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Abstract 
 

In this paper, we present a unified method for calculating spatial co-
ordinates of markers for a rigid body motion such as in bones.  
Kinematical analysis of bone movement in cadaveric specimens or living 
objects had been developed.  Here, we show how spatial co-ordinates of 
markers in or on bone can be calculated from the co-ordinates of 
projections of these markers in two different directions on one or two 
planes.  This rigid body motion can be described by a rotation matrix and 
a translation vector or by the position of screw axis, the angle of rotation 
about this axis and the translation along the axis.  Our method shows that 
our solution process is different and our results show that three or more 
non-collinear points are used and no initial approximation is needed. 

 
 
1.0 Introduction 
Several methods have been developed for the kinematical analysis of bone movements in cadaveric 
specimens or living subjects ([1], [2], [3], and [4]).  Methods based on X-ray or light photogrammetry of 
markers connected to bone are usually relatively accurate as compared to electro-goniometry ([5] and [6] ).  
Spatial coordinates of markers in or on bone can be calculated from the coordinates of projections of these 
markers in two different directions on one or two planes.  These spatial co-ordinates are used to determine 
kinematical parameters.  The object in study is considered rigid and its movement between two subsequent 
positions is taken to be a screw motion.  Such a motion can be described by a rotation matrix and 
translation vector or by the position of the screw axis, the angle of rotation about this axis and the 
translation along this axis.  
Rodriguez [1] needed the spatial co-ordinates of three non-collinear points before and after the movements 
in order to calculate the direction vector n of the helical axis and the rotation angle φ . If a1, a2, a3 and p1, 

p2, p3 are the radius vectors of these points before and after movement, the equations for n and φ  are ( see 

[3] ).  

        2
tan

φ
n=Ω

                                                                                               (A) 

)( 21212121 aappaapp −+−Ω=+−+ ∗
                       (1.1) 

)( 31313131 aappaapp −+−Ω=+−− ∗
                                 (1.2) 

where * denotes cross product of vectors .  The vector Ω can be solved  from the latter two equations if 
these equations are not inconsistent.  If they are, a least squares method is needed and the results may be 
slightly different from the results according to [3] or our method. 
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Kinzel  et al [2]  used the co-ordinates of four non-planar points in order to calculate the 4*4 matrices that 
described both rotation and translation. 
Chao [4] calculated the rotation matrix R from two  vectors pointing from one of three markers to the other 
two.   
 
The extension of his method in case of more than three markers was not shown.  
Selvik [3]  used a least squares method and minimized  

     ∑
=

−−
n

i
ii vRap
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2)(                                                 (1.3)  

where n ( n ≥3 ) is the number of markers and v is the translation vector.  Variables were the three 
components of v and the three Eulerian   angles in which R was expressed.  [3] needed an initial 
approximation for these variables.  
Our method comes close to [3] method. The expression to be minimized is the same but the solution 
process is different.  Three or more non-collinear points are used and no initial approximation is needed. 
 
2.0     Determination Of The Rotation Matrix R And The Translational Vector. 
 
The movement of a rigid body from a position 1 into another position 2 can be characterized by a transition 
vector v and a rotation matrix R [7].  This matrix is orthogonal and therefore satisfies  

IRRT =                                                                          (2.1) 

where  I   is the  3*3 unit matrix and the super script T indicates transposition. 
Let  a1, a2, .......an denote the radius vector of n ( n ≥3 ) non-collinear points P1, P2,........,Pn of the body in 
position 1, then the radius vectors  q1,, q2,..........qn of these in position are given by  

qi     =   Rai   +  v       for   i  =  1,2,.............n.                               (2.2) 
R and v are unknown and must be determined from the measured radius vectors p1, p2,..........pn  of  
P1, P2,.............Pn in position 2.  In general, these vectors will differ from the exact vectors  
q1,, q2,..........qn.  An overall measure for this difference is given by the function f of v  and R,  
defined by: 
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Introducing average vectors a and p , a matrix M and a scalar quantity f0::  
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The expression for f(v,R) can be written as : 

)(2)()(),( 0 RMtracepvaRpvaRfRvf TT −−+−++=                 (2.7) 

Here trace (M R) is equal to the sum of the components on the main diagonal of the 3 *3 matrix M R. 
The Lagrangian multiplier theorem is used to determine the matrix R and the vector v that minimize f under 
the constraint condition (2.1).  To use this theorem, a 3*3 matrix S of Lagrangian multipliers and a function 
F of v ,R and S are introduced.              

