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Abstract 

 
An extension of the use of the maximum principle to solve Discrete-time 
Optimal Control Problems (DTOCP), in which the state equations are in 
the form of general equations, rather than difference equations has been 
examined. Comparing the previous maximum principle to the proposed, 
revealed that the only difference, lies in the law of motion of the co- state 
variables and in particular, by applying the Bellman’s optimality 
principle and backward recursion, showed that the previous maximum 
principle is a subclass of our maximum principle. An economic problem 
was considered using the Timber Supply Model (TSM) 2000 to exemplify 
the use of the maximum principle in solving DTOCP problems. 
Furthermore derivations of necessary conditions which will be used to 
identify the optimal time paths for the variables were derived.    
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1.0 Introduction 

 
Lots of extensive works exist in Literature and have been thoroughly used in areas like economics, physics, 
electronics etc, since the emergence of maximum principle by [8]. The key features of the maximum 
principle are the control variables which usually unambiguously determine the state variables; the co-state 
(ad joint) variables represent the shadow values of the state variables linked with them. In addition, the 
necessary conditions for the optimization substantially matched the sufficient conditions for the 
optimization [3]. This led to the consideration of optimal control theory as a more simple but powerful 
method for solving the problem of dynamic optimization. 
 Pontryagin et al and a host of other authors have proposed numerous maximum principles to be 
applied to various types of optimal control theory. Specifically these authors have provided for DTOCP, the 
maximum principle only for the situation where the state equation is in the form of the difference equation.  
But we know that in solving economic problem models, we do encounter cases in which the state equation 
is not in the form of the difference equation rather in the general equation. In view of the above 
observation, we propose or extend the maximum principle that can handle DTOCP in which the state 
equation is not only of the form of a difference equation but as well as a general equation. To accomplish 
this, we shall adopt the procedure of reviewing what the previous maximum principle states, thereafter 
present the new maximum principle for DTOCP as a general one. By identifying the law of motion of the 
co-state variables, we should be able to differentiate the two principles. Similarly we shall show that the 
previous principle is a subclass of the present one. We shall consider a numerical problem for the 
utilization of our maximum principle as a solution technique. 
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2.0    Pontryagin et all’s and other maximum principles 
 It is our desire here to present a complete review of what the previous maximum principle entails. 
According to [2], the maximum principle for DTOCP for this case is  

         (2.1) 
 Subject to 
   ,  specified. 

where t = 0(1) T, is considered as the set of time periods and t = 0 and t = T represents the initial and 
terminal time periods respectively. denote a control variable in time period t;  the state variable 
representing the system in time period t. stands for the payoff function or the net economic return. 

(.)S the scrap (or terminal) value function at the terminal time period. The law of motion stated in the state 

variable is ),(1 tttt xugxx =−+ .From equation (2.1), we have the Lagrangian function 
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where 1+tλ is the Lagrangian multiplier associated with1+tx . The first order necessary condition for 

optimality can be obtained as follows: 
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The Hamiltonian at time period t can be defined as  
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 Similarly, the first order necessary conditions are interpreted in terms of the Hamiltonian 
such as;  
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Equations (2.9), (2.10) and (2.11) plus (2.6) and (2.7) represents the maximum principle proposed by 
Pontryagin et al and others in literature for DTOCP in which the state equation is in the form of difference 
equation. 
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Generalization of the Maximum Principle for DTOCP. 
 
We consider the DTOCP in which the state equation is not in the form of the difference equation but have 
the form of a general equation. That is  
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where equation (2.12a) denotes the law of motion of the state variable and ),( tt xuq varies between 0 and 

2 inclusive. 
The Lagrangian function for the equation (2.12) is  
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Hence the first order necessary conditions for optimality are  
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The corresponding Hamiltonian at time period t is as follows: 
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and the necessary conditions for optimality are 
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Similarly our maximum principle can thus be obtained from these last three equations plus equations (2.17) 
and (2.18).This clearly differs from the maximum principle of equations (2.9, 2.10, 2.11) plus equations 
(2.6, 2.7) only in the law of motion of the state and co-state variables. We also viewed the function S(xT) as 
the solution variable for the same maximization problem over the time frame between T and  ∞  and 

( )1−TxS . This is an application of the Bellman’s optimality principle, which states that:  
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“ an optimality policy has the property that regardless of what the previous decisions have been, the 
remaining decisions must be optimal with regard to the state resulting from those previous decisions” 
and backward recursion. 
 
 From this, we state that the state equation (2.17) holds for t = 0(1)T-1, such that when t = 0(1)T and 
specifically for time T-1, we have, 
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where the superscript(*)represents the optimal value. Using equation (17) for T-1, we have  
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Applying (2.17) to equation (2.24), we have, 
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Based on the above result, the law of motion for the co-state variables can be expressed as  
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Next we apply our MP to situation where the state equation is in the form of the difference equation. To 
throw light into the MP using the Hamiltonian, we set up the following maximum problem by changing the 
difference equation of the state variable 

 ),(1 tttt xugxx =−+  

into 

  ),(1 tttt xugxx +=+  

 
Hence the maximum problem represented as in equation (2.12) is changed into  
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The necessary conditions arising from the above is 
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Then the Hamiltonian function at time period t is  
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Also we obtain the necessary condition as 
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From equations (2.27) and (2.28), we have that  
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Arising from the above, let us derive the law of motion of co-state variable, but first bear in mind that at 
time t, optimum value of S become, 
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Combining (27) and (29), we have, 
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With this, we have derived the first order necessary conditions and transversality conditions stated above 
using Hamiltonian. This thus has given a generalization of our maximum principle, since it embeds the 
previous maximum principle proposed by Pontryagin, et al and others in literature. 
 
