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Abstract

In this paper, we present a unified method for calculating spatial co-
ordinates of markers for a rigid body motion such as in bones.
Kinematical analysis of bone movement in cadaveric specimens or living
objects had been developed. Here, we show how spatial co-ordinates of
markers in or on bone can be calculated from the co-ordinates of
projections of these markers in two different directions on one or two
planes. Thisrigid body motion can be described by a rotation matrix and
a trandation vector or by the position of screw axis, the angle of rotation
about this axisand the trandlation along the axis. Our method shows that
our solution process is different and our results show that three or more
non-collinear points are used and no initial approximation is needed.

1.0 Introduction

Several methods have been developed for the kineamhanalysis of bone movements in cadaveric
specimens or living subjects ([1], [2], [3], and)[4 Methods based on X-ray or light photogrammetfy
markers connected to bone are usually relativetyiade as compared to electro-goniometry ([5] &i4d.[
Spatial coordinates of markers in or on bone caoabeulated from the coordinates of projectionshese
markers in two different directions on one or tWwares. These spatial co-ordinates are used tonciet
kinematical parameters. The object in study issiared rigid and its movement between two subsgque
positions is taken to be a screw motion. Such &amocan be described by a rotation matrix and
translation vector or by the position of the scraws, the angle of rotation about this axis and the
translation along this axis.

Rodriguez [1] needed the spatial co-ordinates ketmon-collinear points before and after the masmm

in order to calculate the direction vectoof the helical axis and the rotation angte If a;, &, a; andp,,
P2, ps are the radius vectors of these points before #rd movement, the equations forand ¢ are ( see

[31)-

Q:ntanE

2 A
PP -ata=Q"(p-pta-a) (1.1)
pp-Ps—a ta, = Q' (p,—p;ta, —ay) (1.2)

where * denotes cross product of vectors . Thaovel@ can be solved from the latter two equations if
these equations are not inconsistent. If they afleast squares method is needed and the resajtden
slightly different from the results according td {8 our method.
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Kinzel et al [2] used the co-ordinates of four non-planar ®in order to calculate the 4*4 matrices that
described both rotation and translation.

Chao [4] calculated the rotation matRxfrom two vectors pointing from one of three mask® the other
two.

The extension of his method in case of more thegetmarkers was not shown.
Selvik [3] used a least squares method and miichiz

3 (p, ~Ra, V)’ O

where n (=3 ) is the number of markers ands the translation vector. Variables were the¢hr
components of and the three Eulerian angles in whiRlvas expressed. [3] needed an initial
approximation for these variables.

Our method comes close to [3] method. The expregsibe minimized is the same but the solution
process is different. Three or more non-collingaints are used and no initial approximation isdege

2.0 Determination Of The Rotation Matrix R And The Translational Vector.

The movement of a rigid body from a position 1 iatwther position 2 can be characterized by aitians
vectorv and a rotation matrix R [7]. This matrix is ortloogl and therefore satisfies

R'R =1 (2.1)
where | is the 3*3 unit matrix and the super script Tigates transposition.
Let ay, ay, ....... & denote the radius vector of( n>3 ) non-collinear point®y, P,,........ ,R of the body in
position 1 thentheradius vectorsq, O, .......... G of these in position are given by
g =Ra +v for i=12,..... n. (2.2)
R andv are unknown and must be determined from the medsadius vectorg,, p,.......... p of
P, Py Rin position 2. In general, these vectors wilfeliffrom the exact vectors
U1, Ooyeeerneeees . An overall measure for this difference is giventbg function f ofv and R,
defined by:
i & .
fvR =22, (Ra+v-p)" (Ra +v-p) (2.3)
i=1
Introducing average vectoasandp , a matrix M and a scalar quantity. f
18 13
a==>)a , p==>p (2.4)
n i=1 n i=1
M —_ 1 Ty _ T
= _Z(pi a ) - pa (2.5)
ni=
1 T T T T
fo=_2.(aa+p'p)-(a’a+p'p) (2.:6)
i=1

The expression for§(R) can be written as :

f(v,R) =f, + (Ra+v-p)' (Ra+v- p) —2trace(M 'R) 2.7)
Here trace (M R) is equal to the sum of the comptsen the main diagonal of the 3 *3 matrix M R.
The Lagrangian multiplier theorem is used to deteenthe matrix R and the vectethat minimize f under

the constraint condition (2.1). To use this thegra 3*3 matrix S of Lagrangian multipliers anduadtion
F ofv ,R and S are introduced.