))((),(),,( IRRStraceRvfSRvF T −+=                                               (2.8) 
The above mentioned theorem now states that if F = F(v,R,S) is stationary for some, then f=f(v, R) is 
stationary and equation (2.1) is satisfied for that v and R.  Stationary points of F(v,R,S)are found by 
requiring the first variation δF of F(v,R,S) to be zero for each variation δv, δR and  δS of v, R and S. 
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Requiring δF = 0 for each δS results in the constraint condition (2.1). Next δF = 0 for each δv gives  
an equation for v;   

aRpv −=                                                                        (2.10) 

Finally, using equation (2.10) and trace (S δRT R) = trace (ST RT δR), the requirement δF = 0  for each 
δR leads to the matrix equation 
    

M  =  ½ R( S  +  ST )                                                                   (2.11) 
 

It is easy to solve equation (2.11) for the symmetric matrix ½ ( S  +  ST ). With  
    

)(
2

1 TSSS −+                                                                     (2.12) 

and with M  =  RS and equation (2.12), it follows that  
 
   MMSRRSS TTT ==2                                                  (2.13) 

 
MM T  is a symmetric matrix with eigenvalues 02

33
2
22

2
11 ≥≥≥ DDD  and a corresponding set of  

three orthonormal eigenvectors.  The eigenvalues are arranged on the principal diagonal of a   
 diagonal matrix  D2 while the eigenvectors are considered as the columns of a 3*3 matrix V.  From 
 the definition of eigenvalues and eigenvectors, it is seen that  
 
   MT M  =  S2  =  VD2 VT ;    VVT  =  I                                          (2.14) 
 
A solution for the symmetric matrix S  is therefore given by  
 

   S  =  VDVT                                                                                  (2.15) 
 
where the signs of the principal diagonal components D11, D22, D33 of D are up to now indeterminate.           
Insertion of this solution into  M =RS gives  
 
   M  =  RVDVT                                                                                (2.16) 
 
The signs of D11, D22, and D33 follow the condition that f(v ,R )must be minimal.  With (2.7), (2.10), (2.16), 
it  
follows      

( )33221100 2)(2 DDDfVDVtraceff T ++−=−=                                  (2.17) 

 
and in order to make f minimal,  D11, D22, D33 must be chosen non-negative. 
To elucidate the geometrical significance of D11, D22, and D33 , the measured vector pi (i =1,2,.....,n) 
is related to the exact vector qi = R ai + v by writing  

 

niforvaRp iii ..,..........,2,1, =++= δ                                        (2.18) 

 
The error vector δi is due to measuring errors and to the fact the body is not perfectly rigid. Insertions of 
equation (2.18) in (2.4) and (2.5) leads to  
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M  =  R ( M0 + E )                                                            (2.19) 
where M0  depends only on the radius vectors a1,a2, ...........an,  before the movement while E depends on R,  
a1,a2, ...........an and  δ1, δ2 ..........δn ; 
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M0 is a symmetric (semi) positive definite matrix.  Therefore M0  can be written as  
 

IVVVDVM TT == 000000 ;                                               (2.21) 

 
where V0 is the matrix of eigenvectors of M0 and D0 is a diagonal matrix with the non-negative eigenvalues  

0030201 ≥≥≥ DDD  of M0 .  It can easily be proved that all eigenvalues are unequal zero if and only if 

more than three non-coplannar markers are used.  If all markers are lying in one plane, then D03 = 0, 
whereas D02 = D03 if all markers are collinear.  
With equations (2.19) and (2.21), the eigenvalue problem (2.14) can be written in a form that is more 
suitable for further analysis : 
   EEMEEMVDVVDV TTTTT +++= 000

2
00

2                        (2.22) 

From this it is clear that V =  V0, D =  D0 give a solution of equation (17) if E  =  0.  IN practice,  E will be 
unequal zero but very small compared with M0.  Then  V0  and   D0  will be realistic approximation for  V  
and   D.  Using equations (2.22) and (2.20), it is possible to establish bounds for the differences between V 
and V0 and between D and D0 if bounds for the error vectors δ1, δ2 ..........δn  are given.  However, this is not 
the subject for this paper and will not be analyzed here. 

 
The rotation matrix R can be determined reliably from equation (2.16) if and only if at least two of the 
eigenvalues     2

33
2
22

2
11 DDD ≥≥ differ significantly from zero.  From the foregoing, it is seen that this will 

be the case if three or more non-collinear points are used.  From equation (2.16) follows  
    

RVD    =   MV   =    [ m1    m2    m3 ]                                                       (2.23) 
 
where mi ( i  =  1, 2, 3) represents columns i  of  RV, multiplied by Dii.  So, if D11 and  D12 differ 
significantly from zero,( and this will always be true in realistic situations), columns 1 and 2 of RV is equal 
to the cross product ( 1/D11 ·  D22 ) m1 • m 2 of first two columns.  So, the final result for R is given by: 
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For the calculations of R and v are sufficient : Equations (2.1) and (2.2) can be used to determine M, a 
subroutine for the eigenvalues and eigenvectors of MT M, the calculation of the columns m1, m2,, and m3 of 
MV and finally equation (2.24) can be used to determine R and equation (2.10) for v. 
 
