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Abstract

We present a survey of ttegability of triangular equilibrium points of
the autonomized system in the restricted three-bpdyblem under the
influence ofsmall perturbation in theCoriolis force, together with the
effects of radiation pressure of the less massivienary, in which the
masses of the main bodies vary isotropically in aatance with the
unified Meshcherskii's law, and their motion takelgce within the
framework of the Gylden-Meshcherskii problem. It Eeen that the
constant of a particular integral K of the Gylden-Meshcherskii
problem does not enter into the positions of the@atgular points; a
reason due to keeping the centrifugal force constah is observed
that the triangular points are stable for all mass

ratiosU whenQ < ¢y < U, and all values of

K (0.71453K k < ), whereU, are the critical mass ratios.

Further it is observed that the radiation pressucé the less massive
primary always has a destabilizing tendency in tipeesence or
absence oK', while the Coriolisforce always have a stabilizing
tendency. The overall effect is that the regionstébility increases.

Keywords: Perturbations, Gylden-Meshcherskii problem, Phateigational.

1.0 Introduction

The restricted three-body problem describes thadomatf an infinitesimal mass moving under the
gravitational effects of the two finite masses]eaghlprimaries, which move in circular orbits arouheir
center of mass on account of their mutual attractind the infinitesimal mass not influencing thetiom
of the primaries. The approximate circular motidrite planets around the sun and the small madses o
asteroids and the satellites of planets compardoetplanet’'s masses, originally suggested the dtation
of the restricted problem. The restricted threeyboubdel, as constructed by Lagrange, is the framlewo
within which many modern studies have produced resmlts. Not surprisingly, it serves as the bacgdro
for research efforts with a man-made satellite m&sg the role of the infinitesimal mass in the Sun
Earth/Moon system; the Earth/Moon is then assumpelet a single entity located at the Earth- Moon
barycenter.

It is well known that the infinitesimal mass che at rest in a rotating coordinate frame, at five

libration points (three collineall_lyzysand two triangulal’_415), where the gravitational and centrifugal
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forces just balance each other. The collinear paame unstable where as triangular points are rliynea
stable, when the mass ratio of the primaries

is less than the Routhian value [24]. Their stgbdiccurs in spite of the fact that the potentiz¢rgy has a
maximum rather than a minimum lagvs. The stability is actually achieved through théiuence of the

Coriolis force, because the coordinate system tigtimy [4] and [26]. For the stability of the trigular
points [25] asserted that the Coriolis force igab#izing force. The effects of small perturbason the
restricted three-body problem have also been suajd1], [3], [6] and [23].

Further more, the classical model assumesth®imasses of the bodies are constant, but there a
various practical problems where the mass doesemain constant. It has been shown that the mass of
Jupiter is increasing [20]. The masses of celebtidies are changing during evolution. A satehi@ving
around a radiating star surrounded by cloud vatsesiass due to particles of this cloud. Cometsdouart
of their mass as traveling around the Sun (or otkes) due to their interaction with the solardvimhich
blows off particles from their surfaces. Thus, thessical three-body problem is not suited to discsuch
practical important dynamical systems. The probténwo bodies with variable masses came into seienc
practically following the work of [10], who for theelative motion of one mass poififabout the other
mass pointM under the action of mutual gravitational forceresgnted the sum of the masses of these
points as varying with time by a certain IMv+m=,u(t). [11] showed that the Gylden problem is a

particular case of the problem of two bodies wiriable masses under the condition that the laws of
variation of the masses vary isotropically. Therieted problem dealing with variable mass of onenore
bodies under different respects has been investidat [2], [7], [9], [12], [20] and [22].

[15] and [16] formulated the photogravitatdbmestricted three-body problem involving the san,
planet and a dust particle and found that an allmedor direct solar radiation pressure forcesltésia
change in the positions of the libration points dadthe appearance of new libration points (coplana
points). The restricted problem dealing with onéoth radiating bodies under different aspects lzse
been studied by [5], [13], [17], [18], [19], [21]te.

