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Abstract 

 
We consider the payoff valuation of an investor for investing in N investment 
companies. The investor paid some percentage as cost of running the investment to 
the investment companies. Since stock price is naturally random over time, we 
assume that it follows a standard geometric Brownian motion with a consumption 
process Ttt ≤≤Λ 0,  which is a nonnegative and −F adapted process such that 

.
1

∞<Λ∫
T

t dt  This consumption process is the sum total amount consumed by the 

investment companies from time period t=0 to time period T on behalf of the 
investor. We are to maximize the investor’s  investment in N companies. We also 
determine among  the companies, which of them  yield the highest returns at time t. 
We find that investors may not invest in some of the companies as a result of poor 
performance that arises from the high risk involve in the investments. 

 
                           Keywords:   Payoff valuation; Investment strategy; Stock price; Stochastic. 

1.0 Introduction 
 

An investor invested iS0  in i  investment company at time 0=t . At period ,0>t  the investor is expected to have 
i
tS  amount from investment company i . The investor incurred a cost of i

tt Λ=Λ  for the investment to 

investment company i  at time t . Let  

( )i
tSG  be the payoff function of investment company i  at period t, so that  

( ) ∫ Λ−Λ−=
T

t
i
t

i
t dtSSG

10
, where T  is the terminal period of the investment and  

,
1

ds
t

s∫ Λ represents the total amount spent (costs) in the investment period up to time t by the investment 

companies on behalf of the investor. The cost is charge on only the profit from the investment. In this paper, 

00 S=Λ  represents the initial costs (i.e, initial investment). The investor aim is to maximize her investment. In this 

paper, we adopt the approach of Black-Scholes model for option pricing process. We did not look at our work as 
option but as investment settings involving transaction costs and competitive markets. 
This paper is based on previous research work. [3] constructed a portfolio process that involved a riskless asset and 
a risky asset. The risk associated with such portfolio process cannot be hedged out completely, therefore the need for 
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diversification. [10] constructed a discounted portfolio process involving a riskless asset and a risky asset. [6] 
showed that a hedge portfolio could be constructed for an option to buy at the historical maximum, and that closed-
form valuation formulas exist in the European case. [6] developed another valuation model, which separates the 
lookback option into two underlying options and further give the ability to price a European option on dividend 
paying assets. [9] used Morte Carlo simulation with a specific variance reduction method to compute the price of 
fixed-strike average-rate options. [5] derived explicit valuation formulas of most European barrier options, as well as 
some upper bounds in the American case. [2] analyzed the problem of pricing path-dependent contingent claims.  
[12] considered the valuation of put spread option (i.e. an option to sell) of futures contract under Black-Scholes 
setting. [1] obtained analytical solution for the optimal terminal portfolio values and derived solutions for the 
portfolio strategies and numerical simulations under a multivariant Black-Scholes framework. In this paper, we 
construct and diversify the investor’s investment into N number of stocks and a riskless bond with all the companies 
having a unique constant interest rate. We also determine the optimal investment strategy of the investor at time t, 
adopting Black-Scholes derivative pricing process. We assume in this paper that the market is complete and 
frictionless i.e the market is characterized with transaction costs. 
 
2.0   Basic Notations and Definitions: 

;

);.,.(cos

;0

;

0

marketbondfromreturnofamountpercentagether

investmentinitialeitsinitialthe

ttimeatcompaniesthebyinvestmentthemanagingforspentamountthe

ttimeatpricestocktheS

t

t

−
−Λ

>−Λ
−

stock.the fromreturnexpectedousinstantanethe- 

stock;  theof volatity the- 

;S0

µ
σ

stocktheofpriceinitialthe−
 

;

;

;min

;cosarg

icompanyinvestmentfrompayoffnettheR

assetsriskyofnumbertheN

periodaltertheT

icompanyinvestmetbyinvestmentthemanagingoftsasechamountpercentagether

i

ci

−
−
−

−

Definition1:  The total return , R, per stock is the sum of payoff and initial price of the stock.  

