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Abstract 

 
We consider the existence and uniqueness of investor’s wealth dynamics 
and optimization of investment portfolio and consumption processes. We 
described the existence and uniqueness of our dynamics using already 
existing approaches. Using the  method of successive approximation, we 
found that 
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in probability as ∞→k  for each [ ]Tt ,0∈ . This shows that the limit 

process X(t) satisfies our Stochastic wealth equation (1.9). We assume that 
the investor invested his short positions into a riskless asset and N risky 
assets. We also assume that the market is complete, arbitrage-free and 
continuously open. We derived the optimal portfolio as well as the optimal 
consumption strategies for an investor. 

 
               Keywords:   Optimal Portfolio, Consumption, Wealth Dynamics, Existence and Uniqueness. 

1.0 Introduction 
 

We consider the intertemporal consumption optimization problem. We assume that an infinitely-lived small 
individual with initial capital, works only before age, T and consume continuously throughout his/her 
lifetime. The consumption terminates when the individual died. At that point, the wealth becomes zero. 
This paper is based on the already existing works. [7] and [4], who provide an approximate solution and 
analytical results to the intertemporal consumption problem. [4] assumed that the asset return is non-
stochastic. [8] considered a tractable model of precautionary savings in continuous time and assume that 
the uncertainty is about the timing of the income loss in addition to the assumption of non-stochastic asset 
return. [2] considered labour supply flexibility and portfolio choice of individual life cycle. They determine 
the objective of maximizing the expected discounted lifetime utility and assume that the utility function has 
two argument (consumption and labour/leiture). [1] used the quadratic utility function that has the 
characterization of linear marginal utility. This utility function is not attractive in describing the behaviour 
of individual towards risk as it implies increasing absolute risk aversion. [9] invesigated the continuous-
time consumption model with stochastic asset returns and stochastic labour income using Martingale 
approach. He derived analytically a closed-form solution for the consunption and labour supply process. [2] 
concluded that labour income induces the individual to invest an additional amount of wealth to the risky 
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asset. They show that labour income and investment choices are related, while they failed to analyze the 
optimal consumption process. [9] analyzed the optimal consumption process and treated consumption and 
leisure as a ‘’composite’’ good. He assumes  
 

 
that people work for their whole lifetime which is unrealistic. In this paper, we assume that people work up 
to a certain age, T and continue to enjoy their investment returns throughout their lifetime. The above 
authors considered investment of the individual income stream into a riskless and a risky assets using 
Martingale method. [6] established the global existence and uniqueness of Stochastc differential equation. 
We consider in this paper, the existence and uniqueness locally as related to our work. Again, we consider 
the investment of individual short position into a riskless asset and N risky assets. This to a great extent 
minimize the risk associated with the investment. We also consider the the derivation of optimal portfolio 
strategies for the investor. Our aim is to find the optimal value functions of investment portfolio and 
consumption strategies using Hamilton-Jacobi-Bellman (HJB) equation. 

1.2 Problem Formulation 
 
Let the short position of the investor be invested into a riskless asset with a nominal return r and N risky 

assets with instantaneous expected gross return .,...,1, Nii =µ   When the investor retires, his/her post-

retirement consumption is financed by his/her investment and savings at time Tt ≤ . The aim of the 
investor is to maximize his/her expected lifetime utility by choosing the portfolio and optimal consumption 
at time Tt ≤ .  

Let )()( , tXtX C∆≡ be the wealth process, where )(t∆ is the portfolio process at time t. Let )(ti∆  be the 

proportion of wealth invested in the risky asset i at time t, then ∑
=

∆−
N

i
i t

1

)(1  is the proportion wealth 

invested in the riskless asset. 
 
1.3 Continuous-time model of financial stock markets 
  
1.3.1 Riskless bond: 
The rickless bond with price process, )(tB  is given by the dynamics 

dttr
tB

tdB
)(

)(

)( =                                                                                         (1.1) 

1)0( =B , 

where )(tr  represents the short term interest rate at time t . It is also known as norminal return. 

