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Abstract

An extension of the use of the maximum principle $olve Discrete-time
Optimal Control Problems (DTOCP), in which the staéquations are in
the form of general equations, rather than differea equations has been
examined. Comparing the previous maximum princigte the proposed,
revealed that the only difference, lies in the lafmotion of the co- state
variables and in particular, by applying the Bellm& optimality
principle and backward recursion, showed that theepious maximum
principle is a subclass of our maximum principle nAfeconomic problem
was considered using the Timber Supply Model (TSMPO to exemplify
the use of the maximum principle in solving DTOCPrgblems.
Furthermore derivations of necessary conditions whiwill be used to
identify the optimal time paths for the variablesve derived.
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1.0 Introduction

Lots of extensive works exist in Literature and édeen thoroughly used in areas like economicssip$y
electronics etc, since the emergence of maximumciple by [8]. The key features of the maximum
principle are the control variables which usualhambiguously determine the state variables; thstate
(ad joint) variables represent the shadow valuethefstate variables linked with them. In addititime
necessary conditions for the optimization substdigti matched the sufficient conditions for the
optimization [3]. This led to the consideration aftimal control theory as a more simple but powerfu
method for solving the problem of dynamic optimiaat

Pontryagin et al and a host of other authors hmeposed numerous maximum principles to be
applied to various types of optimal control thed@pecifically these authors have provided for DTOE
maximum principle only for the situation where gtate equation is in the form of the differenceagigun.
But we know that in solving economic problem models do encounter cases in which the state equation
is not in the form of the difference equation rathe the general equation. In view of the above
observation, we propose or extend the maximum jmlim¢hat can handle DTOCP in which the state
equation is not only of the form of a differencauation but as well as a general equation. To actismp
this, we shall adopt the procedure of reviewing twih@ previous maximum principle states, thereafter
present the new maximum principle for DTOCP asrsegs one. By identifying the law of motion of the
co-state variables, we should be able to diffeadatthe two principles. Similarly we shall showtthize
previous principle is a subclass of the present. &le shall consider a numerical problem for the
utilization of our maximum principle as a solutimthnique.
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2.0 Pontryagin et all's and other maximum principles
It is our desire here to present a complete redewhat the previous maximum principle entails.

According to [2], the maximum principle for DTOCS#r fthis case is
T-1

Max Zf{"_:,..':'_..rﬂr Sxy)
t=o (2.1)
Subject to
Yooy = X = gu., x:) | x(0) = x, specified.
where t = 0(1) T, is considered as the set of fpegods and t = 0 and t = T represents the inarad
terminal time periods respectivel§:denote a control variable in time period*: the state variable
representing the system in time periodf(. Jstands for the payoff function or the net econonrgizirn.
S(.) the scrap (or terminal) value function at the texahtime period. The law of motion stated in thetest

variable isX,,; — X, = g(U,,X,) .From equation (2.1), we have the Lagrangian foncti

T-1
L= f (U, %o t)+ s (% + 9(U, %) = %) + S(X;) (2.2)

t=0
where A, is the Lagrangian multiplier associated wily,. The first order necessary condition for
optimality can be obtained as follows:

6f (ut ' Xt ’t) + At+1 ag(ut ! Xt) - O,t - 0(1)"- -1 (2_3)
au, ou,

Aop = Ouux) ) ag(ux)

t+1 T Ox, t+1 0x, ,t=0(1) T-1 (2.4)
X =% = 0(U, %), t =0T -1 (2.5)
), = 950)

0X; (2.6)
x(0) = x, ®.
The Hamiltonianflt time period t can be defined as

H(prpta/]m) = f(utaxt!t)-'-/]tﬂg(ut’xt) (28)

Similarly, the first order necessary conditions iaterpreted in terms of the Hamiltonian
such as;

oH (u,, X, ,t,A,,) — of (U, %, t) + A M: 0,t=0QT -1

2.9
au, au, oy, (29)
/]Hl _/]t - _aH (ut’xt 't'AHl) - _(af (ut’x’[’t) +At+1 ag(ut’x’[)) - O,t - 0(1)T _1
0x, 0x; 0x,
(2.10)
X, =X = OH (U, Xt Aus) - 09(ULX) _ gy o oWT -1 (2.11)

aAtﬂ aAHl

Equations (2.9), (2.10) and (2.11) plus (2.6) aRd’)(represents the maximum principle proposed by
Pontryagin et al and others in literature for DTO@Rvhich the state equation is in the form of eliéfnce
equation.
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Generalization of the Maximum Principle for DTOCP.

