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Abstract

Autoregressive (AR) and autoregressive moving average (ARMA)
processes with multivariate exponential (ME) distribution are
presented and discussed. The theory of positive dependence is used to
show that in many cases, multivariate exponential autoregressive
(MEAR) and multivariate autoregressive moving average (MEARMA)
models consist of associated random variables. Also, we present special
cases of the multivariate exponential autoregressive process in which
the multivariate process is stationary and has well-known multivariate
exponential distribution.

Keywords: Multivariate exponential distribution; Multivariasautoregressive and autoregressive moving
average models in exponential random vectors; Aaton; Joint stationarity.

1.0 Introduction
One of the major stationary model in time seriealysis is thex = 1 linear process given by

Xn) = E_?t=_=.-1£1|i'_] eln—j). n=04+142, .. (1.1)
whered(jl.j = 0,£1,£2, ... is a sequence gf = p parameter matrices such tEé\_‘.f:_:: 4G = o=, and

£ (n),n=0.%#1.%£2.... is a sequence of independent and identically idigd » % 1 random vectors
with mean 0 and common covariance matrix. It isl\webwn that equation (1.1) includes the stationary
vector autoregressive (AR) process and the statjoarad invertible vector autoregressive moving ager
(ARMA) process. According to [6], in some physisituations where the random vectdii:) are either
positive or discrete, the preceding assumptionthex (n) sequence are inappropriate.

Several researchers, addressing themselves tprtfieem, have constructed univariate stationary AR
type models and stationary ARMA type models whére tandom variable&(n} have exponential or
gamma distributions, and discrete models whita) assumes values in a common set. It was stated in
[13] and [14] that stationary autoregressive antbragressive moving average type models where the
random variables¥(n) have exponential distributions; [6] consider staéiry autoregressive moving
average-type models where the random variati&s) have gamma distributions. [15] proposed a
modification to the stationary autoregressive aotbr@gressive moving average type models where the
random variablest(n} have exponential distributions. Similarly, [16]nsidered modification to the
stationary autoregressive moving average-type rsodelere the random variabléén! have gamma
distributions. In [9] and [10] as well as [11] attempt has been made to construct autoregressivengio
average type models where the random varialil@s are discrete and assume values in a common finite
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set. [4], presented the bivariate exponential apdngetric autoregressive and autoregressive moving
average models that are extension of all the almertioned models. According to [4], all the above
models have been used in various fields of apgiethability and time series analysis.

According to [9] and [10], these models can be useohodel and analyse univariate point processés wi
correlated service and correlated inter arrivaleBmMore detail information about bivariate expdian
moving average type processes and the correspopdingprocesses can be seen in [12] as well as [4]

In this paper, we present a class of autoregressivl autoregressive moving average type sequence
of multivariate random vector. This class has exmbial marginal distributions. We denote this clas
autoregressive and  autoregressive moving averag@e tymodels by MEAR(m) and
MEARMA (m,,m.,..my) for multivariate exponential autoregressive, orateand autoregressive moving
average , ordefm,.m,, .. my) , respectively, wherex and {m,.m., ... m;) parametrize the order of the
dependence on the past. We use the theory of yosi#éipendence to show that in many cases the slagse
sequences are associated to each other.

In section 2, we define the multivariate exponérdiatribution which in this case, is the underltyin
distribution. We also present a variety of exampéghis distribution. Furthermore, in this sectioe
define the concept of association and present i@tyanf multivariate exponential distributions thate
associated. Still, In section 2, we describe thdtivariate dependence mechanisms which are used in
generating the various models. In section 3, westtant the generaEAR (m) model showing that the
sequences have multivariate exponential distributive also, discuss the autocorrelation structfithe
variety of sequences of the models. In section &l present special cases of the multivariate exg@ien
autoregressive of order one sequences. In thioeeete show that defined appropriately, the maltiate
processes are stationary, and obtain well-knowntivanlate exponential distribution. In section 5¢ w
introduce and present the multivariate exponentiautoregressive  moving average,
MEARMA (m,,m,,..m;) model. In this section, we conclude by descriliimg association properties of
the sequences and discussing how to utilise ad&otie obtain some probability bounds and moment
inequalities for the multivariate processes andctirveesponding point processes.