 
 1.3.2 Financial stock price dynamics: 
The n assets are the risky financial assets, whose prices are denoted by .,...,2,1),( NitSi =  The  

dynamics of )(tSi  given by  
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NisS ii ,...,2,1),,0()0( =+∞∈=  

where the randomness { } [ ]TttWtWtW
T

N ,0;)(),...,()( 1 ∈=  is N-dimensional Brownian motion 

defined on a complete probability space ),,( PFΩ , where P  is the real world probability measure and 
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)(, tjiσ  is the volatility of asset i  at time t  with respect to changes in ).(tW j  

{ })(),...,(:)( 1 ttt Nµµµ =  is the appreciation rate vector.  

 
 

Moreover, 
N

jiji tt ,, )}({)( σσ =  is the volatility matrix referred to as the coefficients of the market. The 

volatility matrix }0,)}({)({ ,1, Tttt Njiji ≤≤= ≤≤σσ  are progressively measurable with respect to the 

filtration F  and satisfy the condition 
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where .  denotes the Euclidean norm in Nℜ  and where )(tiσ  denotes the thi −  row of )(tσ . The 

filtration ( ) 0)( ≥= ttFF , represents the information structure generated by the Brownian motion and is 

assume to satisfy equation (1.3). 
We assume that the financial market is arbitrage-free, complete and continuously open between time 0 and 
T, where T is a strictly positive real number i.e., there is only one process )(tθ  satisfying  

( ) ,1,0,)()()()()( 1 NiTttrttt ii ≤≤≤≤−= − µσθ  

with ),( wtwhere σ  is non-singular, for )( P⊗λ  almost everywhere and Ω×∈ ],0[),( Twt . The 

exponential process 
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is assumed to be a martingale, and the risk-neutral equivalent martingale measure, denoted by  

[ ] ).(,1)()(
~

TFATZEAP A ∈=                                                                    (1.5) 

Using Ito lemma on Eq.(1.1) and (1.2), we respectively obtain the following solutions 
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Definition 1: Let )(t∆ portfolio process and )(tC  the consumption process, then the pair ( )C,∆  is said 

to be self-financing if the corresponding wealth process ],,0[),(, TttX C ∈∆  satisfies 
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The requirement of being self-financing states that the change in wealth must equal the different of the 
capital gains and infinitesimal consumption. Substituting the assets returns in Eq.(1.1) and (1.2) into 
Eq.(1.8), we obtain the following 
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This is our stochastic differential equation which represents the wealth process of the investor. 
 
1.4 Existence and Uniqueness of our Stochastic Wealth Dynamics 
From Eq.(1.9), setting  
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We have the following stochastic differential equation: 

( ) ( ) )()(,)(,)( tdWtXtdttXttdX σµ +=                                                            (1.10) 

Our aim is to show that if Eq.(1.10) exists and is unique, then Eq.(1.9) is exists and is unique. 
When we integrate Eq.(1.10), we obtain the following stochastic integral equation: 

( ) ( )∫ ∫++=
t t

tdWtXtdssXsXtX
0 0

)()(,)(,)0()( σµ                                    (1.11) 

Where the first integral is a Lebesgue (or Riemann) integral for each sample path and the second integral is 
an Ito integral. 

Let [ ] .,0:, ℜ→ℜ× NTσµ  Then, we have the following assumptions for µ  and σ . 

 
Assumptions: 

(i) ( )xt,µµ =  and ( )xt,σσ =  are jointly −2L measurable in ( ) [ ] NTxt ℜ×∈ ,0, ; 

(ii) There exists a constant K>0 such that 

       ( ) ( ) yxKytxt −≤− ,, µµ  and 

       ( ) ( ) yxKytxt −≤− ,, σσ  for all [ ]Tt ,0∈  and ., ℜ∈yx  

(iii) There exists a constant K>0 such that 

       ( ) ( )222
1, xKxt +≤µ  and 

                     ( ) ( )222
1, xKxt +≤σ  for all [ ]Tt ,0∈  and .ℜ∈x  

(iv) )0(X   is −Α0 measurable with ( ) ,)0(
2 ∞<XE  where 0Α  is a −−σnull algebra. 

(v) There exists a constant K>0 such that 

      ( ) ( ) yxKytCxtC −≤− ,,  for all [ ]Tt ,0∈  and ., ℜ∈yx  
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The assumption (ii) provides the key estimates in both the proofs of existence and uniqueness by the 
method of successive approximations. Hence, we required the following Gronwall inquality. 

