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Abstract 

 
We present a survey of the stability of triangular equilibrium points of 
the autonomized system in the restricted three-body problem under the 
influence of small perturbation in the Coriolis force, together with the 

effects of radiation pressure of the less massive primary, in which the 
masses of the main bodies vary isotropically in accordance with the 
unified Meshcherskii’s law, and their motion take place within the 
framework of the Gylden-Meshcherskii problem. It is seen that the 
constant of a particular integral κ of the Gylden-Meshcherskii 
problem does not enter into the positions of the triangular points; a 
reason due to keeping the centrifugal force constant. It is observed 
that the triangular points are stable for all mass 
ratiosυ when0 cκ

υ υ< < and all values of  

κ ( 0.714531 1κ< ≤ ), where cκ
υ are the critical mass ratios. 

Further it is observed that the radiation pressure of the less massive 
primary always has a destabilizing tendency in the presence or 
absence ofκ , while the Coriolis force always have a stabilizing  
tendency. The overall effect is that the region of stability increases.  
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1.0 Introduction 

The restricted three-body problem describes the motion of an infinitesimal mass moving under the 
gravitational effects of the two finite masses, called primaries, which move in circular orbits around their 
center of mass on account of their mutual attraction and the infinitesimal mass not influencing the motion 
of the primaries. The approximate circular motion of the planets around the sun and the small masses of 
asteroids and the satellites of planets compared to the planet’s masses, originally suggested the formulation 
of the restricted problem. The restricted three-body model, as constructed by Lagrange, is the framework 
within which many modern studies have produced new results. Not surprisingly, it serves as the backdrop 
for research efforts with a man-made satellite assuming the role of the infinitesimal mass in the Sun - 
Earth/Moon system; the Earth/Moon is then assumed to be a single entity located at the Earth- Moon 
barycenter.        

   It is well known that the infinitesimal mass can be at rest in a rotating coordinate frame, at five 

libration points (three collinear 1,2,3L and two triangular 4,5L ), where the gravitational and centrifugal 
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forces just balance each other. The collinear points are unstable where as triangular points are linearly 
stable, when the mass ratio of the primaries  
 
 
 
is less than the Routhian value [24]. Their stability occurs in spite of the fact that the potential energy has a 

maximum rather than a minimum at4,5L . The stability is actually achieved through the influence of the 

Coriolis force, because the coordinate system is rotating [4] and [26]. For the stability of the triangular 
points [25] asserted that the Coriolis force is a stabilizing force. The effects of small perturbations in the 
restricted three-body problem have also been studied by [1], [3], [6] and [23]. 
     Further more, the classical model assumes that the masses of the bodies are constant, but there are 
various practical problems where the mass does not remain constant. It has been shown that the mass of 
Jupiter is increasing [20]. The masses of celestial bodies are changing during evolution.  A satellite moving 
around a radiating star surrounded by cloud varies its mass due to particles of this cloud. Comets loose part 
of their mass as traveling around the Sun (or other stars) due to their interaction with the solar wind which 
blows off particles from their surfaces. Thus, the classical three-body problem is not suited to discuss such 
practical important dynamical systems. The problem of two bodies with variable masses came into science 
practically following the work of [10], who for the relative motion of one mass point m about the other 
mass point M  under the action of mutual gravitational force represented the sum of the masses of these 
points as varying with time by a certain law ( )M m tµ+ = . [11] showed that the Gylden problem is a 

particular case of the problem of two bodies with variable masses under the condition that the laws of 
variation of the masses vary isotropically. The restricted problem dealing with variable mass of one or more 
bodies under different respects has been investigated by [2], [7], [9], [12], [20] and [22]. 
      [15] and [16] formulated the photogravitational restricted three-body problem involving the sun, a 
planet and a dust particle and found that an allowance for direct solar radiation pressure forces result in a 
change in the positions of the libration points and to the appearance of new libration points (coplanar 
points). The restricted problem dealing with one or both radiating bodies under different aspects have also 
been studied by [5], [13], [17], [18], [19], [21] e.t.c. 
    In this paper we study the effects of a small perturbation in the Coriolis force on the locations and 
stability of autonomized triangular libration points in the photogravitational restricted problem of three 
bodies with variable masses, under the condition that the motion of the variable-mass main bodies is 
determined by the Gylden-Meshcherskii problem with isotropic mass variation of the primaries varying in 
proportion to each other in accordance with the unified Meshcherskii law, keeping the centrifugal force 
constant and placing some restrictions on the constantκ of a particular integral of the Gylden-Meshcherskii 
problem. The problem is photogravitational in the sense that the smaller primary is taken to be an intense 
emitter of radiation.   
 