In this paper we studthe effects of a smaperturbation in the Corioliforce on the locations and
stability of autonomized triangular libration points the photogravitational restricted problem ofetar
bodies with variable masses, under the conditi@t the motion of the variable-mass main bodies is
determined by the Gylden-Meshcherskii problem wsthitropic mass variation of the primaries varying i
proportion to each other in accordance with thdieshiMeshcherskii law, keeping the centrifugal forc
constant and placing some restrictions on the eobstof a particular integral of the Gylden-Meshcherskii
problem. The problem is photogravitational in tleease that the smaller primary is taken to be aansd
emitter of radiation.

2.0 Equations of motion
Letm and M, be the masses of the more and less massive pramaspectively, and It be the

mass of the infinitesimal body. We assume thatléiss massive primary is a source of radiation. We
introduce a synodic coordinate syst?mx ,Y,z)with the origin at the center of mass of the priegrin

which the axes rotate relative to the inertial gpadth angular velocityw about the Z-axis. Let
(x.,0,0andx,,0,0) be the coordinates dffy and M, respectively, and lefx, y, z) be the coordinates of

the infinitesimal body in the orbital plane. Thestdnces betweermMandm,, M andm,, M and

m, arel,, I, andr , respectively. As the motion of the primariesssuamed to move within the framework
of the Gylden-Meshcherskii problem, we only neefind the motion of the infinitesimal maBgs.
The equations of motion of the infinitesimal bodytle barycentric coordinate syste(m X ,Y,Z) have the

form [2] and [9]:
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where,

where f the gravitational constant. and dot denotes difféation with respect to time.
We introduce a small perturbation in the Coriotisck with the help of the paramet@r such that

¢=1+0; O=1.
The radiation repulsive forcer exerted on a particle can be represented in tefmbeogravitational

attraction F; ([15]) as
F,=F, (1_ q)
Here qu_(Fp/FQ)

Hence, the equations of motion of the perturbedtqgravitational restricted three-body problem with
variable masses now takes the form:

&—2a&¢—aﬁ>q//:(&y—yl(x_xi) _,qu(X—XZ)

3 3
rl r2

&+ 2080 — P YY = —ax—HY _ LAY
v 2.2)
_HZ_ K0z

re rs
r2=(x-x) +y2+{2
p=1+0. =1 q=1-00 =1
Uis radiation factors of the less massive primary.
The system of equations (2.2) is non-integrabléeghtial equations with variable coefficients. Ehio

obtain useful dynamical predictions, we performoaomization process by transforming (2.2) to a
dynamical system with constant coefficients.

Following [12], we transform (2.2) from(X, y,t) to the autonomized for(r{,/],T), using a
Meshcherskii’s transformation

&=

where

x=¢R(t), y=1R(), % =R(t), r, =pR(1),(=12), (2.3)
the particular solutions of the Gylden-Meshcherpkiiblem
aft) =2
R(t) Xl = flR(t)' X2 = fZR(t) , r= 1012R(t) (24)

and the unified Meshcherskii's law,
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where
R(t) =+at2 +2Bt+y a,B.y .l .M, and Ly, are constants, (2.5)

ﬂl(t) = fml(t), H (t) = fm, (t)

System (2.2) now takes the form

<"~ 2appn = '+ 2008 =~
FG n (2.6)
Q= (a’§+A) (52 +,72)+A(£2 +I72) +@+q@
where 2 2 Ay P

pr=(E-a) 4 pr=(E-&)+

/'120 :ulO
5 Prz 52 == P
Ho Ho A=p%- ay
and dashes denote dn‘ferenuatlon with respeEt to
Choosing measurement units and introducing thesnparametét as in [22], the autonomized system
(2.6) becomes

" aQ " y GQ
'-2pm=—— N2 =——
o< on 2.7)
2 + 2 1_
oYl Gt/ I o) SR
where 2 Py Po
pE=(E+0) 4 pr=(E+u=1) +p?
K= ,82 —ay+1is a constant of integration of a particular imé#¢9]
rp= KCZ, 2.8)

of the Gylden-Meshcherskii problefd. # Qis a constant of the area integral
The ranges of variation of the paramefeare;

i. 18 =0 we would haveX =1

ii. 1F A >0 this implies1 < kK < (2.9)

iii. 1f A<0, this implied <4 <1
Though K can take values between zero and infinity, in owosbfgem we consider only values in the
range0.71453X k < ., for large values oK are not physically meaningful.