In other words, .)( 0SSfR t +=
 

Definition 2: Let Ω  be a non-empty set. Let T be a fixed positive number, and assume that for each ],0[ Tt ∈  

there is a −σ algebra )(tF . Assume further that if ts ≤ , then every set in )(sF  is also in )(tF . Then we call the 

collection of −σ algebra )(tF , Tt ≤≤0 , a filtration. In other words, let ),( FΩ  denote a measurable space. A 

family of a −σ algebra a{ } 0)( ≥ttF , where a tsforFtFsF ≤≤⊆⊆ 0,)()(  is called a filtration on ),( FΩ . 

A filtration tells us the information we will have at future times. More precisely, when we get to time t, we will 
know for each set in )(tF  whether the true w lies in that set.  

Definition 3:  Let Ω  be a non-empty sample space equipped with a filtration)(tF , Tt ≤≤0 . Let G(t) be a 

collection of random variables indexed by ].,0[ Tt ∈  We say that this collection of random variables is an adapted 

stochastic process if, for each t, the random variable G(t) is )(tF -measurable. 

In this work, asset prices and wealth process are all adapted to a filtration that we regarded as a model of the flows  
of public information. 
Definition 4: An adapted stochastic process is a collection of random variables }0),({ TttG ≤≤  also indexed 

by 
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time such that for every t, G(t) is ;)( measurabletF −  the information at time t is sufficient to evaluate the 

random variable X(t). 
In this work, we think of G(t) as the wealth generated from the price of assets at time t and ,0),( TttF ≤≤ as the 

information obtained by watching all the prices in the market up to time t. 
Definition 5:  Let ),,( PFΩ  be a probability space. For each ,Ω∈w  suppose there is a continuous function 

0)( ≥toftW  that satisfies 0)0( =W and that depends on w . Then 0),( ≥ttW  is a Brownian motion if for 

all mttt <<<= ...0 00  the increments  

)()()( 011 tWtWtW −= , )()( 12 tWtW − ,..., )()( 1−− mm tWtW  

are independent and each of these increments is normally distributed with   

0)]()([ 1 =−+ ii tWtWE  

.)]()([ 11 iiii tttWtWVar −=− ++  

Definition 6:  Let ),,( PFΩ  be a probability space on which is defined a Brownian motion 0),( ≥ttW . A 

filtration for the Brownian motion is a collection of −σ algebra of ,0),( ≥ttF  satisfying 

• (Information accumulates) For ,0 Ts ≤≤  every set in )(sF  is also in ).(tF  In other words, there is at 

least as much information available at the later time )(tF  as there is at the earlier time )(sF . 

• (Adaptivity) For each ,0≥t  the Brownian motion )(tW at time t is  

.)( measurabletF −  In other words, the information available at time t is sufficient to evaluate the 

Brownian motion )(tW  at that time. 

• (Independence of future increments). For ,0 us ≤≤  the increment )()( tWuW −  is independent of 

)(tF . In other words, any increment of the Brownian motion after time t is independent of the information 

available at time t. 
Definition 7:  Let 0),( ≥ttW  be a Brownian motion and let 0),( ≥ttF  be an associated filtration. An Ito 

process is a stochastic process of the form 

∫ ∫ Θ+∆+=
t t

duuudWuGtG
0 0

,)()()()0()(  

where G(0) is nonrandom and )()( uandu Θ∆  are adapted stochastic processes. 

Definition 8:  An n-dimensional Brownian motion is a process ))(),...,(()( 1 tWtWtW n=  with the following 

properties: 

• Each nitWi ,...,2,1),( =  is a one dimensional Brownian motion. 

• if ji ≠ , then the process )(tWi  and )(tW j  are independent. 

Associated with an n-dimensional Brownian motion we have a filtration 0),( ≥ttF  such that the following holds. 

• (Information accumulates) For ,0 ts ≤≤  every set in )(sF  is also in )(tF . 

• (Adaptivity) For each 0≥t , the random vector )(tW  is )(tF -measurable. 

• (Independence of future increment) For ,0 us ≤≤  the vector of increments  )()( tWuW −  is 

independent of )(tF . 

Definition 9: A market model is complete if every derivative security associated with the model can be hedged. 

