Journal of the Nigerian Association of Mathematical Physics
Volume 16 (May, 2010), pp 553 - 562
© J. of NAMP

Multivariate Pareto Minification Processes

S. M. Umar

Department of Mathematical Sciences, Bayero University,
P.M.B. 3011 Kano-Nigeria
Corresponding authore-mail: surajoumar@yahoo.coriel. +2347030608737

Abstract

Autoregressive (AR) and autoregressive moving average (ARMA)
processes with multivariate exponential (ME) distribution are
presented and discussed. The theory of positive dependence is used to
show that in many cases, multivariate exponential autoregressive
(MEAR) and multivariate autoregressive moving average (MEARMA)
models consist of associated random variables. Also, we present special
cases of the multivariate exponential autoregressive process in which
the multivariate process is stationary and has well-known multivariate
exponential distribution.

Keywords: Marshall-Olkin multivariate Pareto distribution; #uwegressive minification processes of
order 1 and k; Stationary marginal distributionndsurvival function; Characterizations.

1.0 Introduction
Pareto distributions have wide applications in etéht field such as the field of income and wealth
modeling as well as failure times, birth rates, taldy rates and reliability models.

The multivariate Pareto distributions have impaott applications in modeling problems involving
distributions of incomes when incomes exceed atelimit. For example, income from several souries
is not at all clear that we will be able to confitlg visualize marginal features of the distributidrather
we might be able to speculate that for given leeélsncome sources 2,3,4,...,k the income from source
will have a Pareto like distribution with parametgrerhaps depending on the level of income from the
other sources, see [1].
The univariate Pareto distribution was first intwodd by [13]. Some special bivariate Pareto distidin
with homogeneous scale parameters were studiedibygh [19] had studied the characterization of
multivariate Pareto(lll), MP @ (1) already discussed by [2], through the geometricimization

procedures. All these results were extended toMidtivariate Pareto (MIB")) distribution by [20].
Characterizations of multivariate Pareto distribnfi using the minimum of two independent and
identically distributed random vectors, were alsaied by [20].

The proofs of these characteristics (given if)[2@&re based on the general and the particulatisols of
the Euler’s functional equations oBrivariables.
The work of [16] was the first one on first ordart@egressive processes with minification structure
Subsequently, many authors developed autoregressimdication processes having various marginal
distributions. [5] introduced additive first ordautoregressive processes with bivariate exponeatiel
geometric stationary marginal distributions andd&td their properties. [7] studied an additivetfiosder
autoregressive bivariate exponential process. [8fgnted autoregressive logistic processes. [Lidjext
multivariate minification processes. [15] introddcand studied stationary bivariate minification qasses
in detail.
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A minification process of the first order is given
X,=Rmin(X &), n=1 where R>1 and{€,,n=2 is aninnovation
process of

independent and identically distributed randomafalgs. [9] define a first order autoregressive
minification process as a sequence having the gesgucture

B kX, with probability P
" |kmin(X,,,0,) with probability 1-P
where{Dn} is an innovation process of independent and idalhfidistributed random variables chosen

such thal{ Xn} is a stationary Markov process with a specifiedgimai distribution functionF (X )
Another form of minification process is the onighwstructure
[ kO, with probability P
" {k min(X,.,,0d,) with probability 1-P.

The nature of the structure {)an} above is what makes it to be called minificatioogess.

Thomas and Jose [17] introduced and studied thieatate Marshall-Olkin Pareto processes. [18]
developed a new family of distributions that weaglier studied by [11] which is similar to those[@#].

