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Abstract 

 
Autoregressive (AR) and autoregressive moving average (ARMA) 
processes with multivariate exponential (ME) distribution are 
presented and discussed. The theory of positive dependence is used to 
show that in many cases, multivariate exponential autoregressive 
(MEAR) and multivariate autoregressive moving average (MEARMA) 
models consist of associated random variables. Also, we present special 
cases of the multivariate exponential autoregressive process in which 
the multivariate process is stationary and has well-known multivariate 
exponential distribution.  

 
Keywords: Multivariate exponential distribution; Multivariate autoregressive and  autoregressive moving 

average models in exponential random vectors; Association; Joint stationarity. 
. 
1.0 Introduction 

One of the major stationary model in time series analysis is the  linear process given by  
 

      
 

 
where  is a sequence of  parameter matrices such that and 

 is a sequence of independent and identically distributed  random vectors 
with mean 0 and common covariance matrix. It is well known that equation (1.1) includes the stationary 
vector autoregressive (AR) process and the stationary and invertible vector autoregressive moving average 
(ARMA) process. According to [6], in some physical situations where the random vectors  are either 
positive or discrete, the preceding assumptions on the  sequence are inappropriate.  

 Several researchers, addressing themselves to this problem, have constructed univariate stationary AR 
type models and stationary ARMA type models where the random variables  have exponential or 
gamma distributions, and discrete models where  assumes values in a common set. It was stated in 
[13] and [14] that stationary autoregressive and autoregressive moving average type models where the 
random variables  have exponential distributions; [6] consider stationary autoregressive moving 
average-type models where the random variables   have gamma distributions. [15] proposed a 
modification to the stationary autoregressive and autoregressive moving average type models where the 
random variables  have exponential distributions. Similarly, [16] considered modification to the 
stationary autoregressive moving average-type models where the random variables   have gamma 
distributions. In [9] and [10] as well as [11] an attempt has been made to construct autoregressive moving 
average type models where the random variables  are discrete and assume values in a common finite 
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set. [4], presented the bivariate exponential and geometric autoregressive and autoregressive moving 
average models that are extension of all the above mentioned models. According to [4], all the above 
models have been used in various fields of applied probability and time series analysis. 
 

 
According to [9] and [10], these models can be used to model and analyse univariate point processes with 
correlated service and correlated inter arrival times. More detail information about bivariate exponential 
moving average type processes and the corresponding point processes can be seen in [12] as well as [4]. 

 In this paper, we present a class of autoregressive and autoregressive moving average type sequence 
of multivariate random vector. This class has exponential marginal distributions. We denote this class of 
autoregressive and autoregressive moving average type models by  and 

 for multivariate exponential autoregressive, order  and autoregressive moving 
average , order  , respectively, where  and  parametrize the order of the 
dependence on the past. We use the theory of positive dependence to show that in many cases the classes of 
sequences are associated to each other. 

In section 2, we define the multivariate exponential distribution which in this case, is the underlying 
distribution. We also present a variety of examples of this distribution. Furthermore, in this section we 
define the concept of association and present a variety of multivariate exponential distributions that are 
associated. Still, In section 2,  we describe the multivariate dependence mechanisms which are used in 
generating the various models. In section 3, we construct the general  model showing that the 
sequences have multivariate exponential distribution. We also, discuss the autocorrelation structure of the 
variety of sequences of the models. In section 4, we present special cases of the multivariate exponential 
autoregressive of order one sequences. In this section, we show that defined appropriately, the multivariate 
processes are stationary, and obtain well-known multivariate exponential distribution. In section 5, we 
introduce and present the multivariate exponential autoregressive moving average, 

 model. In this section, we conclude by describing the association properties of 
the sequences and discussing how to utilise association to obtain some probability bounds and moment 
inequalities for the multivariate processes and the corresponding point processes.  

 
2.0  Preliminaries 

 
 In this section, we present some definitions and prove some basic results that are going to be used 

later. First, we provide the definition of multivariate exponential distribution and provide some examples to 
illustrate the basic concept of this distribution. The concept of association and some of its examples are also 
presented in this section. Finally, we discuss some multivariate dependence mechanisms 

 
Definition 2.1: Let  be random variables taking values in . We say that  
has a multivariate exponential distribution if   have exponential distributions. 
 