Definition 10: (Stochastic process): A family { }∞<≤= ttGG 0|)(  of random variables  

                  ))(,(),(:)( ℜℜ→Ω BFtG  

is called continuous time stochastic process. If  
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))(,(),(:)( nn BFtG ℜℜ→Ω , we say that G is an n-dimensional stochastic process. The family X may also be 

interpreted as a :,),0[: SX →Ω×∞  

                    .),0[),()(:),( Ω×∞∈= wtallfortGwtG  

Definition 11: A cumulative consumption process is a non-negative progressively measurable process 

{ }Ttt ≤≤Λ 0),(  with increasing, right continuous with left limits paths on [0, T], and with 

{ }.)(0)0( surelyalmostTand ∞<Λ=Λ  

Definition 12: The arbitrage-free condition means that there does not exist a zero investment portfolio that yields 
only positive earnings and strictly positive earnings with strictly positive probability.  
Definition 13: (Risk Premium) Investors assume risk so that they are rewarded in the form of higher return. Hence, 
risk premium may be defined as the additional return investors expect to get, or investors earned in the past, for 
assuming additional risk. Risk premium may be calculated between two classes of securities that differ in their risk 
level. 
 
3.0  Dynamics of the Stock Pricing Process  
Our stock pricing process satisfies the stochastic differential equation, 

   ∑
=

+=
N

j
jijtiti

t

i
t tdWdt

S

dS

1

)(σµ
     

(3.1)    

This says that the infinitesimal change i
tdS  in the stock price at time t  under i  investment company, as a 

percentage of the value i
tS , is given by a drift term dtitµ  and a ‘fluctuation’ or small movement upwards and 

downwards given by ∑
=

N

j
jijt tdW

1

)(σ  at time t  of i  investment company. The randomness 

{ } [ ]TttWtWtW N ,0;)(),...,()(
'

1 ∈=  is an N-dimensional Brownian motion defined on a complete probability space 

),,( PFΩ , where P  is the real world probability measure and ji,σ  is the volatility of asset i  with respect to 

changes in ).(tW j  { }Ni µµµ ,...,:=  is the appreciation rate vector. Moreover,  
N

jiji ,, }{σσ =  is the volatility 

matrix referred to as the coefficients of the market. The volatility matrix }}{{ ,1, Njiji ≤≤= σσ is progressively 

measurable with respect to the filtration F  and satisfies the condition 

,)()()(
0

1

2
surelyalmostdttttr

T N

i
ii ∞<







 ++∫ ∑
=

σµ                                (3.2) 

where .  denotes the Euclidean norm in Nℜ  and where iσ  denotes the thi −  row of σ . The 

filtration ( ) 0)( ≥= ttFF  represents the information structure generated by the Brownian motion and is assumed to 

satisfy equation (3.2). 
It can be shown that equation (1) is solved by 

   .,...,1,
2

1
)(exp

1

2
0 NittWtSS

N

j
ijjiji

ii
t =















 −+= ∑
=

σσµ     (3.3)    

4.0  Dyanamics of Our Derivative Price  
We can now define our derivative price dynamics. Let tdf  be our derivative price, then 

for ( ) ( )T

nit
i

t

TN
ttt fffff ,,1,0

21 ,,, ΛΛ =≥== , we have   

∑
=

+=
N

j
j

i
t

f
ijt

i
t

f
it

i
t tdWfdtfdf

i

1

)(σµ , 
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where 
ii f

ijt
f

it and σµ  are the drift and volatility of the derivative price respectively.  

Lemma 1: Given that NitdWfdtfdf
N

j
j

i
t

f
ijt

i
t

f
it

i
t

ii

,...,1,)(
1

=+= ∑
=

σµ  

and  

       

NitdWSdtSdS
N

j
j

i
tijt

i
tit

i
t ,...,1,)(

1

=+= ∑
=

σµ , then for  

         
dtvrdv trt = ,  

we have       Nji
rr

ijt

tit

f
ijt

t
f

it
i

i

,...,1,, =
−

=
−

σ
µ

σ
µ

. 