2.0 Preliminaries

In this section, we present some definitions aral/e some basic results that are going to be used
later. First, we provide the definition of multivate exponential distribution and provide some eplasito
illustrate the basic concept of this distributidie concept of association and some of its exangrkealso
presented in this section. Finally, we discuss somkivariate dependence mechanisms

Definition 2.1: LetE,.E,, ... E; be random variables taking values(in). We say thafE. .E-.....Ey)
has a multivariate exponential distribution&f. ¢ = 1.2..... k, have exponential distributions.

Example 2.1:(a) Let £ be exponential. ThebE., . E;.....E,) is multivariate exponential. (b) Let
E,.E.....E, be independent exponentials. TH&n.E......E.} has a multivariate exponential distribution.
(c ) Let XX, .. X be independent exponentials and let
E; = { 11{ X )pi=j.i=12 .. .kand j= 12 ...k Then, eachi . E.),i =j, has the Marshall-
Olkin bivariate exponentlal dlstrlbutlon (d) Let{lf M., ... M.) have a multivariate geometric
distribution and letlE. (j). £, (). ... E,(j)].j = 1.2, ... be an mdependent and identically distributed
sequence of random vectors Wlth multlvarlate exptak distributions, independent of all
M. i=12..k. Then |"" JE (), B n E (), ... ,-=“: E.(j).| has a multivariate exponential
distribution. (e) Let r:I =1 Then "E I determined by
PIE,€x E. €2 Ep €2} =1 —e ™)1 - ) x ... x (1 - *]xklﬁue""“' =¥k ),

Xy Xan X = 0,

has a [7] multivariate exponential distributionf) (et « = 1. Then (E,.E,.....E; )} determined by
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P{E, > x.E; > xp,... By > x3} = exp [—u.f +xf 4 +x§]é]. %, x%.....xp =0, IS multivariate

exponential distribution. (g) Lelt¥,. ¥-, .... X, ) be a random vector with continuous marginal distibns
F.F-....F. . respectively. Then the random vector
{—in[1 - Fx)] —inl1 - F(X,)].....—In[1 — F, (3, )]} is a multivariate exponentially distributed.

The bivariate version of example 2.1 (d), has hessd by the following researchers to generate iaitear
distributions. These researchers are [1], [5],d8d [18]. Similarly, example 2.1 (d) above can bedito
generate multivariate distributions.

The following remarks illustrate how multivariatgp@nential distribution is obtained from Exampld 2.

(d).

Remarks 2.1: Let M, = M. = =M, and letE, (), E (j)....E.(j) be independent exponentials,
j =1.2.... . Then we obtain the multivariate version of tgribution introduced by [5].
Now, let us consider a concept of positive depecéen

Definition 2.2: Let T= (T..T......Ty). k=1.2.... be a multivariate random vectdVe say that the
random variabled,.T,..... Ty are associated ifov[f(t),g(t)] = 0 for all f(t) and g(t) monotonically
non-decreasing in each argument, such that theceatpms exist.

Remarks 2.2: Independent random variables are associated arndnthadecreasing functions of
associated random variables are also associatés.r@ifmarks can also be seen in [2]. Therefore, the
components of the vector given in example 2.1 i) @) above, are associated. Similarly, the coraptm

of the multivariate exponential distribution givean example 2.1 (d) are associated provided that
My, M, ...and M, ,andE, (1), E.(1), ... E. (1) are associated by the same reasoning given inrksn2al
above.

We are now ready to discuss the various dependemsehanisms used in obtaining multivariate
exponential distribution. It turns out that manytb&ése mechanisms are related and an attempt kas be
made to describe the relationships that exist antiogg.