Example 2.1: (a) Let  be exponential. Then  is multivariate exponential.        (b) Let 

 be independent exponentials. Then  has a multivariate exponential distribution. 
(c ) Let  be independent exponentials and let 

 Then, each  has the Marshall-
Olkin bivariate exponential distribution. (d) Let   have a multivariate geometric 
distribution and let  be an independent and identically distributed 
sequence of random vectors with multivariate exponential distributions, independent of all 

 Then  has a multivariate exponential 

distribution.  (e) Let  Then  determined by 

has a [7] multivariate exponential distribution.  (f) Let   Then  determined by  
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 is multivariate 

exponential distribution. (g) Let  be a random vector with continuous marginal distributions 
respectively. Then the random vector 

 is a multivariate exponentially distributed. 
The bivariate version of example 2.1 (d), has been used by the following researchers to generate bivariate 
distributions. These researchers are [1], [5], [8] and [18]. Similarly, example 2.1 (d) above can be used to 
generate multivariate distributions.   
The following remarks illustrate how multivariate exponential distribution is obtained from Example 2.1 
(d). 
 
                    

Remarks 2.1: Let  and let  be independent exponentials, 
 . Then we obtain the multivariate version of the distribution introduced by [5]. 

 Now, let us consider a concept of positive dependence. 
 
Definition 2.2: Let T  be a multivariate random vector. We say that the 
random variables   are associated if  for all  monotonically 
non-decreasing in each argument, such that the expectations exist.   
 
Remarks 2.2: Independent random variables are associated and that non-decreasing functions of 
associated random variables are also associated. This remarks can also be seen in [2].  Therefore, the 
components of the vector given in example 2.1 (b) and (c) above, are associated. Similarly, the components 
of the multivariate exponential distribution given in example 2.1 (d) are associated provided that 

and  are associated by the same reasoning given in remarks 2.1 
above.    
 We are now ready to discuss the various dependence mechanisms used in obtaining multivariate 
exponential distribution. It turns out that many of these mechanisms are related and an attempt has been 
made to describe the relationships that exist among them.  
 
Lemma 2.1: Let  and  be independent random vectors with exponential 
marginals where  and  have mean vector 

. Let  be a multivariate Bernoulli random vector independent of  
, . Also, assume  

                                                       (2.1)                                                                       
Such that  Then a random 
vector given by  
          (2.2) 
has a multivariate exponential distribution with the same marginals as  .  
 
Proof: The prove of his lemma follows easily by computing the marginal characteristic functions.  
 
Lemma 2.2: Let  be independent and identically distributed multivariate 
exponential random vectors with mean vector  

 Let have a multivariate 

geometric distribution with mean vector  and be independent of  and  
. Then random vectors given by  

                                                   (2.3) 

has a multivariate exponential distribution with mean vector . 
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Proof:  The prove of this lemma can easily be seen by computing the marginal characteristic functions.  
The following lemma describes how lemmas (2.1) and (2.2) above are related. The connection between the 
concepts stated in the above two lemmas is a key element in the development of the multivariate 
exponential autoregressive (AR) and autoregressive moving average (ARMA) models that are going to be 
discussed in the following sections.  
 
Lemma 2.3: Let and  be as defined in lemma 2.2. Let 

 have the multivariate geometric distribution with 
 and be independent of the  and 

. Furthermore, let ,   and  

be as defined in lemma 2.1. Then  has the 

representation    

               
 

That is 
      (2.4) 

Where  
                               
Proof: Suppose that  , where 

 denotes the indicator function. Now, we show that   has the same 

distribution as . Note that  

 
. 

Now, for  in equation (2.5) above, we have                           

      (2.6) 
But  so that equation 
(2.6) is equal to 

 
 

3.0  Generalized multivariate exponential autoregressive model (MEAR) 
 

In this section, we construct a class of autoregressive sequences of multivariate random vectors. In this 
class, the sequences are labeled by the parameter . We denote the sequences of this class by 

 We show that the 
random vector  has a multivariate exponential distribution with mean vectors that do not depend on 

 We also discuss the association property for any finite number of random variables belonging 
multivariate exponential autoregressive model. We conclude this section by discussing the autocorrelation 
structure of the sequences of this model. 
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Now we construct the class of multivariate exponential autoregressive sequences, MEAR.  
Let , let  and let  be a  diagonal matrix  
with . Furthermore, let  be a 
sequence of independent multivariate exponential random vectors with mean vector  let 

 be an dimensional vector with component  equal to one and the other components equal to zero, 
 and let  denote the  dimensional zero vector. Finally, let 

 be a sequence of dimensional independent 
random vectors with components assuming values one or zero independent of all  and let  be 
a  random diagonal matrix with    
  We assume that for   

 
and that 

 
            