2.0   Equations of motion 
         Let 1m and 2m be the masses of the more and less massive primaries respectively, and let m be the 

mass of the infinitesimal body. We assume that the less massive primary is a source of radiation. We 
introduce a synodic coordinate system ( )0, , ,X Y Z with the origin at the center of mass of the primaries, in 

which the axes rotate relative to the inertial space with angular velocity ω  about the Z-axis. Let 

( )1,0,0x and ( )2, 0, 0x be the coordinates of 1m  and 2m respectively, and let ( ), ,x y z be the coordinates of 

the infinitesimal body in the orbital plane. The distances between m and 1m , m  and 2m , 1m  and 

2m are 1r , 2r andr , respectively. As the motion of the primaries is assumed to move within the framework 

of the Gylden-Meshcherskii problem, we only need to find the motion of the infinitesimal massm . 
The equations of motion of the infinitesimal body in the barycentric coordinate system ( )0, , ,X Y Z have the 

form [2] and [9]:  
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z z
z

r r
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where,                       
( )22 2 2

i ir x x y z= − + +
, 

( )i it fmµ =
, 1,2i =                                 

                                 .                                                                             
where f  the gravitational constant. and dot denotes differentiation with respect to time t . 

We introduce a small perturbation in the Coriolis force with the help of the parameter ϕ  such that 

                                   1 ;ϕ = + ∈   1∈= .      

The radiation repulsive force pF exerted on a particle can be represented in terms of the gravitational 

attraction gF ([15]) as  

                                   
( )1p gF F q= −

 

Here                             
( )1 p gq F F= −

 
Hence, the equations of motion of the perturbed photogravitational restricted three-body problem with 
variable masses now takes the form: 

                                   

( ) ( )1 1 2 22
3 3

1 2

1 22
3 3

1 2

2

2

x x q x x
x y x y

r r

y qy
y x y x

r r
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− −
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+ − = − − −

&&& &
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                         (2.2) 

                                    

1 2

3 3
1 2

z qz
z

r r
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where                          
( )22 2 2,i ir x x y ζ= − + +

   

                                    1ϕ = + ∈ ; 1∈= ,  1 ;q ′′= − ∈   1′′∈ = ,  
q is radiation factors of the less massive primary.      
The system of equations (2.2) is non-integrable differential equations with variable coefficients. Thus, to 
obtain useful dynamical predictions, we perform autonomization process by transforming (2.2) to a 
dynamical system with constant coefficients.  

Following [12], we transform (2.2) from ( ), ,x y t  to the autonomized form( ), ,ξ η τ , using a 

Meshcherskii’s transformation 

              ( ),x R tξ=  ( ),y R tη=  2 ( )
dt

R t
dτ

= , ( ), ( 1,2)i ir R t iρ= = ,                                    (2.3) 

the particular solutions of the Gylden-Meshcherskii problem 

                             

0( ) ,
( )

t
R t

ωω =
   1 1 ( ),x R tξ=

  2 2 ( )x R tξ=
, 12 ( )r R tρ=

                             (2.4) 
 and the unified Meshcherskii’s law, 
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( ) ( )
0t

R t

µµ =
, 

( ) ( )
10

1 t
R t

µµ =
,  

( ) ( )
20

2 t
R t

µµ =
,  

( ) ( ) ( )1 2t t tµ µ µ= +
 

where      

                   ( ) 2
0 102 : , , , ,R t t tα β γ α β γ µ µ= + +  and 20µ are constants,                          (2.5) 

  

 

                  
( ) ( )1 1t fm tµ =

, 
( ) ( )2 2t fm tµ =

,                                                                              
System (2.2) now takes the form 

                    
02ξ ω ϕη

ξ
∂Ω′′ ′− =
∂ ,     

02η ω ϕξ
η

∂Ω′′ ′+ =
∂                                                         (2.6) 

where       
( ) ( )2 22

0 10 202 2

1 2

( )

2 2
q

ξ ηω µ µξ η
ρ ρ

∆ ++ ∆Ω = + + + +
                                 

                    
( )22 2

1 1ρ ξ ξ η= − +
, 

( )22 2
2 2ρ ξ ξ η= − +

                                              