Lemma 2.1: Let (X, X;, ... X, ) and {:;.2.':_.....3,;} be independent random vectors with exponential
marginals where¥; £ Z;, i = 1.2, ...,k and {.'-.':..I; ':'.If-::.Z__ li=j, iLj=12...k have mean vector
(BB B7%). Let (Uul.,...I;) be a multivariate Bernoulli random vector indepemtd of

(X%, ...%.), (Z,,Z.....Z;). Also, assume
Pll;=m.I; = n) =B, i#j mn=01 (2.1)
Such that £, . B, =1: 1 =m, =P  + P, =<1, and 1=w.=F,, «F, <1 Then a random

vector given by )
(Vo Vywn V) 2200200 B Z) + (XX ), i %) ) = 1.2k, (2.2)
has a multivariate exponential distribution witle game marginals &%;.X;. ... X; ) and (Z,.Z,,...,Z.).

Proof: The prove of his lemma follows easily by computihg marginal characteristic functions.

Lemma 2.2: Let {?{1]-..‘{:]-. ":,L} i = L.2.3.... be independent and identically distributed mutiitz
exponential random vectors with mean vector

{R'-_. 3] =12 .k 0<m <1, foralli=12 ..k Let (N, N.....N;Jhave a multivariate

geometric distribution with mean vectds;*. 77 "....7;*) and be independent diﬁ'l_;,.‘{':_;.,....?kj ) and
i:M.‘V. Mz My } Then random vectors given by
P vy o= TN g Ny o. NEg o 3
(Vo Vo V) 2 (T2, % Z2, X 0 By ) 2.3)

has a multivariate exponential distribution withanevectol( g, 7, ... B * ).
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Proof: The prove of this lemma can easily be seen by ctingpthe marginal characteristic functions.

The following lemma describes how lemmas (2.1) ¢gh#) above are related. The connection between the
concepts stated in the above two lemmas is a kegna#it in the development of the multivariate
exponential autoregressive (AR) and autoregressiveing average (ARMA) models that are going to be
discussed in the following sections.

Lemma 2.3:Let (.. %, ;... X.;) and (M, ). j =1.2..... be as defined in lemma 2.2. Let
(N,.N,.....N.} have the mult|var|ate geometrlc dlstr|but|0n with ] )

l-m = Fn +F, =1l 1-m,=Fy +F. =1 andbeindependent of the,;. X, ... %, ] and
(M. My, My ] Furthermore, let¥;. Xy, ... X ), Uy lz s 1), (My, My, o, M) and(BoK;. . K5

be as defined in lemma 2.1. ThEa. Y. ‘:';_J = ("'?‘11:{ .E*":,X .,__._*f X ; ) has the
representation(l,Z,.1.Z;. ... I.Z;) +{ oK), 1% 6j =12k

That is

Elexplit ¥, + it.¥; & - + it i}l = Elexplit, U, 2. + =, X)) 4 - 4+ it (U2, + mp % )] (2.4)

Wherei = =1 and — o0 < ..t ...t < @,

T,

Proof: Suppose thc(tﬂ‘ ¥ .E':‘;._.‘{:J.- e ‘r.\" Xij i = {h vy >2) ﬂ‘ 1 Eyj o, HERET T‘_“i X, \J , where

hlx 1 T

¥ denotes the indicator function. Now, we show fhﬁi a1 E;;, Xyjoon Licy

distribution adl,Z,.1,Z......I.Z..). Note that

Xy} ] has the same

Ny N
H:'”'-:‘”ZJ{.‘_. € Xy, KO Lsz_‘{;u < X
J=1 Jj=t
1 1 Ny Ng
= Z Z P4y Z Xy €2y, KWL E Xy < xp (2.5)
I I J=1 J=1
where N®>U —; x0ez0 —; N0z =
Now, for (i,.i5, ....iz) = (1.1,...,1) in equation (2.5) above, we have
PEY. X < xy B Ky <xp, N> 1 N2 1) = B8 LEn PIER Xy < 0 ETE XK <
X3} PNy = ny, o Ny = m ).