In [18], also, AR(1) and AR (k) times series modeseful in generating first order and lorder
autoregressive minification processes having a ifspécstationary bivariate marginal distributionear
presented and studied. In that paper, they develtiee Marshall-Olkin bivariate Pareto distributias a
generalization of the bivariate Pareto distributidf4]. In that paper, bivariate Pareto AR (1) rabdnd its
generalization to AR (k) model with MO-BP statiopadistribution were constructed. Those models
developed are analogous to the model studied byii@fe the role of addition is replaced by minirtizza.
Recently, [12] presented and studied a bivariateifitétion process with Marshall-Olkin exponential
distribution. In that paper, they went ahead tdneste the unknown parameters and also studied the
asymptotic properties of the estimated parameldrs.Marshall and Olkin bivariate Pareto distribatitas
many different applications in the reliability thgoand the field of income. This family is a posiy
guadrant dependent. It is proved that this fanghyds to bivariate exponential Marshall and Olkipety
with nonlinear transformation.

In this paper, we present a Marshall-Olkinltiaariate Pareto distribution as an extensioigfriate
Pareto distribution earlier introduced by [18]idtsimilar to the one introduced by [11] and alsuilar to
those introduced by [14]. In section 2.0, we introel the modified multivariate Pareto distributidC-
MP) as an extension of bivariate Pareto distributaf [18]. In section 3.0, some characterizations
properties of Marshall-Olkin multivariate Paretcstdbution (MO-MP) are introduced and studied. We
construct a multivariate Pareto AR (1) model havM@®-MP stationary distribution in section 4.0. In

section 5.0, we generalize it to the" order autoregressive model. The models develomsd bre
analogous to the models introduced by [18] whictuim are analogous to the ones presented by [8tevh
the minimization takes the role of addition.

2.0 Marshall-Olkin multivariate Pareto distribution

Now we consider the multivariate Pareto distribatend distributions related to it, which are geligra
used for modeling socio-economic data.

Definition 2.1: The random vectoﬁZ(Xl, Xz...,Xn)is said to have a n-variate Pareto distribution

with  parameters, pD(O,l) ,g = (,81 5, ,...,Bn) > ( and the scale parameter

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010) 553 — 562
Multivariate Pareto Minification Processes S.M.Umar  J of NAMP



QZ(Jl,JZ,...,Jn) > 0,and X is denoted by X : Mp) (g,ﬁ, p) ,if its survival function is of

the form

= 1
FX l = (2.1)
)= g teoe )
such that
=L ohx p% Q
w()(ll)(Z""'Xn)_Bw(p xl,p2x2,...,p"xn) (2.2)

The equation is true for ak, i =1,2,...n and particularp, B i =1,2,...n where
O<p<L g>0,0i.

Also, 4[/()(1, X5, ...,Xn) is a monotonically increasing function iXX satisfying

lim lim ... lim ¢ (X, X,,...x,) = Oand lim lim ... im (X, X,,...x,) = c.
Xq — 00

% -0%-0 x,-0 X -0 Xp - 00
The solution of equation (2.2) it;&/(xl,xz,...,xn) = Xfl + ng + ..+ Xf” . It is easy to show that the

univariate marginal distributions oin, i =1,2,...n are the univariate Pareto distributions of Pillai

(1991), by taking/ (%) =¢¢/(%,0,...,0, ¢ (%) =¢(0,%,....0,...¢¢(x,) =¢(0,0,...x,).

As an extension of Marshall and Olkin (1997), theltmariate extension of a family of distributiomns
given as follows:

Let X = ( X Xy X, ) be a random vector with joint survival function eiv
1
1+(xfl +xP 4+, "'Xn") '
Then the modified multivariate survival functionimsthe form
aFx(X)
1-(1-a) Fx (X)
is a proper multivariate survival function. The fmof distributions in this form is called Marshand

Olkin multivariate family of distributions.
From (2.3), we can see that the modified surviuatfion is

— . — 1
G (%, %y, %, 35) _1_'_%()(1/& +X% + .+ Xf)

byFx (X)=

Gx (X)= X =(%,Xpy00%,)2 0, 0<ar < 1 (2.3)

X =(X X ,..%,)= 0,&Ka< 1

(2.4)
The survival function in the form (2.4) is knownMsarshall-Olkin multivariate Pareto distributionrdeed
by MO-MP. The density function is given by

(X, Xpy e X, ) = 2_I'I,8I'Ixf‘ <1 [1+(}{,)( At xbet +xnn)]_3 x> 00i B> i ,&a<

The marginal distributions oX; are g (%) :%Xiﬂ' * (1+ (7)%° )_2 , %20, >0, ka<1

Also,
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E[X/ ] :(a%%)r B(1+£,1-£), r<g.

