

( )
1 2

1 2

, ,...,
.

1 , ,...,
n

n

pF x x x

qF x x x
=

−
 

Let ( ) ( )1 2
1 2

1 2

1
, ,..., ,

1 ... n
n

n

F x x x
x x xββ β

=
+ + + +

 which is the survival function of multivariate Pareto 

distribution. Putting this into the equation above, we have  

 ( ) ( ) ( )
1 2

1 2 1 21
1 2

1
, , . . . , , , . . . ,

1 . . . n
n n

np

R x x x G x x x
x x x ββ β

= =
+ + + +

  

(3.1) 
which is the survival function of Marshall-Olkin multivariate Pareto distribution. 
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Conversely, let   

             ( ) ( )1 2
1 2 1

1 2

1
, , . . . , .

1 . . . n
n

np

R x x x
x x x ββ β

=
+ + + +

 

Then  

( )
( ) ( )

1 2

1 2

, , . . . ,

1 1 , , . . . ,
n

n

p F x x x

p F x x x
=

− − ( )1 21
1 2

1
.

1 . . . n
np x x x ββ β+ + + +

 

 
From this, we have   

                 ( ) ( )1 2
1 2

1 2

1
, ,..., ,

1 ... n
n

n

F x x x
x x xββ β

=
+ + + +

 which is survival function of multivariate 

Pareto distribution. Hence the proof is complete. 
Another characterization of the MO-MP distribution is given below. 

Let { }: 1kN k ≥ be a sequence of geometric random variables with parameters , 0 1.k kp p≤ ≤  

Define  ( ) ( ) ( ) ( )( )1 1 1

1 2
1 2 1, 2,, ,..., ..., , 2,3,...

k k k

n
k n N N N nF x x x p U x U x U x k

− − −
= > > > =             

                                        
( )

( ) ( )
11 1 2

11 1 2

, ,...,
.

1 1 , ,...,

kk n

kk n

p F x x x

p F x x x

−−

−−

=
− −

                                             (3.2)          

In this case, we refer kF as the survival function of the geometric 1kp − minimum of independent and 

identically distributed random vectors with 1kF −  as the common survival function. 

Theorem   3.2:   Let ( ) ( ) ( ) ( ){ }1 2 3, , , . . . , , 1n
i i i iX X X X i ≥ be a sequence of independent and 

identically distributed non-negative random vectors with common survival function 

( )1 2, ,..., .nG x x x Define  1G G= and kF as the survival function of the geometric 1kp −  minimum of 

independent and identically distributed random vectors with 1, 2,3,...kF k− =  as the common survival 

function. Then  

( ) ( )1 2 1 2, ,..., , ,...,k n nF x x x G x x x=                                                                                      (3.3) 

if and only if  ( ) ( ) ( ) ( ){ }1 2 3, , , . . . , , 1n
i i i iX X X X i ≥ has MO-MP distribution. 

Proof:  From the definition, the survival function kF satisfies the equation (3.2). Therefore, we have   

( ) ( )1 2 1
1 2

1
, ,...,

1 , ,...,n
np

G x x x
x x xψ

=
+

 

                         ( )1 2

1
,

1 , ,..., nx x x
=

+ Φ
 where  ( )1 2, ,..., nx x xΦ is a monotonically increasing function 

in ( ) ( )1,2,3,... , 0, 1,2,3,...i ix i n x i n= ≥ =  and also 

1 20 0 0
lim lim ... lim

nx x x→ → →
( )1 2, ,..., 0nx x xΦ =  and 

1 2

lim lim ... lim
nx x x→∞ →∞ →∞

( )1 2, ,..., .nx x xΦ = ∞  Hence we can 

write  ( ) ( )1 2
1 2

1
, ,..., ; 1,2,3,...

1 , ,...,
k n

k n

G x x x k
x x x

= =
+ Φ

.  Substituting this in (3.2), we get  
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( ) ( )1 1 2
1 2

1

, ,...,
, ,..., , 2,3,...k n

k n
k

x x x
x x x k

p
−

−

Φ
Φ = =  .    

Using this relation recursively, we have   ( ) ( )1 1 2
1 2

1 2 1

, ,...,
, ,..., ,

...
n

k n
k

x x x
x x x

p p p −

Φ
Φ = as 1G G=  we have  

 
 

1Φ = Φ . 

This implies that   ( ) ( )1 1 2
1 2

1 2 1

, ,...,
, ,..., .

...
n

k n
k

x x x
x x x

p p p −

Φ
Φ =                                             (3.4)       

Hence,     ( ) ( )1 2 1 2, ,..., , ,..., .K n nF x x x G x x x=     

On the other hand, assume equation (3.3) holds. By the hypothesis of the theorem equation (3.4) follows. 
Therefore equations (3.3) and (3.4) together lead to the equation  

( )
1

1 1 2
1 2 1

1
1 , ,...,

... n
k

x x x
p p p

−

−

 
+ Φ = 

 
( )1 2, ,..., nG x x x      

( )

( )

1
1 2

1 2

1

1 , ,...,

1
.

1 , ,...,

np

n

x x x

x x x

ψ
=

+

=
+ Φ

                          

This implies that   ( ) ( )1 1 2
1 2

1 2 1

, ,...,
, ,..., .