(2.6)
But PIN, =ny... Ny =ny}=PIN; =n; — 1. Ny =m, — PN, > 1....N; > 1} so that equation
(2.6) is equal to
Ny

P Z ZL,-‘C’A PU, =1...0, =1} = P{Z, < xp..Z, € %} P, = 1. I

=1 J=1

[3X]
Ify
et
.
=
—
[}
[
—
[}
it
St

3.0 Generalized multivariate exponential autoregressive model (MEAR)

In this section, we construct a class of autoreivessequences of multivariate random vectorshig t
class, the sequences are labeled by the parameteWwe denote the sequences of this class by
em,n) = 0n.n) X (n,nl, . X (mnl], m=12.. andn=012.1 We show that the
random vector? (m, n) has a multivariate exponential distribution witkean vectors that do not depend on
m or n. We also discuss the association property for amyef number of random variables belonging
multivariate exponential autoregressive model. Wectude this section by discussing the autocoicglat
structure of the sequences of this model.
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Now we construct the class of multivariate expoiad@iutoregressive sequences, MEA.
Let 8. 8-, ... By € (0.02), let m,(n),m-(n). ..., m;(n) € (0,1). and letB(n) be ak x k diagonal matrix
with B(n) = diaglm,(n), m,(n). ... m,(n)}. Furthermore, letE‘(n) = {E,(n) . E, (n), .. .E.(n)} be a
sequence of independent multivariate exponentralaen vectors with mean vectdg; *. g *,.... 87 ¥ let
; be anm —dimensional vector with componentqual to one and the other components equal @ zer

j=12....m and let 0 denote the m —dimensional zero vector. Finally, let
Hin) =0,0n. 1), 0 (nom), L T(n 1), 0 T (nom)) be a sequence ¢fm —dimensional independent
random vectors with components assuming valuesoorero independent of & (n}, and let4(n. g} be
ak = k random diagonal matrix with(n. g) = diag{l,(n.q). ... I;(n.q)}. g =1.2....m.

We assume that fér= 1.2, ... . k.

m

Z Pl(tn ). ... iam)) = &/} = 1= m(n). (3.1)
én_(_j that ) )
Pl 1), ... [;tnm)) = 07} = =, (n). (3.2)

We define the multivariate exponential autoregresdVIEAR(m) sequences as follows:
E(n), n=012..m-1 (3.3)

X(n) = IE:H.".(?‘LQl‘ffH —q)+BMEM), n=mm+1,..
[19] proposed a multivariate exponential autoregjkes model which is to the one developed here;
however, neither model is a generalization of ttieeo The major difference between the [19] mochel a
the current model is the way that the componentthefvector series depend on each other. In the [19
model, the components are functionally relatedaitheother with positive probability, so that, foeple,
the first component can get a
contribution from the second component at previboe points. However, in the current multivariate
exponential autoregressive model, the dependent@ebr components come from the dependence
structure inherent in the exponential noise veE{g:.
Next, we show tha¥(x) has a multivariate exponential distribution.

Lemma 3.1: Forn =0,12, .. X(n) has a multivariate exponential distribution witlean vector
':E'-::.n"j';_:......’j';;:_‘l.
Proof: Mathematical induction on is used to prove this lemma. For= 0.1,....m — 1, the results of the
lemma follow by the definition o¥(n). Let us assume that the results of the lemma folchll non-
negative integers that are less than or equal #z= m — 1, and prove that the results of the lemma hold
for r + 1.

Let E"=1(E, E,...E) be a multivariate exponential random vector witheam vector
(B BT B7 ) independent of alE (). Then, by the induction assumption, we haveifer 1.2, ..., k
that
Nr+1) = (B + mylr -fv-.l_].r'_':_-"\r + _1}. H'Ifh prﬂbc':b:{:t}' 1 — r+1)

- U =G +1EGF+1), with probability = (r + 1).

