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Abstract 
 
It is sometimes difficult to predict that a particular material will be out of 
stock at a particular time. This uncertainty can be avoided by deriving a 
probability distribution of stock-out. Let us assume that the stock-out of 
material occur only at the end of a certain period, say t. This paper derives 
a probability distribution theory of stock-out at time t which minimizes the 
total cost involved for the planning and procurements of material within a 
production cycle. A control policy to sustain the system when the inventory 
cost is a function of  time with a known depreciation value is presented. 
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1.0 Introduction 
 

Material requirements planning (MRP) system became a prominent approach to managing the flow of raw 
material and components on the floor of industry in the late 20th century. In 1985, it was estimated that 
between 2000 and 5000 American companies used MRP in production schedules [10]. Since then, research 
in the area of MRP has received global attention. [5] examined the performance of an extended MRP 
approach for a hybrid single-stage production/manufacturing system with external return flows. [2] 
extended the MRP system to include procurements and designed a policy to sustain it. This policy was 
validated by proving that ‘when the average cost of purchasing orders exceeds the purchasing cost of each 
material (item) at stock-out despite the discounting rates, procurements of each item at stock-out becomes 
optimal’. 
 While MRP accuracy depends on the accuracy of stock status, several commentators [3], [4], [6], [7] and 
[9] expressed concern about the state of MRP in inventory control system. Thus, research in this area is 
gaining global momentum by the day. 
 
2.0 A Probability Distribution Theory of Stock-out: 
    When there is material stock-out either caused by the stochastic nature of demand [3], wear-out, or 
damage, the expected number of stock-out incorporated into the MRP policy will make MRP design more 
appropriate. When this is done, the procurement policy that will minimize cost of purchasing orders will 
make MRP optimal and is called Material Requirements Planning and Procurements Policy ( MRPP), see 
for example, [2]. 
   Now, consider the following: 
     B(t) = number of survivors (materials) at any time t 
    B(t-1)= number of survivors at any time t-1 
    N= initial number of materials 
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Then, the probability of stock-out during time t is given by 

     P(t) = 
( ) ( )

N

tBtB −−1
                                                            (2.1) 

The probability that an item has survived to a time t-1 and will be out of stock during the interval t-1 to t 
can be defined as the conditional probability of stock-out and is given by 

          ( ) ( ) ( )
( )1
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−−=−
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Hence, the probability of item survival at time t is given by 

        ( ) ( )
N

tB
tPs =                                                                          (2.3) 

Let us assume that stock-out occurs just before the period of (k+1) (years or months), where k is an integer. 
That is to say, the life span of an item lies between t=0 and t=k. We define 

( ) =tf number of  orders at time t 

( ) =xP probability of stock-out just before a certain period 1+x  

and     ( )∑
=

=
k

x

xP
0

1 

Then, if ( )xtf − represents the number of orders at time ,...,1,, +=− kktxt the new items attaining 

the period x at time t can be illustrated as  
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     where  1;;0 +xx shows the state of material at time  1;; +− ttxt .       

Hence, the expected number of stock-out of such newly ordered items before getting to the time t+1 is 
given as 

                 ( ) ( ) ( ) ,...1,;
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+=−=∑
=

kktxtfxPXE
k

x

                           (2.4) 

But in every production cycle, all stock-outs at time t are replenished to sustain the system. Therefore any 
replenishment at time (t+1), the expected number of orders are 
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Eqn (2.5) is a difference equation in t and the solution can be obtained by putting the value 

( ) ttf αβ= ,where α is some constant. Thus, Eqn (2.5) becomes 

           ( )∑
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1 βααβ                                          (2.6) 

If we divide Eqn (2.6) by xt−αβ  we get 
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It could be seen that Eqn (2.7) is exactly of roots (k+1), having a (k+1) degree. Let us denote the roots by 

kβββ ,...,, 10 ,then for β=1 we have 
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It follows that one root of Eqn(2.7) is β=1.If we call this root 0β , in general, Eqn (2.7) will be of the form 

           ( ) t
kk

tt
kk

tttf βαβααβαβαβα +++=+++= ...... 1101100        (2.9) 

 where kααα ,...,, 10  are some constants.                                                                        

Again, it follows that since one of the roots in Eqn (2.7) 10 =β , all other roots, by Descartes’ sign rule, 

will be negative while their absolute value will be less than unity. This means that the value of these roots 

tends to zero as t tends to infinity (( ) 0α=tf ). 