3. 0      Determination of Helical Axis 
 
In the foregoing, the movement of the body was characterized by the rotation matrix R and translation 
vector v.  Such a movement can be considered the result of a rotation through an angle φ about the helical 
axis and a translation t along this axis.  Let n denote a unit vector along the helical axis and let s be the 
radius vector of a point on this axis, such that n and s are orthogonal: 
 
   nTn     =  1;          nTs    =     0.                                                      (3.1) 
 
The sense of rotation and the direction of n will correspond with the right-hand screw rule and  φ will 
always be non-negative and less than or equal π radian. 
The connection between both description of the movement of the body is given by the requirement that  
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Rw  +  v  =    w  +   t n  +  ( 1  -   cos φ ) n • ( n  •  ( w  -s )  +  sin φ n  •  ( w  -s )               (3.2) 
 

must hold for every vector w.  Consequently : 
 
  

v  =  t n   +  ( 1  -  cos φ) s  -  sin φn • s                                                     (3.3) 

 
Rw  =  cos φw   +    ( 1  -  cos φ) nnT w   +  sin φ n • w , for every w,           (3.4)  

 
where the last equation is seen to be equivalent with  
 
  ½ ( R  -  RT )w   =  sin φ n • w  for every w                                            (3.5) 
 

  ½ ( R  -  RT )   -  cos φ I   +   ( 1  -  cos φ )nnT                                           (3.6) 
 
The matrix ½ ( R  -  RT )  is skew-eymmetric and it can easily be shown that sin φn is given by :  
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With nTn   = I  and sin φ ≥ 0, this equation can be solved for sin φ, which results in : 
   

2
1221

2
3113

2
2312 )()()(

2

1
sin RRRRRR −+−+−=φ                                   (3.8) 

 
Apart from this, cosφ can be calculated from equation (3.6) by adding up the components on the principal 
diagonal of the matrices.  Then 
   

3 cos φ   +  ( 1 -  cos φ)trace (nnT )  =  trace ( ½ ( R + RT ))                                   (3.9) 
 
and because of trace (nnT )  =  nT n  =   1, it follows that  

)1(
2

1
cos 332211 −++= RRRφ                                                            (3.10)  

 
Both equations (3.8) and (3.10) can be used to calculate φ.  For numerical reasons, it is preferred to use 
equation (3.8) if sin φ ≤ ½ 2  and equation (3.10) if sin φ > ½ 2  . 
As soon as sin φ is known, n can be determined from equation (3.7) if sin φ ≠0.  From a numerical point of 
view, this is not recommendable if φ approaches π.  With known cos φ, it is preferred to use (3.6) if φ > ¾ 
π .  While  
   

( 1  -     cos φ ) nnT   =   ½ ( R  +  RT )  -  cos φ I  =  [ b1    b2    b3 ],                        (3.11) 
 

it is seen that each of the columns  b1,   b2  and   b3 of the matrix  ½ ( R  +  RT )  -  cos φ I  is a vector in the 
same direction as n.  So, apart from a factor, n is equal to b1,   b2  and   b3.  Let bi (i = 1,2,or 3)be the 

column with the greatest length i
T
i bb .  Then n is determined by; 
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The sign must be chosen such that sin φ in equation (3.7) is positive.  The translation t along the helical 
axis and the radius vector s of a point on the axis follow from equations (3.1) and (3.3): 
    

 
 

t   =   nT v                                                                                  (3.13) 

   vnvnns ∗
−

+∗∗−=
)cos1(2

sin
)(

2

1

φ
φ                                                   (3.14) 

 
The relations (3.12), (3.13) and (3.14) hold if φ ≠ 0  If φ = 0, there is no rotation at all.  In this case the 
helical axis is not defined and therefore n, s  and t are not unique.  If φ = 0 and v ≠ 0, then one can put; 
  

   0;
1

; === sv
t

nvvt T                   (3.15) 

If  φ = 0 and v = 0, there is no movement at all.  This case is of no interest. 
Sufficient for the computation of n, φ, s and t are equations (3.8) and (3.10), for φ, equations (3.7) and 
(3.11) until (3.14) for n, t and s if φ ≠ 0 and (3.14) if φ = 0.  The calculation of these parameters will be the 
focus of our next paper. 
 
4.0    Discussion   
 
Accurate results are quickly achieved by the described method.  Although alternative methods exist  (see 
[3,4]), the described procedure here seems more elegant and needs no initial approximation.  The analysis 
is rather long and the details are not given here as it will be a subject of another paper.  But only few of its 
equations are required to achieve numerical results. 
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