It is easy to check tha¥: (r + 1) has an exponential distribution with me&n*. Hence, the results of the
lemma follow.
Now we consider the association of any finite azlten of theX, (n).

Lemma 3.2: Let us assume that fgr=0.1.2,....m — 1,the random variable, (j). X, (j),.... X, (j) in
equation (3.3) are associated; let; <n; <--<mn,. be non-negative integers and let
Ipde l, {12, .k}, r=12,.... Then the random variables; {n_}. g=12..r, are

associated.
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Proof: Let T, = x;(j — 1) and letr;; _, = x,(j — 1), j = L.2.... . To prove the result of the lemma it
suffices, according to [2], to show

that the random variablds. I;. .... T, are associated for ail= 1.2.... . (3.4

We prove (3.4) by an induction argument #n For r = 2m, equation (3.4) follows by the lemma
assumption and by [2]. Let us assume that equéBi@dn holds for-, = = 2m and prove that equation (3.4)
holds forr + 1.

From equation (3.4), the conditional random vdeédh.,, / T;. ...T,, is stochastically non-decreasing in
I.T;. ... T.. Therefore, by Barlow and Proschan (1981), theemis + 1 argument functiork. non-
decreasing in each argument, and a random variabidependent ofT;.T;. .... T,, such that

(T,.Ty . T, ) 2 (1. To. . T R(U.T,. To. ... T,)). According to [2],U is associated and hence the
random variable®. T;.T.. .... T, are associated. Consequently, by 121T-. .... T, are associated.

Finally, for a class of sequences, we compute thecarrelation functions in the case when the nmegi
processes are stationary.

For the exponential models, patix) = m,. forall n: [ =1.2.....», and let

Plliingl=1}=gilg). 1=12,..k: g=12,...m
Such that
(i) @lg) 20, and (i) . 9lg) =1—m. [=12 ..k as specified in equation (3.1). Define
Px, (k) = r.’_'r:rr*r{,'-.'; ':n}..‘{':{r1 + KLhi=12. . kn=mm+l..:k=12...
Then
px; (k) = @i py (k — 1) + @;(D oy, (k — 2) + -+ @;lm) py, (k —m) (3.5)
with Variance {X:(n)} =872 1= 1.2.... .k

The marginal correlation structure of the multiaéei exponential sequences, as given in (3.5) idagito
that of the Gaussian autoregressive process. \Wethat, in general, even when the marginal prosesse
stationary, the joint process is not stationaryisTi# easily seen, for example, by letting m=13r8f with
min) =m, for all n; [ =12, ... k: choosingE({n) to be an independent and identically distributed
sequence of random vectors whefgln), E.(n).....E.(n) are independent and identically distributed
exponential random variables for all and letting/(n) be an independent and identically distributed
sequence of random vectors for whigfy,(n) = 1, .. . I;(n) =1} = (1 — 7, ) x ..x (1 — =, ). A simple
computation shows thatov{x, (1), .... %, (1)} = Covlx. (2). ..., X, (2) ] in this example.

In the following section, we develop models inigthjoint processes are also stationary.

4.0 Stationary multivariate exponential autoregressive model (MEAR(1))

In this section, we consider special case of theAREm) model given in section 3, in which the joint
processes are stationary. Throughout this sect@mputm = 1, assume tha#;(n) does not vary with.
and put more structure on tEén) sequences. We show that for this model, the naultite distribution of
X(n) has a form of the type studied by [1]. By selagtthe Z(n) sequences, as defined in section 3,
appropriately, we can obtain well-known multivagialistribution. For a stationary multivariate expotial
first autoregressive model, MEAR(1), we obtain tfelowing: [1], [5], [8] and [18] multivariate
exponential distributions.

We conclude this section by computing the auto damae matrices for this model.