We consider the DTOCP in which the state equasamoi in the form of the difference equation butéha
the form of a general equation. That is

T-1
Max>_ f (u,, %, t) + S(x;) @.12a)
t=0
subject to
X1 = P(Up, %) + (U, %) (2.12b)

where equation (2.12a) denotes the law of motiothefstate variable ang(U, , X,) varies between 0 and

2 inclusive.
The Lagrangian function for the equation (2.12) is

T-1
L =D {f(u,x.t)+A.[pU,x)+au, %) = X.,]+S(x)=0,t=01) T-1  (2.13)
t=0
Hence the first order necessary conditions formoglity are

af(ut’x'[’t)_i_/‘ [ap(ut’x‘[)_l_aQ(ut’xt)]:O t=
t+1 v v T

0(1) T-1, (2.14)
ou, ou, ou,
/]t - af (ut ! X’[ 7t) + Atﬂ[ap(ut ! Xt) + aQ(ut ! Xt )] (215)
ou, ou, ou,
X1 = P(U %) +a(Ug, %) t=0(1) T-1 (2.16)
ds(x;)

A =—T1% 2.17

T (2.17)
X(0) = X, , specified (2.18)

The corresponding Hamiltonian at time period tsalows:
H(U, %0t Au) = (U X0 + A [p(ue, %) +q(ug, %)
of . /Lﬂ[ap(ut,xt) +6q(ut,xt)]
ou, ou, ou,
(2.19)
and the necessary conditions for optimality are

oH _of + /lm[alo(ut %) + aq(u,, X‘)] =0,t=0(1) T-1 (2.20)
ou, du, ou, ou,
oH _ of ap(u,, aq(u,,
/]t :a_:a__l_AHl[ p(at X’[)+ q(at Xt)]
% o, U, U =0T (2.21)
_oH _ _
Ay = Y [Py, %) + (U, %)],t = 0T — 1o (2.22)
t+1

Similarly our maximum principle can thus be obtaifieom these last three equations plus equatioig)2
and (2.18).This clearly differs from the maximuninpiple of equations (2.9, 2.10, 2.11) plus equsio
(2.6, 2.7) only in the law of motion of the statelaco-state variables. We also viewed the funcH0g) as
the solution variable for the same maximizationiggn over the time frame between T ang and

S(XT_l). This is an application of the Bellman’s optimgigrinciple, which states that:
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“an optimality policy has the property that regardke of what the previous decisions have been, the
remaining decisions must be optimal with regard tlee state resulting from those previous decisions”
and backward recursion.

From this, we state that the state equation (hdi)s for t = 0(1)T-1, such that when t = 0(1)an
specifically for time T-1, we have,

S (%) = Uy, X, T =1) + STP(Ur s X ) + A(Ur g, X )] (2.23)
where the superscript(*)represents the optimaledlising equation (17) for T-1, we have

_dS(x,)

/‘T—l -
X,
— af (UT—S,XXT_l,T _1) +<Sk, p(UT_l, XT_1)> ap(lg;, XT—l)
T-1 T-1

+(S", Aty ) 2 ) 224

0%y

Applying (2.17) to equation (2.24), we have,
_ adS(Xr4) - of " (Ury, X, T =) + [ap(uT—l’XT—l) + aQ(UT—1!XT—1)]
T

A= (2.25)
x4 0% 4 0Xr 0% 4
Based on the above result, the law of motion ferab-state variables can be expressed as
/]t :M't = O(]_)T
Or
)= of (U, x.t) , A op(U, X, t) A 99M %00 oy (2.26)
0%, 0%, 0%,

Next we apply our MP to situation where the stajaagion is in the form of the difference equatido.
throw light into the MP using the Hamiltonian, wet sip the following maximum problem by changing the
difference equation of the state variable

Xor =% = 09U, %)

into

X = %+ 09U, X,)
Hence the maximum problem represented as in equggi@?2) is changed into
T-1
Maxy’ f (U, %, t) + S(x +g(u,,x)) (2.27)
t=0

The necessary conditions arising from the above is
ou, dx,,, ou,

Then the Hamiltonian function at time period t is
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Hu, %t Auy) = F (U, %, 1) + A (X +9(u,, X))