  Now, to determine 0α , let 

      ( ) =xh probability of item survival for more than x period 

Then 

                ( ) ( ) ( ) ( )[ ]1...101 −+++−= xPPPxh                                                 (2.10) 

With assumption that ( ) ,10 =h for ( ) 0α=xf            

                 ( ) ( )xhXE 0α=                                                                                        (2.11) 
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But we know that ( ) ( ) ( ) ( )[ ] 0...1011 =+++−=+ kPPPkh , since no item can survive for more than 

(k+1) period, then  
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(2.13) 
Substituting Eqn (2.13) in (2.12) we get 
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which is the mean life span of items before getting out of stock in a given production cycle. 
Recall that we can compute the expected number of stock-out in a given production cycle [2]. Then, with 
Eqn (2.14), the value for the probability distribution of material stock-out can be obtained easily. 
 
3.Cost Control Policy for MRPP: 
     In manufacturing industries, one of the major factors that must be taken into consideration when 
planning for new material is the cost function. Suppose that the material (item) is available for use over a 
series of time of equal duration, say, months of a year. We wish to propose a cost control policy in ordering 
new material when inventory  
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costs increase with time and the item depreciation value known. 
Let 
      =δ ordering cost of a new item 

         =nη handling cost of item at the beginning of nth period 

        =I annual interest rate 

       =∂ depreciation value per unit of cash during a period,   








+
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1  

 With the assumption that the item is procured after every n period of operation, we based our policy on the 
period for which the total cash is minimum, making it the best policy for optimal control of cost. Now, let 

nτ   be the discounted value of all future costs of purchasing orders and handling cost of item, then with a 

policy to replenish item after every n period we have 
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Thus, the value of nτ  is the cost required to take care of future planning with a policy of every nth period 

procurements. If n is an optimal replenishment interval, then nτ  will be minimum following the inequality 

                              11 −+ <> nnn τττ                                                                                          (3.2) 

This implies that 01 >−+ nn ττ and 01 <− −nn ττ                                                                (3.3) 

Proof: 

We want to show that the inequalities in Eqn (3.3) holds. From Eqn (3.1), since 
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Considering Eqn (3.3), 
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Since 1<∂  and 01 >∂− n ,then nn ττ −+1  is always positive and has the same sign as the quantity in 

the bracket of Eqn (3.5). Similarly, putting n-1 for n in (3.5) will give 
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And the necessary condition for minimum value of nτ  is given by 
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The expression between nη  and 1+nη  in (3.7) define the weighted average of all costs up to the period (n-

1) with corresponding weights of .,...,,,1 12 −∂∂∂ n Therefore, the value of n satisfying this relationship 

will be the best period for replenishing inventory. 
 
Lemma 3.1: 
Given a discrete time inventory with stochastic demand, the mean annual cost of inventory will be 
minimized by replenishment when the next period’s cost becomes greater than the current cost. 
 
Proof: 

Let =δ ordering cost of a new item 

       =tη handling cost for the t period, and 

      n= period in which an order for a new item is due( ordering age of an item) 
when t is a discrete variable, the mean cost incurred over the period n is given by 
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Supposed that δ and ∑
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a value of n for which nKδ  is minimum. That is to say 
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Thus, 
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Hence,   01 >−+ nn KK δδ implies that 
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Similarly, 01 >−− nn KK δδ implies that  

                     11 −+ < nn Kδη •                                                                                                (3.13) 

In summary, if the next period cost, 1+nη ,is more than the mean cost of nth period, ,nKδ then the best 

policy is procure items at the end of the nth period otherwise, do not procure; 
That is: 

     Control Policy
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period’s mean cost, 1−nKδ , then do not place order. The policy is called cost control policy for MRPP. 

 
4.Conclusion: 
      In this work, a cost control policy has been formulated and presented for MRPP. A probability 
distribution theory of stock-out  has also been derived and presented. By these expositions, insight into the 
empirical  demonstration has been established. Nevertheless, the empirical demonstrations are left for 
further research. The need for doing this for the development of statistical theory for the control of 
inventory cost in MRPP need not be over-emphasized. 
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