Theorem 1: Let ( ) ( ) NitSftSf i
t

i
t ,...,1,,, ==  and  

NitdWfdtfdf
N

j
j

i
t

f
ij

i
tit

i
t

i

,...,1,)(
1

=+= ∑
=

σµ . 

 Suppose that Lemma 1 holds, then     

( ) NifrS
S

f
r

S

f
S

t

f i
tt

i
ti

t

i
t

t

N

j
i
t

i
tf

ijt
i
t

i
t i

,...,1,0
2

1

1

2
2

2

2

==−
∂
∂

+
∂
∂

+
∂

∂
∑

=

σ                    (4.1) 

This is the Black-Schole partial differential equation for derivative pricing process. 

Theorem 2: Let ( )
( ) ( ) ( )

NidSGtSf eee
N

j
ijij tTtTtTr

i
t

tTr
i
t ,...,1,

2
,

2

1

2

2

1
2

1

=














 ∑
= ∫

∞

∞−

−






 −−−+−−−
= θ

π
σσθσ

, 

then ( ) NitSf i
t ,...,1,, =  solves equation (4.1). 

 
5.0  Valuation of the Payoff Function  

Given that the payoff function ( ) 




 Λ+Λ−= ∫

T

t
i
t

i
T dtSSG

10 , then   

( )
( ) ( ) NidetTtTtTSG

e
f

N

j
ij

N

j
iji

i
tTr

i
t ,...,1,

2

1
exp

2

2

2

1

1

2

1
0 =















−−−+−= ∫ ∑∑

∞

∞−

−

==

−−

θσθσµ
π

θ
 

( )
( ) ( ) NidedttTtTtTS

e T

t

N

j
ij

N

j
iji

i
tTr

,...,1,
2

1
exp

2

2

2

1

0
1

2

1
0 =














Λ−








−−−+−=

−∞

∞−
==

−−

∫ ∫∑∑ θσθσµ
π

θ
 

A consumption process Ttt ≤≤Λ 0, , is a nonnegative and −F adapted process such that  

        .
010 ∞<Λ=Λ+Λ ∫∫
T

t

T

t dtdt  

This is the sum total amount consumed by the investment companies from time period t=0 to time period T on 
behalf of the investor. The adapted condition means that the investor cannot anticipate the future. 

Every investor wants to maximize her investment. Hence, it is expected that NidtS
T

t
i
t ,...,1,

0
=Λ≥ ∫ . If 

∫ Λ=
T

t
i
t dtS

0
, then the investor neither experiences gain nor loss. Hence, the investment is at the money (i.e. the 

return from the investment is equal to consumption process). The investor will have maximum investment if 
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NidtS
T

t
i
t ,...,1,

0
=Λ> ∫ . 

Suppose that ∫ Λ>
T

t
i
t dtS

0
, then  

( ) ( ) ∫∑∑ Λ>







−−−+−

==

T

t

N

j
ij

N

j
iji

i dttTtTtTS
0

1

2

1
0 2

1
exp σθσµ  

( ) ( ) ∫∑∑
Λ

>







−−−+−⇒

==

T

i
t

N

j
ij

N

j
iji S

dt
tTtTtT

0
01

2

1 2

1
exp σθσµ  

( ) ( ) Ni
S

dt
tTtTtT

T

i
t

N

j
ij

N

j
iji ,...,1,log

2

1
0

01

2

1

=






 Λ
>−−−+−⇒ ∫∑∑

==

σθσµ  

In order to obtain the integration region [ ]( )∞,. minθie  where function is nonzero, we isolate the integration 

variable θ. 

( ) ( )
Ni

tT

tTtT
S

dt

N

j
ij

N

j
iji

T

i
t

,...,1,
2

1
log

1

1

2

0
0 =

−

−+−−






 Λ

>
∑

∑∫

=

=

σ

σµ
θ  

The critical value minθ  may be defined as  

( ) ( )
.,...,1,

2

11
log

1

1

2

0
0

min Ni
tT

tTtTdt
S

N

j
ij

N

j
iji

T

ti

=
−

−+−−







Λ

=
∑

∑∫

=

=

σ

σµ
θ                       (5.1) 

So, that, the function  

( ) ( ) ( ) NidttTtTtTSSG
T

t

N

j
ij

N

j
iji

ii
t ,...,1,

2

1
exp

0
1

2

1
0 =Λ−








−−−+−= ∫∑∑

==

σθσµ  

for minθθ >  and zero otherwise.  