Also we obtain the necessary condition as

OH (U, Xt Ay) _ OF (U Xt) | 99(u;, %)

+ =0t=0QT -1
ou, ou, "y, D
(2.28)
From equations (2.27) and (2.28), we have that
A :%,t = 0T -1

+1
(2.29)
Arising from the above, let us derive the law oftimo of co-state variable, but first bear in mimgtt at
time t, optimum value of S become,

ST (%)= 17 (u, %) +S (% +9g(u,x))

(2.30)

Then
0S (%) _ 0f (U, x.1) | dS (%) L+ 6g(ut,xt)] t = 0T -1
(2.31)

Combining (27) and (29), we have,

p = WX +/1H1[1+—‘39(‘;Jlt X))t = 0T -1

0X, U,
(2.32)
of "(u,,x,t dg(u,,
A=A = _(% A Q(Ttxt)),t =0T -1
(2.33)

With this, we have derived the first order necegssamditions and transversality conditions statedva
using Hamiltonian. This thus has given a generéinaof our maximum principle, since it embeds the
previous maximum principle proposed by Pontryagtral and others in literature.

3.0 Example: An Economic Problem

We shall examine the Timber Supply Model 2000(T3000) formulated by [7] in applying our
maximum principle to the economic problem. The TBMormulated to analyze the dynamic behavior of
the global timber market by incorporating additiofeatures of the global timber market that occdirire
recent years. We first summarize the formulatiorthef TSM 2000then look at the procedure of deriving
the equations that we have to solve to find thémadttime paths for economic attributes.

Derivation of the TSM 2000 Model

The major aim of this model TSM 2000 is to maxiniize total benefit of the society as a whole not
for an individual private profit of a landowner.c®adly the model factors the total industrial wdwavest
into solidwood and pulpwood. As such the net swplyear is defined as

Qj Q
Te, = [ DP(ndn+ [ *D(n)dn -C,

(3.1)
where

Q, =the quantity of timber for solidwood harvested eayKk;
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D/ (n) =the inverse demand function of industrial solidwaogear k;

D/ (n) =the demand of industrial pulpwood in inverse form;
C, =the total cost in year k.
Total cost implies the summation of harvest, accéssisportation coéCTk)and the regeneration

cost(CRk) . Harvesting and transportation costs in the yeas k function of the total volume harvested

by land class and regeneration costs is a functidrectares harvested (regenerated) and the Iéwapot
used. The following definitions will be useful asd they are in order for the formulation of the miod

th - a state vector of hectares of trees in each emedor land class h in year k with element

xh, .
Zh, - the state vector for the regeneration input witmentzh, , the level of regeneration
input associated with age group i in yefor land class h.
Uh, - the control vector of hectares harvested wigmentuh, , representing the land class h,
the portion of the hectares of treesge group i harvested in year k.
F’hk - the price of regeneration input for land class h.

The possible volume of timber that can be plamedale per hectare for land class h in year lafstand
regenerated i time periods is a function of i andtlee magnitude of the regeneration input usedhan t

stand (Zhik) Let this possible volume on sale be

dh, = f.@.,zn,) (3.2)

This volume is splitted into solidwood and pulpwoasing variable proportion which vary by land class

with ¢hthe portion going to solidwood and 1&¥2  the portion for pulpwood. Based on this, the volume
of the commercial timber harvested for solidwood polpwood from land class h in year k is given by

Qh, =(¢h.uh, Xh,dh, ) (3.3)

Qh, =20, Qh=37Qn, (3.4)

k

Where th is a diagonal matrix using the elements )(()p‘k and the total volume harvested in the
responsive sections is the summations of thesealvttre land classes. Costs including harvesgssand
transportatioin cost for land class h is a functthe volume harvested in theat land class

CTh, =ch(Qh, +Qh,)
and regeneration cost for land class in year k is

CRh, = (uh,, xh +vh, ) pwh wh,

(3.5)

(3.6)

where <., > gives the hectares harvested in |M$i5d’l,th is the exogenously determined number of

hectares of new forest land in land class h, tlelyet of the last two terms give expenditure pertdre.
This leads to the total cost of

C, =Y (CTh +CRh,) @7
h
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Ensuing from the above, the objective function &M will be the discounted present value of the net
surplus stream as follows:

— k kT*
TO(XO.ZO,U,W)—Zk:p S (%> 2)+ P Ty (X, Z,) (3.8)
where p is the discount factor ; k is the last tjpeeiod of the model time range ; u is any admisssiet of

control vectors, w is any set of admissible consicalars anc;rk () is the optimal terminal value function .
Equations (3.7)

is to be maximized over the control variables stibje the state equations and the constraints. The
constraints for control variables and the stateaiqos for the given system are

0<uh,,<10h,ik
0<wh,,0Oh,k

Xh,., = (B+DUh,)xh, +vh.b,0h,k. (3.9)
Zh,,, = Bzh, +wh,b, 0h,k.