To present stationary multivariate exponentialtfiassitoregressive model, the following notations and
assumptions are required. Let= 1. and let us assume thék, (¥.1).7,(%, 1), ... I,(N.1)]. given in
equation (3.1), is an independent and identicajriduted sequence of multivariate random vectbrs.
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simplicity —of notation, we denote w;(n) by m. for [=12. and let
B, =pP{1,(n. 1. L, 1), L1V 1) = G0} 17 = 0.1 Note that by equations (3 2) and (3.3), we
have

Fyo+B;=1-—m. By +A,=1-m, (4.1)
Furthermore, le{N,.¥N,.....N;] be a multivariate geometric random vector withapaeters?;. i,j = 0.1
given in equation (2.1), and leZ(r), »r = +1.4+2... be an independent and identically distributed
sequence of multivariate random vectors with meattors (.7, 8%, ..., 7)) independent of
(N, Ny W) and all (7,0v.1).7,(%, 1), ... I.(N. 1)) Note that by lemma (2.1) above,

[E."Eirr E, (—j). J". :E:{—;'].....Efﬂf: e C _;}I is a multivariate exponential random vector with
mean vectofg, *, 8%, ..., B5 ). We assume that
EO = (Z¥, 7B (=) 22 B (=) B mE (=) 4.2)

Define A(n) to be ak = k d|agonal random matrix (n) = diag {1,(W,1).1,(¥, 1), ....7.(V. 1)} and B to
be ak % k diagonal random matriy8 = diag {m,.7,}. The stationary MEAR(1) model is defined as
follows:

e E(D). n=10
X(n) = [Ain]_‘i:{n —1)+BE(M), n=12,.. .

We now state and prove a characterizatioki(afl.

(4.3)

Lemma 4.1: Let X(n) be defined by equation (4.3). Then far=0.1.2,.. , X(n) = E(0), where
E(D) is as given in equation (4.2).
Proof: We prove the result of the lemma by an inductioguarent onn. By definition the result of the
lemma holds fo# = 0. Let us assume that the result of the lemma haolds. #: = 0. Note that

E'0) = (Z:r :-{—j‘l.z.fr;-;f—;} Z" E, t—_;))
j=1 J=1 j=1
{xwory 7% B () X5V T B () 4 (my By (1), oo m B (1)), where

x(-) denotes the indicator function, and that theummands are mdependent random vectors. Now, by
lemma 2.3 and the induction assumption,

( N = Zfrkﬂ Nz ZEI_‘JJ)

2 (1,00 D7y B, By (), o L, Dy, TV E (7))
2 (1,00 DX ). L, DX ), ... 1, DX ().
Furthermore, by the definition G{r)
(mlfl{—}':], m B (. .. .':;CE_-l.':—j_'JJ = (mlfifn:]. JT:E:{]‘:I_:], e T By (1) }
Since the random vectots, £, (n) . w,E.(n), ..., m E; (n) ) and
(1,00 1%, (), 1. (0 )X, (), oL 0 (n 1? X, (n) ) are independent, we have by equation (3.3) that
{’T‘ T B T By
[Hi_l{n_l.n':s:'[:r:_‘l. e T B ( ) + {L (n, )X, (n). I.(n, 1% (n). ..., Iy (m, le;cI:n-}} = X¥(n + 1

Hence the prove is completed.
According to following remarks, many interesting Itivariate distributions are possible in lemma 4=br
details, see [3].
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Remarks: Let £ be an exponential random variable with mean0 < & = (£, f.... B. )7, let
Ty = Bi8m. = B8,y = 50 and leE(1) = (r7*E.m7 E,....wg*E). Then, if
Ppp =0 Fy,=mn,, By =mn, and F,; =1 — (8, + 5,)8, then the resultingX{n} has independent
components.