The function ( ) NiSG i
t ,...,1,0 => , hence the derivative pricing becomes  

( )
( ) ( ) NiddttTtTtTS

e
f eT

t

N

j
ij

N

j
iji

i
tTr

i
t ,...,1,

2

1
exp

2

2

min

2

1

0
1

2

1
0 =














Λ−








−−−+−=

−

==

∞−−

∫∑∑∫ θσθσµ
π

θ

θ
 

( )
( ) ( )

( )

∫ ∫∑∑∫
∞ −−−−

==

∞−−

Λ−







−−−+−=

min

22

min 0

2

1

2

1

1

2

1
0

22

1
exp

2 θ

θθ

θ
θ

π
θσθσµ

π
T

t

tTrN

j
ij

N

j
iji

i
tTr

dtd
e

dtTtTtTS eee  

Let 
( )

( ) ( ) NidtTtTtTS ee N

j
ij

N

j
iji

i
tTr

,...,1,
2

1
exp

2

2

min

2

1

1

2

1
0 =








−−−+−=Φ

−

==

∞−−

∑∑∫ θσθσµ
π

θ

θ
 

and 

 
( )

θ
πθ

θ
dtde

e
r

T
tTr

t∫ ∫
∞ −−−

Λ−=Ψ
min 0

2

1

2
. 

Now,   
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( )( )
( ) θσθσθ

π θ

µ

dtTtTS
e N

j
ij

N

j
ij

i
tTri









−−−+−=Φ ∑∑∫

==

∞−−

1

2

1

2
0 2

1

2

1
exp

2 min

 

    
( )( )

( ) θσθσθ
π θ

µ

dtTtT
eS N

j
ij

N

j
ij

tTri i









−+−−−= ∑∑∫

==

∞
−−

1

2

1

20 2
2

1
exp

2 min

 

    
( )( )

.,...,1,
2

1
exp

2

2

1

0

min

NidtT
eS N

j
ij

tTri i

=
























−−−= ∑∫

=

∞−−

θσθ
π θ

µ
                           (5.2) 

Next,  

( ) ( )
∫ ∫ ∫ ∫

∞ ∞ −−−−− Λ−−=Λ−=Ψ
min 0 0

2

1

2

1

min

22

22

1
θ θ

θθ
θ

π
θ

π
T T

t

r
tTr

t ddt
tT

rddtr eeee  

     ( ) ( )
∫ Λ−−= −−T

t
tTr dtrN e

0minθ ,                  (5.3) 

where ( )minθN  is the standard normal cumulative probability density function.  

We now express (5.1) in terms of −+ handh  rather than minθ . By definition, the constants become  

 

( )
.,...,1,

2

1
~

log

1

1

2

0

Ni
tT

tT
dt

S

h
N

j
ij

N

j
ij

T

t

t

=
−

−±








Λ
=

∑

∑∫

=

=±

σ

σ
,                                 (5.4) 

where i
tS

~
 is the forward amount ( ) NiS tTri e ,...,1,0 =− . 

We now evaluate minθ−  as appeared in Eq.(5.3)  

    
( ) ( )

























−

−+−−






 Λ

−=−
∑
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=

=
N

j
ij

N

j
ij

T

i
t

tT

tTtTrdt
S

1

1

2

0
0

min

2

1
log

σ

σ
θ  

  

( )
.,...,1,

2

1
~

log

1

1

2

0

Ni
tT

tTdt
S

N

j
ij

N

j
ij

T

t

i
t

=
−

−−








Λ
=

∑

∑∫

=

=

σ

σ
                              (5.5) 

Obviously, NihtTandh
N

j
ij ,...,1,

1
minmin ==−+=− ∑

=

+− σθθ . Hence, we write Ψ  as follows: 

( ) ( )
∫ Λ−=Ψ −−− T

t
tTr dtehrN

0
       (5.6) 