3.0 Positions and linear stability of the triangular points
The triangular equilibrium points of the autonondizystem are the solutions of the equations

9 _y R_j
& an
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k(1-v)(&+v) gru(é+u-1)

K& - =
ie. ey p; (3.1)
k(1-v
[K— ( . )—qujn:O, nz0
and P P2 (3.2)
from these, we have
p=l P =0 3)
Substituting expressions above in (3.1) and (3t&) coordinates of the triangular points are;
1
% (1-9% ) 1|2
1 y n=+ 1+g” [1-q 21
$=-(1-q°-2w+1) 2 2 4
2 , (3.4)

where the positive sign correspondsltpand the negative td. .These points form simple triangles with

the line joining the primaries. It is obvious thhe positions of the triangular points are affedgdthe
factors which appear due to radiation pressurdefléss massive primary but are not affected dubedo
introduction of perturbation in the Coriolis fordéthe radiation factor of the smaller primary ageored

i.e. g, =1, the pointsL, and L, of the autonomized system will fully analogousHe tlassical case.

Next, we study the linear stability around the éhtium points. Due to a small perturbation in fBeriolis
force of the primaries and perturbations inducedh®yradiation pressure of the less massive pripthey
position of the infinitesimal body would be disptaca little from the equilibrium point. If the rd&nt
motion of the infinitesimal mass is a rapid depattrom the vicinity of the point, we can call suah
position of equilibrium point an “unstable one”, fowever the body merely oscillates about the
equilibrium point, it is said to be a “stable pasif (in the sense of Lyapunov). We denote the

equilibrium points and thepositions ai(fo,ﬂo) . Let a small displacemeint (50”70) be(u,v) . Then
we can write
Substituting these valueseanuations (2.8), we obtaine variational equations,
"n_ — 0 0
u'—2¢v —(Q&,)u+(Q&7)v
U r_ 0 0
V' +2¢u —(Qf,l)u+(Q,7,7)v
The characteristic equation corresponding to (3s6),
2
4 _ 0 0 _ 2 2 0 0 _ 0 —
At -(Qg +Qf, -492) A7+ Q%00 -(Q5) =0 (8.7)
where the superscrifd indicates that theartial derivatives are evaluated the equilibrium points
(50,/70). In a computation of these derivatives, we willbstituteg =1+0 , q=1-0,

(3.6)

wherdJand' are very small positive quantities, and neglecir thecond and higher order terms and also
their products. Then we have,

Qo, =%(3+ 40-ew0)
(3.8)

Qe =%(9—4D +eu )
(3.9)
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%
o _K 9-40

Qo —2(3—6U+ 25—215)( J 10)
Substituting equations (3.8), (3.9) and (3.10hm ¢haracteristic equation (16), yields

At =(3k -4~ 8D')/12+§K2(9+ 20)u(ov)= ( (3.11)
The roots of (3.11), are given by

Az, = -PzJD (3.12)

' 2

where P=4-3%+8J D=P?-4Q
_3k?
Q_T(9+ 20)u(1-v)>0 (3.13)

Hence, the roots of the characteristic equatioredépon the mass paramdtkrthe radiation parametet,

perturbation in the Coriolis foréé . So the nature of these roots is controlle@hyx and the sign of the
discriminantD , given by

D=3k2(9+20)0?- X2( % D)u+ &?- 24+ 16 168 ( 4 B

Since D is a monotonous function o in the interval (0,%] and has values opposite in signs at

. . . 1
endpomts(D) _ and(D) _,,» there are several valueswf say U, in the interval 0 < v < —for
v=0 v=Y, Ce 2

which the discriminant vanishes. Since the natdrthe roots depend on the nature of the discrintinan
three cases are possible:

1. WhenO<v<u, ,D>0, P>0 always ax <1, in this case, al (i =1, 2,3,4)are pure
imaginary and given as
/]1,2,3,4: HiA, (n =1, 2)