Variance of X, is given as:

Var(X,) =a’ {r(1+(5%))r(1—(73))—[r(1+(_f))r(1-(7?))}2} if B> 2i=12.1

E[XX, ]=20"""B(1+12-3)B(#+ 12 -2) i j= 12.0 and i# ]

From the above information, we can get the corieidtetweenX; and X

Similar multivariate distribution can be devyedal by considering multivariate Weibull and expdren
survival functions. For instance, a multivariateilddd distribution has a survival function of therfn

— n n
Fx (X) = EXP(—Z )gﬂ'j where Z x” satisfied the conditions specified above. Then the
— —

Marshall-

Olkin multivariate Weibull distribution has the sival function given by

_Zn:&lﬁ
J— e i=1
G(X, %y, %,:8) = P ol (.5
=YX

1-(1-B)e =

Theorem 2.1 : Let X Z{(Xi(l),X-(z),...,Xi(n)) 1= Z}be a multivariate sequence of non-negative

random vectors independently and identically distied as Marshall-Olkin multivariate Pareto, then
z, = [(3)7”1 min(X® X, xP) (2% min(x{? x{(?x[?) (2 mipx X ,..xg"))}

; :8| >0, (i =1,2, n) N> 1n>a is asymptotically distributed as multivariate Waelas N goes
to infinity.

Proof:- If X is distributed as MO-MP, then from equation (2w, have

1

X+ A X))

Fz0 (%, %,...%,) = P| (&) min(Xl(l) X ,...)(r(11))>x1 o f2) mhﬁxg‘) X ,..xr(]")) >an

G (X Xy, eeeX, ) =

=
+
Y
—

1
1
(9)
—
—
Q|3
~—
S
2
—
Qs
I
35
x
—
Q|3
~
S
~—~——
>

= - ) (2.6)
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(xPraxBoy. . r/]zn
As N goes to infinity, equation (2.6) tendsa)(xl TR )

Hence the proof is complete.

From the [10] and discussed in detail by [6] wittbsequent representation by [18], we can easilifyver
that Marshall-Olkin multivariate Pareto distributias in the domain of attraction for minimum of the
multivariate Weibull distribution.

3.0 Characterizations

The following theorems provide the characterizatiproperties of Marshall-Olkin multivariate Pareto
distribution (MO-MP). Proofs of these theorems @ given in this section.

Theorem 3.1: Let N be a geometric random variable with par@mgd such that

P{N =n}=pg"*, n=1,2,3,...,0< p< 1,g= } p Considera
sequence{ X i(l), X i(z)' X i(s) yee, X i(n) = ]} of independent and identically distributed
random vectors with common survival functid? ( Xy Xy oo X, ) , where N and

{ X i(l), X i(z), X i(s) s X i(n) g = ]} are independent for ail = 1. Let

U,=m

|
1<

n X i(l) U, = m i[‘] X i(z) o U = m iNn X i(n) .Then the random vectors
<I< <I<

(Ul,Uz, ...,Un) are distributed as Marshall-Olkin multivariate Rarié and only if

{ X i(l), X i(z)' X i(s) yee s X i(n) g = ]} have the multivariate Pareto distribution.