Now, we give the auto covariance matrices for tagianary multivariate exponential autoregressive o
order one, MEAR(1) model. Let,; =Var{X(n)} be the variance covariance matrix %), Define
(k) = Covl¥n + £),¥(n)}, k=0,1.2, .., and note that/,(0) = ¥,. In view of equation (4.3), it is
easy to see that/, (k) = Av,(k — 1), k=1.2,.. whered is thek x k diagonal matrices defined by
A=diag {1 -n,1—m.....1 —z.}. Therefore, for stationary multivariate exponentaitoregressive,
MEAR(1), model we have

Vi) = A5 Ly V-0 = Vi),  k=12... (4.4)

5.0 Multivariate exponential autoregressive moving average model
(MEARMA( m))

Considering the results of section 3 and the resil{12] for moving average sequences, we corstwe
classes of autoregressive moving average sequeficesiltivariate random vectors. In each class, the
sequences are labelled by the parameweraind m.. We denote these two classes of sequences by
{E"Q,i.n::.rr:;.n} = {::{j. my.mg,n), Z.(j,my,mym)), n=012 } j=12. We show that the
random vectoZ ‘ {j,m., m-,n) has a multivariate exponential distribution witmaan vector that does not
depend onj.m,;.m. or n. Then we discuss the association property of aniefinumber of random
variables belonging to one of the two autoregressioving average (ARMA) classes.

Let ¥(n) be a multivariate exponential autoregressive (MIE%R)) sequence given by equation (3.3), and
let ¥,, be anm. —dependent multivariate exponential moving averaggusnce as given by Langberg-
Stoffer (1987), independent of thi&ln) sequence. Further 16F (n) = {11 (n). ¥, (n), ...} (n)} be a
sequence of independent multivariate random vectdts components assuming the values 0,1,...k,
independent of the X(n) and Y. sequences and let
Plutn) =1l =mn). 0<mln) =1, I=12...k

We define the two multivariate exponential autoesgive moving average, MEARNM#,, m.],
sequences as follows:

{Z,(n).Z;(Lm).....2, (A, m)} =
I[(l — . ()Y, ), . (1 — 7 () )Y () ] + (X W), o V) X (n) )
(5.1)
2,@m). 2@, .. 242, )} =
({1 — . (m) )X, (), (1 — () )X () I + (M (Y (n), ...V (n)Y(n) )
(5.2)

Next we show thaf(;.n) has multivariate exponential distribution.

Lemma 5.1:Forj=1.2,...k and= 0.1.2, ..., Z{j.n) has a multivariate exponential distribution with
mean vectof g, 8%, ... BT ).

Proof: Considering lemma (3.1} (n) has a multivariate exponential distribution. BR[[1¥(n) also has

a multivariate exponential distribution. Consequierftom the two definitions and lemma 2.1 abothe
results of this lemma follow.

Now we consider the association property of angdinumber of random variables belonging to onthef
two autoregressive moving average classes. We asthahthe assumptions of [12], lemmas 3.1 and 3.2
are satisfied.
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Lemma 5.2 Let 5,.5-....5,, T..13....T,, be non-negative random variables. Let us assumae t
5,.5-.....5, andl,. T5,.... T. are associated, and that the random vedi®rss,.... 5, ) and( 7., T-. ... T,.)
are independent. Then the random varialigE, .5, T-. .... 5, T, are associated.

Proof: LetT = (T..T,....T,), Let W = ( 5, T,.5. T, ... 5. T,), and letf. g be two non-negative functions
each with r-arguments, non-decreasing in each aggtim

The components of the conditional random ve(’EH:rT are non-decreasing functions of the associated
random variable§,.5...... 5,. Therefore, by [2], the components it T are associated. Hence,

(W), gw))/ (W), (W) . .
E cov(7 ()90 }"-r = 0. E[jr "'1"-'1-] and E["‘r|| "1”_- T] are two non-decreasing functions of the

associated random variabl@s, T, ..... T,. Thus, by Barlow and Proschan (1981), the two eamgariables
W, , _ (W) (W)
E [’f W '1-":!’] andE [gm 'I,IT] are associated. Hencav [E [‘f ! T} E Ig . r}] = 0. Note that

. A FW). g(W))/ (W), (W) ;
CoulFW). g ()] = E [ml F). g( I;I"f—l o [E I;F.,lt _ II_,T}_E[Q'JL _1!.1'_}]

Consequently, the lemma follows and the prove spleted.
6.0 Conclusion

Langberg and Stoffer, present inequalitied probability bounds for the bivariate point preses
related to the bivariate exponential moving aversgmguence. We note that all the the results giyei 3j,
hold for the multivariate point processes relatedhie multivariate exponential autoregressive sece®
given in sections 3 and 4 and to the autoregressiwdang average sequences stated in section Sdadvi
that they are associated.