 

We define the multivariate exponential autoregressive, MEAR(m) sequences as follows: 

                 (3.3) 

[19] proposed a multivariate exponential autoregressive model which is to the one developed here; 
however, neither model is a generalization of the other. The major difference between the [19] model and 
the current model is the way that the components of the vector series depend on each other. In the [19] 
model, the components are functionally related to each other with positive probability, so that, for example, 
the first component can get a  
contribution from the second component at previous time points. However, in the current multivariate 
exponential autoregressive model, the dependence between components come from the dependence 
structure inherent in the exponential noise vector     
Next, we show that  has a multivariate exponential distribution. 
 
   Lemma 3.1:  For   has a multivariate exponential distribution with mean vector 

.  
 
Proof: Mathematical induction on  is used to prove this lemma. For  the results of the 
lemma follow by the definition of . Let us assume that the results of the lemma hold for all non-
negative integers that are less than or equal to  and prove that the results of the lemma hold 
for  
Let  be a multivariate exponential random vector with mean vector 

independent of all  Then, by the induction assumption, we have for  
that 

      

It is easy to check that  has an exponential distribution with mean  Hence, the results of the 
lemma follow. 
Now we consider the association of any finite collection of the  
 
 Lemma 3.2: Let us assume that for the random variables  in 
equation (3.3) are associated; let  be non-negative integers and let 

. Then the random variables   are 

associated.  



Journal of the Nigerian Association of Mathematical Physics Volume 16 (May, 2010), 543 – 552 
Multivariate Exponential Autoregressive and Autoregressive  Umar and Yusuf   J of 

NAMP 
 

 
Proof: Let  and let  . To prove the result of the lemma it 
suffices, according to [2], to show 
 that the random variables  are associated for all  .                                  (3.4) 
We prove (3.4) by an induction argument on   For  equation (3.4) follows by the lemma 
assumption and by [2]. Let us assume that equation (3.4) holds for  and prove that equation (3.4) 
holds for  
 From equation (3.4), the conditional random variable  … , is stochastically non-decreasing in 

 Therefore, by Barlow and Proschan (1981), there is an  argument function  non-
decreasing in each argument, and a random variable  independent of   such that 

. According to [2],  is associated and hence the 
random variables  are associated. Consequently, by [2],  are associated. 
Finally, for a class of sequences, we compute the autocorrelation functions in the case when the marginal 
processes are stationary. 
For the exponential models, put  and let 

 
Such that 

 as specified in equation (3.1). Define  
 . 

                               
 
 

           
 

Then 
                    (3.5) 
with  
The marginal correlation structure of the multivariate exponential sequences, as given in (3.5) is similar to 
that of the Gaussian autoregressive process. We note that, in general, even when the marginal processes are 
stationary, the joint process is not stationary. This is easily seen, for example, by letting m=1 in (3.3) with 

 choosing  to be an independent and identically distributed 
sequence of random vectors where  are independent and identically distributed 
exponential random variables for all  and letting  be an independent and identically distributed 
sequence of random vectors for which  A simple 
computation shows that  in this example. 
  In the following section, we develop models in which joint processes are also stationary.      
                               

4.0  Stationary multivariate exponential autoregressive model (MEAR(1)) 
 

In this section, we consider special case of the MEAR  model given in section 3, in which the joint 
processes are stationary. Throughout this section we put  assume that  does not vary with  
and put more structure on the  sequences. We show that for this model, the multivariate distribution of  

 has a form of the type studied by [1].  By selecting the  sequences, as defined in section 3, 
appropriately, we can obtain well-known multivariate distribution. For a stationary multivariate exponential 
first autoregressive model, MEAR(1), we obtain the following: [1], [5], [8] and [18] multivariate 
exponential distributions. 
We conclude this section by computing the auto covariance matrices for this model.      
To present stationary multivariate exponential first autoregressive model, the following notations and 
assumptions are required. Let  and let us assume that   given in 
equation (3.1), is an independent and identically distributed sequence of multivariate random vectors. For 
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simplicity of notation, we denote  by  for  and let 
 Note that by equations (3.2) and (3.3), we 

have 
                                            (4.1)  