A, = /%(—P+\/B) and A\, = %(—P—\/B) (3.14)

Consequently, the triangulpoint is stable in this case.
The general solution is written [24], as

u=ACcosA7T+C, siNT+A, cod 7+C, Si J
v=AcosAT+C, siNT+A, cod\ 7+C, s J
where,A,A,C and C, (i =1,2) are constants.

where

(3.15)

1
2. Whery, <vU< E' D < Owith P =0orP >0, the discriminant is negative. Theal parts of twof

the values oft are positive andqual. Therefore, the triangulawint is unstable.
3. Wherv =y, , D is zero. The double roogive secular terms ithe solutions of thevariational

equations of motiorT herefore, the triangular poiistunstable.

3.1 Critical Mass Ratio

The critical value of the mass paramesethe value of the mass ratfd when the discriminant
vanishes. In our problem there are several valtidseccritical mass parameters and are given by
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ucK =u, +U, *U, (3.16)

1 2(24k - %2~ 1§
U, ==——=~96k-%?-64 v =
2 Né “ 27k/3J 96— K% - 4

4(144- 10%)
v, = 0
< 27kJ3J 96— X2 - 64

Clearly, U, represents the effects of the constéﬁt) of a particular integral of the Gylden-Mescherskii

where

problem, perturbations and radiation, tie critical mass valuef the restricted problenHdowever, for
Kk =1, the value of

u,, coincides with the classical Routhian valpg = 0.03852!In addition in the absence of radiation of
the smaller primary and perturbation in Coriolisct i.e[J=[1=0and x =1, the valueUCK will fully
coincide with the classical case given by [24]. Whige smaller primary ison radiating (i.aUrK =0)and

Kk =1 thecritical mass value verifighe results of [25]. For any0.71453X x < .
The critical mass values, , for the values of in the interval0.71453X k' < ’are

U, . =0.498889- 24.9788500, + 322.9320
U, =0.409910- 0.29832496, + 11.67358
Ue, . =0.280104- 0.10188998, + 4.192045,
U, =0.038553 0.00892522, + 0.646582:
v,  =0.038520- 0.0089174Z + 0.8@5780

G (3.17)
It is seen form the system of equations abovetti@Coriolis force has stronger stabilizing behaviat
can counter the destabilizing tendency of the tamtigpressure of the less massive primary. So ttiat
overall effect is that the region of stability img case is always increasing. We conclude thatridwegular

i 1 : .
point is stable for0 < U < v_ and unstable fay, U< E due to the constant of a particular integral of

the Gylden-Meshcherskii problem..

4.0 Discussion

The positions of the triangular points of theéaamomized system different from that as worked lout
[25] due to the introduction of the radiation pressof the smaller primary. If this is ignored f@nts will
fully coincide. These positions are different fraimat of [6] due to the radiating effects of theslesassive
primary and absence of the centrifugal force. Wgeole that the constant of a particular integraif the
Gylden-Meshcherskii problem does not enter intoldisation of the triangular points, a reason of chhis
due to keeping the centrifugal force constant.

Equation (3.17) gives the criticalluesy, of themass parameter. It shothe effects operturbation in
the Coriolisforce and radiation pressure foafahe less massive primary the critical mass value. Putting
k =1and ignoring the radiation coefficient of the lemassive primary i.ev, = Qin equation (3.17)

gives the critical value obtained by [25]. If fuethwe ignore the effects of the Coriolis fom;i will fully

coincide with the classical Routhian value giver{24j.
It was furtherseen that radiation coefficient has strong destaii tendencies in the presence of the
parametek . The overall effeds that the rangef stability of theriangular points decreases.
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5.0 Concluding remarks

The stabilityof triangular equilibrium points dhe autonomous equations of motion urierinfluence of
a constantk’ of a particular integral of the motion of the \aduiie primary bodies, together withe effects
of the luminous less massive primary and pertuobaitn Coriolis,is seen to be stabfer all mass ratio

when 0 <v <y, and unstablevheny_ < Ugl, wherey,  are the critical masgalue, which depends
'K K 2 K

onthe joint effect ofthe parameters.
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