F(,RS)= f(v,R) +trace(S(R'R-1)) (2.8)
The above mentioned theorem now states that iFFvsR,S)is stationary for some, then f¥f(R) is

stationary and equation (2.1) is satisfied for thahd R. Stationary points of\kR,S)are found by
requiring the first variatiodF of F{,R,S) to be zero for each variatiow, R and 8S ofv, R and S.
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OF =2(Ra+v-p)' (Ra+)-2trace(M ' R)trace(B((R'R-1)) 29)
+trace(S(OR" R+ R'R)) '

RequiringdF = 0 for eacl$S results in the constraint condition (2.1). N&xt= 0 for eacldv gives
an equation fov;

v=p-Ra (2.10)

Finally, using equation (2.10) and traceS@®T R) = trace (ST RTBR), the requiremerdF = 0 for each
SR leads to the matrix equation

M= %R(S + ) (2.11)

It is easy to solve equation (2.11) for the syminetratrix ¥ (S + 8). With

5 +%(s— ) (2.12)
and with M = RS and equation (2.12), it followst

S2=S"R"TRS=M"M 12)

MTM is a symmetric matrix with eigenvalugs, >D2 > D4 >0 and a corresponding set of
three orthonormal eigenvectors. The eigenvaluesiaanged on the principal diagonal of a
diagonal matrix Bwhile the eigenvectors are considered as the ausha 3*3 matrix V. From

the definition of eigenvalues and eigenvectors, geen that
M'M =& =VDV'; W' =| (2.14)

A solution for the symmetric matrig is therefore given by

S = vbV' (2.15)

where the signs of the principal diagonal companént, D, D33 of D are up to now indeterminate.
Insertion of this solution into M =Bgives

M = RVDV' (2.16)
The signs of By, D,,, and 3 follow the condition that f(,R )must be minimal. With (2.7), (2.10), (2.16),
it
follows

f =f, —2trace(VDV )= f, —2(D,, + D,, + D) (2.17)

and in order to make f minimal, ;P D,,, Dzzmust be chosen non-negative.
To elucidate the geometrical significance gf,M,,, and O3, the measured vectpy(i =1,2,.....,n)
is related to the exact vectgr= Ra, + v by writing

p=Ra +v+¢, fori=12,........... N (2.18)

The error vectob; is due to measuring errors and to the fact they imdhot perfectly rigid. Insertions of
equation (2.18) in (2.4) and (2.5) leads to
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M=R(M+E) (2.19)

where M, depends only on the radius vectarsy, .......... a,, before the movement while E dependson
81,8, cereeenes a,and 84,65 ......... n
Mo =23{(a -8}  E=23{R4(@a -a)'} (2.20)
n= n=

Mg is a symmetric (semi) positive definite matrixheFefore Mj can be written as
M, =V,D,V,: V,Vy =I (221

where \4 is the matrix of eigenvectors ofMnd 0 is a diagonal matrix with the non-negative eigénesa
Dy, =Dy, 2Dy =0 of Mg. It can easily be proved that all eigenvaluesiarequal zero if and only if

more than three non-coplannar markers are usedll tharkers are lying in one plane, thegs B 0,
whereas = Dyz if all markers are collinear.
With equations (2.19) and (2.21), the eigenvalugblem (2.14) can be written in a form that is more
suitable for further analysis :

vD?V' =V,DZV, +MJE+E'"M, +E"E (2.22)
From this it is clear that V = ¢¢yD = [ give a solution of equation (17) if E = 0. IKaptice, E will be
unequal zero but very small compared with Mhen \§ and [ will be realistic approximation for V
and D. Using equations (2.22) and (2.20), fidssible to establish bounds for the differencesdsen V
and 4 and between D andgbf bounds for the error vectoégs, 6, ......... &, are given. However, this is not
the subject for this paper and will not be analyzeck.