Acknowledgements: The Author would like to express gratitude to htige that contributed with
suggestions which led to a considerable improverogtitis paper.

References

[1] Arnold, B.C (1975): A characterization of tlexponential distribution by multivariate geometric
compounding, Sankhya, A 37, 164-173.

[2] Barlow, R.E and Proschan, F (1981): Statisti€akory of reliability and life-testing: Probabylit
Models. To begin with, Silver Spring, MD.

[3] Block, HW (1977): A family of bivariate lifeistributions, In the theory and applications dé li
Reliability, Vol. 1. C.P. Tsokos and I. Simi. Edgademic Press. New York.

[4] Block, H.W and Paulson, A.S. (1988): A note farite divisibility of some bivariate exponentiahd
geometric distributions arising from a compoundimgcess. Sankhya 46, A, 102-109.

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010) 543 — 552
Multivariate Exponential Autoregressive and AutoregressiveUmar and Yusuf J of

NAMP



[5] Downton, F (1970): Bivariate exponential distitions in reliability theory. J.R. Statis. Soc3B, 408-
417.

[6] Gaver, D.P and Lewis, P.A.W (1980): First-or@ertoregressive gamma sequences and point processes
Adv. Appl. Prob. 12, 727-745.

[7] Gumbel, E.J. (1960): Bivariate exponential digitions. J. Amer. Statist. Assoc. 55, 698-707.

[8] Hawkes, A.G (1972): A bivariate exponentialtdisution with applications to reliability. J.R. &ist.
Soc. B 34: 129-131.

[9] Jacobs, P.A and Lewis, P.A.W (1978a): Disctetee series generated by mixtures |: Correlaticmal
runs properties. J.R. Statist. Soc. B 40, 94-105.

[10] Jacobs, P.A and Lewis, P.A.W (1978b): Discritee series generated by mixtures Il: Asymptotic
properties. J.R. Statist. Soc. B 40, 222-228.

[11] Jacobs, P.A and Lewis, P.A.W (1983): Statigndiscrete autoregressive moving average time serie
generated by mixtures. J. Times Series Anal. £38.8-

[12] Langberg, N.A. and Stoffer, D.S (1987): Maoyiaverage models with bivariate exponential and
geometric distributions. J. Appl. Prob. 24, 48-61.

[13] Lawrence, A.J. and Lewis, P.A.W (1977): A muyiaverage exponential exponential point process
(EMAI) J. Appl. Prob. 14, 98-113.

[14] Lawrence, A.J. and Lewis, P.A.W (1980): Thepemential autoregressive moving average process
EARMA. J.R. Statist. Soc, B 42, 150-161.

[15] Lawrence, A.J. and Lewis, P.A.W (1981): A newtoregressive times series model in exponential
variables (NEAR(1)). Adv. Appl. Prob. 13, 826-845.

[16] Lawrence, A.J. and Lewis, P.AW (1985): Modeling and residual sisatyf nonlinear
autoregressive time series in exponential variables J. R. StatisB37, 165-202.

[17] Marshall, AW. and Olkin, I. (1967): A mult@viate exponential distribution. J. Amer. Statfsésoc.
62, 30-44.

[18] Paulson, A.S. (1973): A characterization of theamgmtial distribution and a bivariate exponential
distribution. Sankhya A 35, 69-78.

[19] Raftery, A.E. (1984): A continuous multivaré exponential distribution. Commun. Statist. Tigeo
Meth. A 13, 947-965.

Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010) 543 — 552
Multivariate Exponential Autoregressive and AutoregressiveUmar and Yusuf J of

NAMP