Proof. Suppose

R(%,%,,....x,)=P (U ,>x,U,>x,,...U, >x,)

i[f(xl,xz,---,xn)]" pg™

pE(Xl’Xz’-"’Xn) Z[F (Xl,X2,...,Xn)}n_l(;1”'1

p=}

n=1

_ pf_(xl,xz,...,xn) |

1-qF (X, %,,...X,)
1

Let E(xl,xz,...,xn)

= , which is the survival function of multivariate &
1+ (X + x5+ x5

distribution. Putting this into the equation abowe, have

— 1
R(x,,X,,....,x,)=
( 1 2 n) 1+ %(X1ﬂ1+xzﬁz+---+ an)

= a(xl,xz,...,xn)

(3.1)

which is the survival function of Marshall-Olkin tivariate Pareto distribution.

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010) 553 — 562
Multivariate Pareto Minification Processes S. M. Umar J of NAMP



Conversely, let

— 1
R(x,,X,,....,%X,)= .
( 1 2 n) 1+ %(Xlﬂl + Xzﬁz + .+ an)

Then
PF (X Xp0eoes Xy ) 1

1-(1- p)F (X%, o0, ) 1+ (x4 xf+ 4 x[)

From this, we have

— 1
F (%)

:1+(xfl XG44 X

Pareto distribution. Hence the proof is complete.
Another characterization of the MO-MP distributisrgiven below.

Let { N, : k> ZI} be a sequence of geometric random variables witinpeters 3, , 0< P = 1.

, which is survival function of multivariate

Define Fi (%, Xy,--,%,) = p(USk)f1 >xU >x, .U >xn) k=273,..

_ pk_lfk-lixl, Xy e Xy ) |
1_(1_ pk—l) Fk—l(Xi,Xz,...,Xn)

In this case, we refel-k as the survival function of the geometf;_; minimum of independent and

(3.2)

identically distributed random vectors withk-1 as the common survival function.

Theorem 3.2: Let{ X i(l), X i(z)’ X i(3) s oo, X i(n) g = ]} be a sequence of independent and
identically distributed non-negative random vecteith common survival function
G(Xl, X5y ...,Xn) .Define G1 =G and F« as the survival function of the geometr_, minimum of

independent and identically distributed random eextvith Ek—l, k =2,3,.. as the common survival
function. Then

Fie (%, X0 e%, ) =G (X Xp 100, ) (3.3)
if and only if { X x @ xO&  x M ]} has MO-MP distribution.

Proof: From the definition, the survival functioﬁk satisfies the equation (3.2). Therefore, we have

— 1
G(X,%X,,....X, ) =
Bk ) = L T o)
= ! , Wwhere CD(Xl,X ,...,Xn) is @ monotonically increasing function
1+ D (X, %y, %, ) 2

in X (i =1,2,3,..n) X 2 O(i = 1,2,3,!’]) and also

imlim...lim ®(x,X,,....x. )= 0and lim lim ... lim ®(x,X,,...,.X ) = .Hence we can
4 -0%-0 % -0 (Xl 2 X”) X Xy Xy 00 (Xl 2 X”)
1

write ék(xl,Xz,---an):1+CD (Xl X )gw)
(X%,

;k=1,2,3,.. Substituting this in (3.2), we get
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_ 0 (0%

D, (X, Xy, .0X, ) = k=2,3,...
pk—l

O} Koy enny [ —

Using this relation recursively, we havéDk(Xl,Xz,...,Xn)Z 1(X1 ac X”) , asG1 =G we have
p1p2"'pk—l
b =0
O} Koy enn

This implies that ®, (X, X,,...,X,) = 109 % X“). (3.4)

p1p2"'pk—l

Hence, F, (%, %% )=G(X X;,-:%)
On the other hand, assume equation (3.3) holdsh@&hypothesis of the theorem equation (3.4) fallow
Therefore equations (3.3) and (3.4) together ledtie equation

-1

1 —_
I+ ————— D, (X, X5, = G (X, Xy -eeX,
{ N (%%, xn)} (% Xy 01X, )

_ 1
1+%1//(x1,x2,...,xn)
_ 1
1+ P (X, Xy, X, )
o D, (%, Xp 0%, )
This implies that CD(Xl,XZ,...,Xn) =1 . Hence the theorem.
PPz Py-s

4. Marshall-Olkin multivariate Pareto AR (1) model

In this section, we consider the construction &t forder autoregressive minification time seriesle,
AR (1), with MO-MP distribution as stationary manrgl distribution.