The rotation matrix R can be determined reliabbnfrequation (2.16) if and only if at least two bét

eigenvalues D/ >D2Z > D2 differ significantly from zero. From the foregoinigis seen that this will

be the case if three or more non-collinear poirgsused. From equation (2.16) follows
RVD = MV = [m; m mg] (2.23)

wherem; (i = 1, 2, 3) represents columns i of RV, nplikd by O;. So, if D; and D, differ
significantly from zero,( and this will always bri¢ in realistic situations), columns 1 and 2 of R\équal
to the cross product ( 1{B D, ) m; » m, of first two columns. So, the final result for Rdgiven by:

1 1 1
R=|—m —m, ————m sz]-vT (2.24)
(Dn D,, ? Dy Dy,

For the calculations of R andare sufficient : Equations (2.1) and (2.2) canubed to determine M, a
subroutine for the eigenvalues and eigenvectoM o1, the calculation of the columms,, m,,, andm; of
MV and finally equation (2.24) can be used to datee R and equation (2.10) for

3.0 Determination of Helical Axis

In the foregoing, the movement of the body was atterized by the rotation matrix R and translation
vectorv. Such a movement can be considered the resalratation through an angieabout the helical
axis and a translation t along this axis. hedenote a unit vector along the helical axis and lee the
radius vector of a point on this axis, such thands are orthogonal:

n'n = 1; hs = 0. (3.1)

The sense of rotation and the directionnoWill correspond with the right-hand screw rule ardwill
always be non-negative and less than or eguatiian.
The connection between both description of the mearg of the body is given by the requirement that
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Rw +v = w+ tn+ (1- cosp)ne(n e (w -s)+ sinpn e« (w -s) (3.2)

must hold for every vector w. Consequently :
v=tn + (1-co®)s- singnes (3.3)

Rw = cospw + (1 -cosp)nn'w + sing new ,for everyw, (3.4)
where the last equation is seen to be equivaleht wi

% (R - R)w = singnew for everyw (3.5)

%(R-R) -cospl + (1 - cog)nn' (3.6)

The matrix %2 (R - R) is skew-eymmetric and it can easily be shovan sinen is given by :

R, - Ry 37
sinpn =|Ry - Ry (3.7)
R, - R,
withn'n =1 and sinp > 0, this equation can be solved for girwhich results in :
. 1
sing =~y (R, = R + (Rg = Ry + (Ry = Ry’ (38)

Apart from this, cog can be calculated from equation (3.6) by addinghepcomponents on the principal
diagonal of the matrices. Then

3cosp + (1- cop)trace on') = trace (¥ (R +R) (3.9)

and because of tracer’ ) = n'n = 1, it follows that

cosp = %(R11 + R, + Ry — 1) (3.10)

Both equations (3.8) and (3.10) can be used tailzécp. For numerical reasons, it is preferred to use
equation (3.8) if sim < ¥2+/2 and equation (3.10) if sip> ¥2/2 .
As soon as sip is known,n can be determined from equation (3.7) ifgig0. From a numerical point of

view, this is not recommendablegifapproaches. With known cosp, it is preferred to use (3.6) ¢f > 3%
7. While

(1- cozp)nn’ = % (R + R) - cosp! = [by b, Iy, (3.11)

it is seen that each of the columhg b, and b;of the matrix % (R + R) - COS(pI is a vector in the
same direction as. So, apart from a facton, is equal tob;, b, and bs. Letb; (i = 1,2,0r 3)be the

column with the greatest lengtb’ b . Thenn is determined by;
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b (3.12)

Jblb,

The sign must be chosen such thatgsim equation (3.7) is positive. The translaticaldng the helical
axis and the radius vectsof a point on the axis follow from equations (3atd (3.3):

b' b =max(b b, b]b,, blb,); n==%

t =nv (3.13)
S:—EI’ID(I’]D\/)'F&HD\/ 3:(4)
2 2(@-cosy)

The relations (3.12), (3.13) and (3.14) hold iz 0 If ¢ = 0O, there is no rotation at all. In this case th
helical axis is not defined and therefores and t are not unique. ¢f= 0 andv # 0, then one can put;

t =4V Vv ; n:%v; s=0 (3.15)

If ¢ =0 andv =0, there is no movement at all. This case isoohterest.

Sufficient for the computation aof, ¢, s andt are equations (3.8) and (3.10), farequations (3.7) and
(3.11) until (3.14) fon, t andsif ¢ # 0 and (3.14) ifp = 0. The calculation of these parameters wilthee
focus of our next paper.

4.0 Discussion

Accurate results are quickly achieved by the dbedrimethod. Although alternative methods existe (s
[3,4]), the described procedure here seems mogarend needs no initial approximation. The &asialy
is rather long and the details are not given heri¢ &ill be a subject of another paper. But ofiew of its
equations are required to achieve numerical results
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