Furthermore, let  be a multivariate geometric random vector with parameters  
given in equation (2.1), and let  be an independent and identically distributed 
sequence of multivariate random vectors with mean vectors  independent of 

 and all  Note that by lemma (2.1) above, 

 is a multivariate exponential random vector with 

mean vector . We assume that  

.                      (4.2) 

Define  to be a  diagonal random matrix  and B to 
be a  diagonal random matrix  The stationary MEAR(1) model is defined as 
follows:  

                                             (4.3) 

   We now state and prove a characterization of   
 
  Lemma 4.1:  Let be defined by equation (4.3). Then for  , where 

is as given in equation (4.2).    
Proof: We prove the result of the lemma by an induction argument on  By definition the result of the 
lemma holds for  Let us assume that the result of the lemma holds for  Note that 
 

 
           =           where 

 denotes the indicator function, and that the  summands are independent random vectors. Now, by 
lemma 2.3 and the induction assumption,  

 
                             

 
Furthermore,  by the definition of  

. 
Since the random vectors  and 

 are independent, we have by equation (3.3) that 

  
 
Hence the prove is completed. 
According to following remarks, many interesting multivariate distributions are possible in lemma 4.1. For 
details, see  [3].   
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Remarks:  Let  be an exponential random variable with mean , let 
     and let   Then,  if 

 and  then the resulting  has independent 
components.  
Now, we give the auto covariance matrices for the stationary multivariate exponential autoregressive of 
order one, MEAR(1) model. Let  be the variance covariance matrix of  Define 

 and note that   In view of equation (4.3), it is 
easy to see that    where  is the  diagonal matrices defined by 

 Therefore, for stationary multivariate exponential autoregressive, 
MEAR(1), model we have 

                                   (4.4) 
 

5.0 Multivariate exponential autoregressive moving average model  
(MEARMA( )) 
 

Considering the results of section 3 and the results of [12] for moving average sequences, we construct two 
classes of autoregressive moving average sequences of multivariate random vectors. In each class, the 
sequences are labelled by the parameters  We denote these two classes of sequences by 

 We show that the 
random vector  has a multivariate exponential distribution with a mean vector that does not 
depend on  Then we discuss the association property of any finite number of random 
variables belonging to one of the two autoregressive moving average (ARMA) classes.  
 Let  be a multivariate exponential autoregressive (MEAR ) sequence given by equation (3.3), and 
let  be an dependent multivariate exponential moving average sequence as given by Langberg-
Stoffer (1987), independent of the  sequence. Further let  be a 
sequence of independent multivariate random vectors with components assuming the values 0,1,...k, 
independent of the  and  sequences and let 

    
 
 
We define the two multivariate exponential autoregressive moving average, MEARMA  
sequences as follows: 

                         (5.1)                                          

                       (5.2) 
 Next we show that  has multivariate exponential distribution. 
 
Lemma 5.1: For  and  ,  has a multivariate exponential distribution with 
mean vector .  
 
Proof: Considering lemma (3.1),  has a multivariate exponential distribution. By [12],  also has 
a multivariate exponential distribution. Consequently, from the two definitions and  lemma 2.1 above, the 
results of this lemma follow.  
Now we consider the association property of any finite number of random variables belonging to one of the 
two autoregressive moving average classes. We assume that the assumptions of [12], lemmas 3.1 and 3.2 
are satisfied.  
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  Lemma 5.2: Let , , be non-negative random variables. Let us assume that 
 and  are associated, and that the random vectors  and  

are independent. Then the random variables  are associated.   
 
Proof: Let  Let , and let  be two non-negative functions 
each with r-arguments, non-decreasing in each argument. 
The components of the conditional random vector  are non-decreasing functions of the associated 

random variables . Therefore, by [2], the components of   are associated. Hence,  

                               
 

   and  are two non-decreasing functions of the 

associated random variables . Thus, by Barlow and Proschan (1981), the two random variables 

 and  are associated. Hence  Note that 

   

 
Consequently, the lemma follows and the prove is completed. 
 

6.0     Conclusion 
 

       Langberg and Stoffer, present inequalities and probability bounds for the bivariate point processes 
related to the bivariate exponential moving average sequence. We note that all the the results given by [12], 
hold for the multivariate point processes related to the multivariate exponential autoregressive sequences 
given in sections 3 and 4 and to the autoregressive moving average sequences stated in section 5 provided 
that they are associated.   
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