Theorem 4.1: Consider a multivariate autoregressive miatfimn proces{(xnl) , Xr(f) , ...,Xr(,n) )}

having the structure

0 ul with probability p
" mln(an_)l,Urgl)) with probability 1-p
u® with probability p
X (2 =
" |min(x?,Uf?)  with probability 1-p 4.1)
o ul with probability p
X =
" |min(X{,Uf)  with probability 1- p
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Where{ (U 0 U (2 U (n) )} are the innovations which are independent of

{(Xr(f_)k, xﬁf)k,...,x " )} k=12,..n Then{(X() xﬁz),...,xr(,”) )} has stationary marginal
distribution as MO-MP if and only i{(Ur(f) } is jointly distributed as multivariate Pareto
distribution.

Proof: From equation (4.1), we have

Fx® . x (X X, 0%, )
_ _ _ 4.2)

= PGufl .l (X Xy e Xy )+ (17 P) P xith (3 Xy 4%, ) Guldw (X, X, 1o X,)
Under stationary condition, we have
_ Gu® 0 (X, X, ,...,
Fxo... x,ﬁ")(xluxz,..uxn): Py _U (Xl 2 Xn) ) (4.3)

{1-(1-P)Guo..0t (%%, ... %)}
If we take
Gult.u (%, Xy ensX, ) = ———— , then

1+ %/

i=1

Ex@,...,x(”) (Xl, Xy, ...,Xn) =—F: , Which is the survival function of MO-MP.

p+Y X’

=
On the other hand, if we takgx@,___,x(”) (Xl, Xy, ...,Xn) =—F: , Which is the survival function of
p+Y X’
=

MO-MP and substituting it in (4.3), we have
— 1
Gu®,..ul (Xl, X, ...,Xn) =———, which is the survival function of multivariate Rtw

l+Z)q3'
=1

distribution and the process is stationary.
Stationarity can be established as follows.

Assume{(x,gl),xr(f), X" ))} d MO-MP and {(U(l 2 ,U ) }g MP .Then from (4.2)

n

Fx®),. x (XI,XZ,...,Xn) Z—E .This established that{(Xrgl), Xr(lz)

p+> X/
i=1

xn )} is distributed

as MO-MP.

n n

It is also possible to show th{(xr(f), X(Z),...,X(n) )} is stationary and is asymptotically marginally
distributed as MO-MP.

5.0 Generalization to the k™ order autoregressive model
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In  this section, we develop the k™ order  multivariate autoregressive  model
{(Xr(f), Xr(12) , ...,Xf]k) )} having the structure given in the following theoraman extension of first order

multivariate autoregressive minification time serieodel presented earlier in section 4.0. Thesira of
the process is given in the following theorem.

Theorem 5.1: Consider ak™ order autoregressive time series, AR (k), modet witucture:
ul with probability p,
min(X,gl_)l,U(l)) with probability p,
Xy =qmin(x®,,ul)  with probability p,

........................................................................... (5.1)

Urgk) with probability p,
min(X,ul)  with probability p,
Xy =1min(x{,,U%)  with probability p,

min(X,g'f)k,U(")) with probability p,

K
where0< p. <1, z p, =1.Then {(Xr(]l), Xr(]z),...,Xr(]k) )} has stationary marginal distribution
i=0

as MO-MP if and only if{ (U r(ll),Ur(lz) e U r(,k) )} has a multivariate Pareto distribution.

The proof of this theorem is similar to that of dhem (4.1) above with first order autoregressive
minification process model replaced k)t}' order autoregressive minification process model.

Acknowledgements: The Author thanks all those that contributed witggestions which led to the
improved version of this paper.
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