Lemma 1: Let [ ] ℜ→Tgf ,0:,  be integrable with ∫+≤≤
t

dssfLtgtf
0

)()()(0  for [ ]Tt ,0∈ , 

where .0>L  Then 

( )[ ]∫ −+≤
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0

)(exp)()( .                                             (1.12) 

 
 
Lemma 2: Suppose that assumption (i) and (ii) hold, then the solution of Eq.(1.10) with the same initial 
value and  
Brownian motion are pathwise unique. 

Let )(tX  and )(
~

tX  be two solution to Eq.(10) on the time interval [ ]T,0 . Let the solutions be almost 

surely locally lipschitz continuous sample paths on ( )xt,µ  and ( )xt,σ  in the spatial variable x. For 

0
~ >N  and [ ]Tt ,0∈ , we define the following truncation process: 
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Applying assumption (ii), we have the following: 
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We now define the following sequences: 
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Using Eq.(1.15), Eq.(1.14) becomes 
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This shows that the second moments exist for )
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Considering the second term, we use the Ito isometry, we have 
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Applying the Classical Holder’s inquality (or Cauchy Schwartz inequality) for the Lebsegue integrals 

which states that for ( ) ,1
11
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Thus, substituting Eq.(18) and Eq.(19) into Eq.(17), we obtain 
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Theorem 1: Using assumption (i)-(iv), the stochastic differential equation (1.10) has a pathwise unique 

strong solution X(t) on [ ]T,0  with 
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We are to show the existence of a continuous solution of the SDE (10) on [ ]T,0  associated with the 

Brownian motion W(t) and initial condition ξ . We use the method of successive approximations. We 

define )()( tX k  recursively with ξ=)()0( tX , and 
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For [ ]Tt ,0∈  and k=1,2,3,..., where, ( ) 212 KTL += . Then using the Cauchy formula: 
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Repeating the iteration of Eq.(1.23), we obtain 
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                            (1.24) 

For [ ]Tt ,0∈  and k=1,2,3,...,. 

By assumption (iii), we find that, for k=0,   
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Substituting Eq.(1.25) into Eq.(1.24), we obtain 
 

!
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k
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



 −+ , 

For [ ]Tt ,0∈  and k=0,1,2,... 

Therefore, 

!
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



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, k=0,1,2,3,...                                (1.26) 

This implies that the mean-square integrable martingale converges uniformly on [ ]T,0 . 

Theorem 2: Suppose that Lemma 1 and Theorem 1 above hold, then  
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Implies that 
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In probability as ∞→k  for each [ ]Tt ,0∈ . 

We are to show that it is almost surely convergence of their sample paths uniformly on [ ]T,0 . We define 

the following 
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Using the Doob inquality, the Cauchy-Schartz inequality and assumption (ii), we determine 
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Combinning Eq.(1.26) and (1.27), we conclude that  
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12 += TKTMM . Then using the Markov inequality, we have that 
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where the series on the right hand side converges by the ratio test. Hence, the series on the left hand side 

also converges, so by the Borel-Cantelli lemma, we conclude that kY  converges to 0, almost surely. This 

implies that the successive approximation )()( tX k  converge almost surely, uniformly on [ ]T,0  to a limit 

)(
~

tX  defined by 

 
 
 

{ }.)()()0()(
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It follows from Eq.(1.22) that )(
~

tX  is mean square bounded on [ ]T,0 . Since the limit of −Α * adapted 

process is adapted and the uniform limit of continuous process is continuous, then )(
~

tX  is −Α * adapted 

process and continuous. By assumption (iii), the right hand side of the integral equation (11) is well defined 

for this process )(
~

tX . Now, taking the limit as ∞→k in Eq.(1.21), we see that )(
~

tX  is the solution of 

Eq.(1.11). The left hand side of Eq.(1.21) converges to )(
~

tX  uniformly on [ ]T,0 . Compareing the right 

hand side, the result follows. 

Hence, the limit process  )(
~

tX  satisfies the stochastic integral equation (1.22). 

We shall use the following results in solving our problem. 
 
2. Optimization Program  
 
We now determine the optimization process of our problem. 