From equation (5.2), we have that  

 
( )( )

.,...,1,
2

1
exp

2 min

2

1
0 NidtT

e
S

N

j
ij

tTr
i

i

=
























−−−=Φ ∫ ∑

∞

=

−−

θσθ
π θ

µ

 
Let .,...,1,

1

NitT
N

j
ij =−−= ∑

=

σθξ , then ξθ dd =  and the lower limit of the integration variable minθθ = , 
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Let .,...,1,
1

NitT
N

j
ij =−−= ∑

=

σθξ , then ξθ dd =  and the lower limit of the integration variable minθθ = , 

becomes the new lower limit ∑
=

+−=−−=
N

j
ij htT

1
min σθξ . 

Hence, the integral,Φ  becomes  

 
( )( )

.,...,1,
2

2

2

1
0 Nide
eS

h

tTri i

==Φ ∫
∞=

−=

−−−

+

ξ

ξ

ξµ

ξ
π

 

We now write the integral in terms of( )xN . 

 ( )( ) ( ) .,...,1,0 NihNeS tTri i ==Φ +−−µ  

But Ψ+Φ=i
tf  

 ( )( ) ( ) ( ) ( )
∫ Λ−= −−−+−− T

t
tTrtTri dthrNhNS ee i

00
µ      

 ( )( ) ( ) ( ) ( ) ( ) .,...,1,
00 NidthrNhNS
T

t
tTrtTrtTri eee i =Λ−= ∫

−−−+−−−−µ                      (5.7) 

We now determine the integral  

 ( )
∫ Λ−−T

t
tTr dte

0
. 

Which gives the following 

( )
∫ Λ−−T

t
tTr dte

0 



 Λ−Λ−Λ= ∫
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Substituting (5.8) into (5.7), we have  
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where [ ] ( ) NiSSE tTii
tT

ie ,...,1,0 == −
−

µ  and 0,,...,1],exp[ >==Λ tNitr
ict , where 

i
cr is the perentage 

costs for running the investment by investment companies i. 

 
 
 
 
 
 
 

6.0  Numerical Results 
Table 1 shows the parameters and the payoff from eight investment companies after one year. Table 2 shows the 
payoff after two years  and Table 3 shows the payoff after nine years.  
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                        Table 1: Payoff and Percentage Payoff Per Stock After a Year 
i   

%
icr  

%
ijσ

 
(

0

Naira

in

S i

 

(

Naira

in

iΛ

 

%

r
 

%
iµ
 

+h  −h  )( +hN  )( −hN  

)

(

Naira

in

f i

 

)

(
0

Naira

in

Sf

R
ii

i

+
=

 %
% 

Increase 

1 0.10 0.35 2.0 1.11 0.05 0.25 2.16 1.81 0.9846 0.9648 2.7439 4.7439 137.2 

2 0.09 0.33 1.6 1.09 0.05 0.20 1.59 1.26 0.9441 0.8962 1.8125 3.4125 113.2 

3 0.15 0.49 2.6 1.16 0.05 0.30 2.20 1.71 0.9861 0.9564 3.9378 6.5378 151.5 

4 0.18 0.52 3.0 1.20 0.05 0.40 2.37 1.85 0.9911 0.9678 5.0577 8.0577 168.6 

5 0.08 0.28 1.1 1.08 0.05 0.15 0.48 0.20 0.6844 0.5793 0.6496 1.7496 059.1 

6 0.12 0.36 2.4 1.13 0.05 0.24 2.61 2.25 0.9955 0.9878 3.5036 5.9036 146.0 

7 0.14 0.39 2.3 1.15 0.05 0.28 2.33 1.94 0.9901 0.9738 3.3315 5.6315 144.8 

8 0.20 0.49 3.2 1.22 0.05 0.45 2.62 2.13 0.9956 0.9834 5.6809 8.8809 177.5 
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         Table 2: Payoff and Percentage Payoff Per Stock After Two Years 

i   

%
icr  

%
ijσ
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Naira
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%
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%
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Naira
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Sf