  
3.0    Example: An Economic Problem  
 
 We shall examine the Timber Supply Model 2000(TSM 2000) formulated by [7] in applying our 
maximum principle to the economic problem. The TSM is formulated to analyze the dynamic behavior of 
the global timber market by incorporating additional features of the global timber market that occurred in 
recent years. We first summarize the formulation of the TSM 2000then look at the procedure of deriving 
the equations that we have to solve to find the optimal time paths for economic attributes. 
 
Derivation of the TSM 2000 Model 
 The major aim of this model TSM 2000 is to maximize the total benefit of the society as a whole not 
for an individual private profit of a landowner. Secondly the model factors the total industrial wood harvest 
into solidwood and pulpwood. As such the net surplus of year is defined as  
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where 

  =kQ the quantity of timber for solidwood harvested in year k; 
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  =)(nD p
k the inverse demand function of industrial solidwood in year k; 

  
 

 
=)(nD p

k the demand of industrial pulpwood in inverse form; 

 =kC the total cost in year k.  

Total cost implies the summation of harvest, access, transportation cost )( kCT and the regeneration 

cost )( kCR . Harvesting and transportation costs in the year k, is a function of the total volume harvested 

by land class and regeneration costs is a function of hectares harvested (regenerated) and the level of input 
used. The following definitions will be useful and so they are in order for the formulation of the model: 

 kXh - a state vector of hectares of trees in each age group for land class h in year k with element  

         ikxh  . 

 kZh - the state vector for the regeneration input with element ikzh , the level of regeneration  

         input associated with age group i in year k for land class h. 

 kUh  - the control vector of hectares harvested with element ikuh , representing the land class h, 

          the portion of the hectares of trees in age group i harvested in year k. 

 kPh - the price of regeneration input for land class h. 

  The possible volume of timber that can be placed on sale per hectare for land class h in year k for a stand 
regenerated i time periods is a function of i and on the magnitude of the regeneration input used on this 

stand ( ikzh )  Let this possible volume on sale be  
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This volume is splitted into solidwood and pulpwood using variable proportion which vary by land class 

with 
hφ

the portion going to solidwood and 1 - the portion for pulpwood. Based on this, the volume 
of the commercial timber harvested for solidwood and pulpwood from land class h in year k is given by 
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Where kXh
 is a diagonal matrix using the elements of ik

xh
and the total  volume harvested in the 

responsive sections is the summations of these over all the land classes. Costs including harvest, access and 
transportatioin cost for land class h is a function of the volume harvested in theat land class  
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and regeneration cost for land class in year k is 
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     (3.6) 

where <. , > gives the hectares harvested in land class h, kvh
 
is the exogenously determined number of 

hectares of new forest land in land class h, the product of the last two terms give expenditure per hectare. 
This leads to the total cost of  
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Ensuing from the above, the objective function of TSM will be the discounted present value of the net 
surplus stream as follows: 
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where p is the discount factor ; k is the last time period of the model time range ; u is any admissible set of 

control vectors, w is any set of admissible control scalars and 
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Equations (3.7)  
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B, D and U are N-square matrices; kUh is a diagonal matrix using the elements of kuh (specified in)and b 

is an N –vector where N is equal to or greater than the index number of the oldest age group in the problem. 
  
  
Application of the Maximum Principle on DTOCP 

 Maximizing the objective function (3.8) subject to the constraint (3.9) is the DTOCP, that has to be 
solved using the discrete time maximum principle. This principle states that the constrained maximization 
of equation (3.8) can be decomposed into a series of sub-problems and in each time period, the following 

Hamiltonian is maximized with respect to kuh  and kwh subject to the constraints. The Hamiltonian is 

written for year k as, 
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solution function in year k+1. Similarly hkλ and hkψ , are the co state variables associated with hkλ and 

hkz respectively and identify the shadow values of the hectares of forest and regeneration input. 

 The Lagrangian function of the above problem is written as  
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The Kuhn-Tucker necessary conditions are 
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Equations (3.8), (3.10), (3.13), and (3.15) known respectively as the state equations and the law  of motion 
for the co state variables and the Kuhn-Tucker conditions identify a two-point boundary problem that can 
be used to solve both theoretical and numerical problems. These equations can be solved to determine the 
optimal time paths for economic variables. 

 
Conclusion 
  
       We saw in this work that initial maximum principle was meant to deal with problems in which the state 
equations are in the form of the difference equation. In the light of this, we have successfully extended the 
idea to include the general equation, such that we have a maximum principle that can be used to solve 
DTOCP in which the state equations take form of the general equation. The only difference between the 
two, lies in the law of motion of the co-state variables; particularly, by applying the Bellman’s Optimality 
Principle stated above and backward recursion, we observed that our maximum principle encloses the 
previous i.e. the previous maximum principle is a subclass of our maximum principle. In this sense, it can 
serve as a general solution method for DTOCP in economic problems. The TSM 2000 was taken as an 
illustrative problem to apply our (MP) as a solution technique; necessary equations that will be used to 
identify the optimal time path for the variables were derived.    
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