Theorem 3: Suppose the value funtion is defined and [ ]( )NTCX ℜ×∈ .02,1 . Then V is a solution of the 

following second order partial differential equation: 

( )
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)(

0,,,,sup
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vvXtGv
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                                                           (2.1) 

where ( ) ( ) ( )( ) ( ) ( )∆−∆+∆∆−=∆ ,,,,,,,,,
2

1
,,,, XtfXtbpXtXtPtrPpXtG Tσσ ,        (2.2) 

for any ( ) [ ] NNNTPpXt ℜ×ℜ×Π×ℜ×∈∆ ,0,,,, . 

Eq.(2.1) is called the Hamilton-Jacobi-Bellman (HJB) equation. The function ( )PpXtG ,,,, ∆  is called 

the generalized Hamiltonian.  
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Definition 2:  A function [ ]( )NTCv ℜ×∈ .0  is called a viscosity subsolution of Eq.(28) if 

( ) NXanyforXhXTv ℜ∈≤ )(, ;                                                                      (2.3) 

for any [ ]( )NTC ℜ×∈ .02,1φ , where φ−v  attains a local maximum at ( ) [ ] NTXu ℜ×∈ ,0, , we have  

( ) .0),(),,(,,,sup),( ≤−−∆+−
Π∈∆

XtXtXtGXt XXXt φφφ                                   (2.4) 

A function [ ]( )NTCv ℜ×∈ .0  is called a viscosity supersolution of Eq.(2.1)  

 
Theorem 4: The Hamilton-Jacobi-Bellman equation associated to this problem is given by   
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ρ                                                                  (2.5) 

with boundary conditions    

( ) ( ) ( ))(exp)(, VUUTTVTU ρ−=                                             (2.6) 

If there is an optimal portfolio process { }**, C∆ , then it is given by the solution in Eq.(2.5). 

Proof: (see  [5]). 
 
 
 

 
Proposition 1: Let U be a function that belongs to the class of functions with continuous derivatives of 
first order in t on [τ ,T] and first and second order in ℜ∈X   almost everywhere. The infinitesimal 

generator of ( ){ },,)(, TttXtV ≤≤τ  with ( ))(, tXtU  satisfies Eq.(2.8), ∆  satisfies assumption (ii)-

(iii) and C satisfies assumption (v), is given by 
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Proof: (see [3]). 
 
2.1 Optimization of Portfolio and Consumption Process 
In this section, we derived the optimal portfolio and consumption process using HJB equation. The theorem 
below give us the optimal portfolio and consumption process at time t. 
 
 
 
Theorem 1.6 : Let  
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) 

 be the change in wealth process at time t.  
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be the value function, where 
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)()(sup,  and by theorem 1, 2, and 5, Eq.(2.7) becomes: 
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Since we are only interested in the final utility, we set ( )∆,, Xtf =0 in theorem 3. By subtracting  

( )tXU ,  from bothsides of Eq.(2.9) and then divide bothsides by h and allow h approaches zero, we 

obtain: 

( ) ( ) ( )( ) ( ) ( ) ( )tXUtCXttXUrXtrXtXUtXU X

N

j
jiiXXiiXt ,)()(,

2

1
)(,,0

1

2

,
22 ∑

=

−∆+−∆++≥ σµ  

Using theorem 4 on Eq.(2.9), we obtain the following: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )ttCUtXUtCXttXUrXtrXtXUtXU X

N

j
jiiXXiiXt ρσµ −+−∆+−∆++≥ ∑

=

exp))((,)()(,
2

1
)(,,0

1

2

,
22

This yields the HJB equation for the value function  
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 (2.10)                                                                                                                       

where { }N

ii t 1)( =∆=∆  and CC Π∈ are sets of admissible strategies. 

By theorem 1 and 2, we have that ( ) [ ]( )TCtXU ,0,( 2,1 ×ℜ∈ , then Eq.(2.10) has a unique smooth 

solution and the maximum in Eq.(2.10) is well-defined. Hence, we have the following: 
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From Eq.(2.11), we obtain: 
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From Eq.(2.12), we obtain: 
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Conclusion 
We derived  the existence and uniqueness of our investor’s wealth dynamics following the existing 
approaches. We show that the limit process X(t) satisfies our Stochastic wealth equation (1.9). We derived 
the optimal portfolio as well as the optimal consumption strategies for an investor, which are presented in 
Eq.(2.13) and (2.14) respectively. 
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