0 0 0 O 0 0
1 0 0 O 0 0
0 1 0 O 0 0
5 - 0 0 1 O 0 0
“lo 0o 0 1 0 0 :
0 000 . . .1 0f (3.10)
b= [L0,0,00A 0]
101 1 1 1 17
-1 0 0 0 0 0
0 -1 0 0 0 0
5.0 0 -10 0 0
0O 0 0 -1 0 0
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B, D and U are N-square matriceislhk is a diagonal matrix using the elementsl,tli‘fk (specified in)and b
is an N —vector where N is equal to or greater tharindex number of the oldest age group in tiedlpm.

Application of the Maximum Principle on DTOCP

Maximizing the objective function (3.8) subjectttee constraint (3.9) is the DTOCP, that has to be
solved using the discrete time maximum principlbeisTprinciple states that the constrained maxirionat
of equation (3.8) can be decomposed into a sefisaldproblems and in each time period, the follyvi

Hamiltonian is maximized with respect 18h, and Wh, subject to the constraints. The Hamiltonian is
written for year k as,

Q Q
H, = [DP(n)dn+ [ D (n)dn-C,
0 0

(3.11)
+3 (A, (B+DUh)Xh +Vhb)+ > (, Bz, +whb)
h h
Where
Ah zp_dTI: ()zkizk)
“© 71 dxh
ah, = p Tee2d g, DUhk,Ahkﬂ)} (3.12)
| dxh,
dT, (X.,z
and yh, = p[kchkk")] (3.13)
dT, (X.,z.)
yh, = p{dekkk"' <B,yh,.,, >}
dTy (% Z)

NB: The gradient vectorgy; = , are the derivatives with vectors aﬂ'(j;l(.) is the

dzh,
solution function in year k+1. Similarlyl,, and ¢,, , are the co state variables associated vdithand

Z,, respectively and identify the shadow values ofttetares of forest and regeneration input.
The Lagrangian function of the above problem igtem as

Q¢ Q¢
L =H, + Y (&, @-uy)) = [D ()dn+ [DI(n)dn-C
h 0 0
+z/]hk +[(B+ DU hk)th +thb] +thk +(Bzhk +¢/hkb) (3.14)
h h
+z<£hk’(1_uhk)>
h

The Kuhn-Tucker necessary conditions are
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L 3 3
guk =@ D¢ (Q) + 1= @) D (Qu) = €, (Que + Qi) X A

= Xk Pun Wik + X1 DAes — €1 < 0,0

H
(OLK j —oni
ouy, "

oL = Uy Xy Pupy T W < 0,00
0th hkp *hk Mwh hk+1 = :
oL _ :
(awhk ]W =0th (3.15)
H
oL =@-u,)=00h
0
H
(ai}‘hk =0,0h,i
0

Equations (3.8), (3.10), (3.13), and (3.15) knoespectively as the state equations and the lamotibn
for the co state variables and the Kuhn-Tucker itimmdg identify a two-point boundary problem thainc
be used to solve both theoretical and numericddlpros. These equations can be solved to deterimine t
optimal time paths for economic variables.

Conclusion

We saw in this work that initial maximumipeiple was meant to deal with problems in whichdtae
equations are in the form of the difference equmatio the light of this, we have successfully extiet the
idea to include the general equation, such thahaxe a maximum principle that can be used to solve
DTOCP in which the state equations take form ofdbaeral equation. The only difference between the
two, lies in the law of motion of the co-state adhles; particularly, by applying the Bellman’s Opaility
Principle stated above and backward recursion, b&emed that our maximum principle encloses the
previous i.e. the previous maximum principle isuadass of our maximum principle. In this senseait
serve as a general solution method for DTOCP imeatdic problems. The TSM 2000 was taken as an
illustrative problem to apply our (MP) as a solatitechnique; necessary equations that will be tsed
identify the optimal time path for the variablesrevelerived.
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