R
ii

i

+
=

 %
% 

Increase 

1 0.10 0.35 2.0 1.35 0.05 0.25 2.97 2.48 0.9985 0.9934 3.0648 05.0648 153.2 

2 0.09 0.33 1.6 1.31 0.05 0.20 2.66 2.20 0.9961 0.9861 2.0129 03.6129 125.8 

3 0.15 0.49 2.6 1.57 0.05 0.30 2.62 1.93 0.9956 0.9732 4.5133 07.1133 173.6 

4 0.18 0.52 3.0 1.72 0.05 0.40 2.68 1.94 0.9964 0.9738 6.2901 09.2901 209.7 

5 0.08 0.28 1.1 1.27 0.05 0.15 2.13 1.74 0.9834 0.9591 0.8843 01.9843 080.4 

6 0.12 0.36 2.4 1.43 0.05 0.24 3.24 2.74 1.0000 0.9969 3.8059 06.2059 158.6 

7 0.14 0.39 2.3 1.52 0.05 0.28 2.92 2.37 0.9982 0.9911 3.7443 06.0443 162.8 

8 0.20 0.49 3.2 1.82 0.05 0.45 2.87 2.18 0.9979 0.9854 7.3490 10.5490 229.4 

 

 

 

 

          Table 3: Payoff and Percentage Payoff Per Stock After Nine Years 

i
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R
ii

i
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 %
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Increase 

1 0.10 0.35 2.0 2.46 0.05 0.25 3.07 2.02 0.9999 0.9783 009.4742 011.4742 0473.7 

2 0.09 0.33 1.6 2.25 0.05 0.20 3.02 2.03 0.9993 0.9788 004.1231 005.7231 0257.7 

3 0.15 0.49 2.6 3.86 0.05 0.30 2.60 1.13 0.9953 0.8708 019.6863 022.2863 0757.2 

4 0.18 0.52 3.0 5.05 0.05 0.40 2.56 1.00 0.9948 0.8413 059.3310 062.3310 1977.7 

5 0.08 0.28 1.1 2.05 0.05 0.15 2.99 2.15 0.9986 0.9842 000.9109 002.0109 0082.8 
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6 0.12 0.36 2.4 2.94 0.05 0.24 3.11 2.03 1.0000 0.9788 010.1818 012.5800 0424.2 

7 0.14 0.39 2.3 3.53 0.05 0.28 2.86 1.69 0.9979 0.9545 013.9188 016.2188 0605.2 

8 0.20 0.49 3.2 6.05 0.05 0.45 2.62 1.15 0.9956 0.8749 100.7370 103.9370 3148.0 

 

 

 

 

 

 

 

 
 
 
 

 

Discussion: 

From table 1, we have that after a year, company 8 has the net payoff of 5.68 naira with percentage increase 
of 177.5 and company 5 has the lowest net payoff of 0.65 naira with percentage increase of 59.1. From 
table 2, we also have that after two years, company 8 also has the highest percentage increase (229.4%) and 
company 5 has the lowest percentage increase (80.4%). Furthermore,  from table 3, we have that after nine 
years of operation, company 8 continue to dominate in terms of returns from the investment while company 
5 continue to yield the lowest return. Therefore, investors are adviced to invest more of their resources into 
company 4 and 8, since they yield the highest percentage returns. Again, investors are adviced not to invest 
their resource into company 5, since the percentage increase is not encouraging.  

We found that investors should invest more of their short position into company 4 and 8 as they continue to 
yield the highest returns. We also found that there is the need for the investors to invest into other 
companies in order to hedge out the risks associated with their investment. Again, we found that the returns 
from company 5 is not encouraging when compared with other stocks. We therefore conclude that investors 
should not invest their resources into company 5.                                            

Conclusion 

Since company 4 and 8 yield the highest percentage increase of wealth, we conclude that investors should 
invest more of their short positions (i.e. resources)  into these companies so as to maximize returns. There 
is also the need for the investors to invest into other companies in order to reduce risks associated with their 
investment. Again, investors are adviced not to invest their resource into company 5, since the return from 
such stock is not encouraging when compared with other stocks as we can see in Table 1 to 3.                                                                   
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