...
n

n
k

x x x
x x x

p p p −

Φ
Φ = Hence the theorem. 

 
4.    Marshall-Olkin multivariate Pareto AR (1) model 
 
In this section, we consider the construction of first order autoregressive minification time series model, 
AR (1), with MO-MP distribution as stationary marginal distribution. 

Theorem   4.1:     Consider a multivariate autoregressive minification process 
( ) ( ) ( )( ){ }1 2, ,..., n
n n nX X X  

having the structure 

( )
( )

( ) ( )( )
( )

( )

( ) ( )( )

( )
( )

1

1

1 1
1

2

2

2 2
1

min , 1

min , 1

..................................................................

n

n

n n

n

n

n n

n
nn

n

U with probability p
X

X U with probability p

U with probability p
X

X U with probability p

U with probabi
X

−

−

= 
−

= 
−

= ( ) ( )( )1min , 1n n
n n

lity p

X U with probability p−




−

                                                  (4.1) 
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where 
( ) ( ) ( )( ){ }1 2, ,..., n
n n nU U U are the innovations which are independent of 

( ) ( ) ( )( ){ }1 2, ,..., , 1,2,..., .n
n k n k n kX X X k n− − − = Then 

( ) ( ) ( )( ){ }1 2, ,..., n
n n nX X X has stationary marginal 

distribution as MO-MP if and only if 
( ) ( ) ( )( ){ }1 2, ,..., n
n n nU U U is jointly distributed as multivariate Pareto 

distribution. 
 
 
 
Proof:  From equation (4.1), we have 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

11 1
1 1

,..., 1 2

,...,,..., ,...,1 2 1 2 1 2

, ,...,

, ,..., 1 , ,..., , ,...,

n
n n

nn n
n n n nn n

X X n

X XU U U Un n n

F x x x

pG x x x P F x x x G x x x− −= + −
      (4.2) 

Under stationary condition, we have  

 ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ){ }
1

1

1

,..., 1 2
,..., 1 2

,..., 1 2

, ,...,
, ,...,

1 1 , ,...,

n

n
n n

n

U U n
X X n

U U n

pG x x x
F x x x

P G x x x
=

− −
.                                            (4.3) 

If we take 

( ) ( ) ( )1 ,..., 1 2

1

1
, ,..., ,

1

n
n n

i

U U n n

i
i

G x x x
xβ

=

=
+∑

  then 

( ) ( ) ( )1 ,..., 1 2

1

, ,..., ,n

i

X X n n

i
i

p
F x x x

p xβ

=

=
+∑

  which is the survival function of MO-MP. 

On the other hand, if we take  ( ) ( ) ( )1 ,..., 1 2

1

, ,..., ,n

i

X X n n

i
i

p
F x x x

p xβ

=

=
+∑

 which is the survival function of  

MO-MP and substituting it in (4.3), we have 

 ( ) ( ) ( )1 ,..., 1 2

1

1
, ,..., ,

1

n
n n

i

U U n n

i
i

G x x x
xβ

=

=
+∑

 which is the survival function of multivariate Pareto 

distribution and the process is stationary. 
Stationarity can be established as follows. 

Assume 
( ) ( ) ( )( ){ }1 2, ,..., n
n n nX X X d MO MP−  and  

( ) ( ) ( )( ){ }1 2, ,..., .n
n n nU U U d MP Then from (4.2)  

( ) ( ) ( )1 ,..., 1 2

1

, ,..., .n
n n

i

X X n n

i
i

p
F x x x

p xβ

=

=
+∑

This established that  
( ) ( ) ( )( ){ }1 2, ,..., n
n n nX X X  is distributed 

as MO-MP. 

It is also possible to show that 
( ) ( ) ( )( ){ }1 2, ,..., n
n n nX X X  is stationary and is asymptotically marginally 

distributed as MO-MP. 
 
5.0     Generalization to the thk  order autoregressive model  
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In this section, we develop the thk order multivariate autoregressive model 
( ) ( ) ( )( ){ }1 2, ,..., k
n n nX X X having the structure given in the following theorem as an extension of first order 

multivariate autoregressive minification time series model presented earlier in section 4.0.  The structure of 
the process is given in the following theorem. 
 
 
 
 
 

Theorem   5.1:  Consider a thk order autoregressive time series, AR (k), model with structure:  

( )

( )

( ) ( )( )
( ) ( )( )

( ) ( )( )

1
0

1 1
1 1

1 1 1
2 2

1 1

min ,

min ,

......................................................

min ,

........................

n

n n

n n n

n k n k

U with probability p

X U with probability p

X X U with probability p

X U with probability p

−

−

−





= 





( )

( )

( ) ( )( )
( ) ( )( )

0

1 1

2 2

....................................................... (5.1)
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i i
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=

< < =∑ Then  
( ) ( ) ( )( ){ }1 2, ,..., k
n n nX X X has stationary marginal distribution 

as MO-MP if and only if  
( ) ( ) ( )( ){ }1 2, ,..., k
n n nU U U  has a multivariate Pareto distribution.  

The proof of this theorem is similar to that of theorem (4.1) above with first order autoregressive 

minification process model replaced by thk order autoregressive minification process model. 
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