                     

20
1 12

0

µξ ρ
µ

−=
,  

10
2 12

0

µξ ρ
µ

=
, 

2β αγ∆ = − ,  
and dashes denote differentiation with respect toτ . 
   Choosing measurement units and introducing the mass parameterυ  as in [22], the autonomized system 
(2.6) becomes 

                              

2ξ ϕη
ξ

∂Ω′′ ′− =
∂ ,      

2η ϕξ
η

∂Ω′′ ′+ =
∂                                                     (2.7)                                      

where                  

( ) ( )2 2

1 2

1

2
q

κ ξ η υ υκ κ
ρ ρ

+ −
Ω = + +

 

                              
( )22 2

1ρ ξ υ η= + +
,    

( )22 2
2 1ρ ξ υ η= + − +

                                          

 2 1κ β αγ= − +  is a constant of integration of a particular integral [9] 

                                       
2r Cµ κ= ,                                                                                     (2.8)  

of the Gylden-Meshcherskii problem. 0C ≠ is a constant of the area integral 
The ranges of variation of the parameter κ are; 

 i. If 0∆ = , we would have 1κ =   

 ii. If 0∆ > , this implies 1 κ< < ∞                                                                           (2.9) 

 iii. If 0∆ < , this implies0 1κ< < .  
Though κ can take values between zero and infinity, in our problem we consider only values in the 
range0.714532 1κ≤ ≤ , for large values of κ are not physically meaningful.  

 
3.0   Positions and linear stability of the triangular points  
The triangular equilibrium points of the autonomized system are the solutions of the equations 

                                     

0
ξ

∂Ω =
∂ ,  

0
η

∂Ω =
∂   
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i.e.                         

( )( ) ( )
3 3
1 2

1 1
0

qκ υ ξ υ κυ ξ υ
κξ

ρ ρ
− + + −

− − =
                                          (3.1) 

and                        

( )
3 3
1 2

1
0, 0

qκ υ κυκ η η
ρ ρ
− 

− − = ≠ 
                                                        (3.2)                                    

from these, we have  
  

 

                               1
1ρ =

 and 
1
3

2 2qρ =
                                                                              (3.3)                                                            

Substituting expressions above in (3.1) and (3.2), the coordinates of the triangular points are;                 

                 

2
3

1
(1 2 1)

2
qξ υ= − − +

,           

2 2
3 3

1
2 2

1 1 1

2 2 4

q qη
  + − = ± − −  

                           (3.4)             

where the positive sign corresponds to 4L and the negative to 5L .These points form simple triangles with 

the line joining the primaries. It is obvious that the positions of the triangular points are affected by the 
factors which appear due to radiation pressure of the less massive primary but are not affected due to the 
introduction of perturbation in the Coriolis force. If the radiation factor of the smaller primary are ignored 

i.e. 2 1q = , the points 4L and 5L of the autonomized system will fully analogous to the classical case.       

Next, we study the linear stability around the equilibrium points. Due to a small perturbation in the Coriolis 
force of the primaries and perturbations induced by the radiation pressure of the less massive primary, the 
position of the infinitesimal body would be displaced a little from the equilibrium point. If the resultant 
motion of the infinitesimal mass is a rapid departure from the vicinity of the point, we can call such a 
position of equilibrium point an “unstable one”, if however the body merely oscillates about the 
equilibrium point, it is said to be a “stable position”    (in the sense of Lyapunov). We denote the 

equilibrium points and their positions as L ( )0 0,ξ η . Let a small displacement in ( )0 0,ξ η  be( ),u v . Then 

we can write  

                                      0 uξ ξ= +
,    0 vη η= +

,                                                              (3.5) 
 Substituting these values in equations (2.8), we obtain the variational equations,  

                                    

( ) ( )
( ) ( )

0 0

0 0

2

2

u v u v

v u u v

ξξ ξη

ξη ηη

ϕ

ϕ

′′ ′− = Ω + Ω

′′ ′+ = Ω + Ω
                                                         (3.6) 

The characteristic equation corresponding to (3.6), is 

                   ( ) ( )2
4 0 0 2 2 0 0 04 0ξξ ηη ξξ ηη ξηλ ϕ λ− Ω + Ω − + Ω Ω − Ω =                                           (3.7) 

where the superscript 0 indicates that the partial derivatives are evaluated at the equilibrium points 

( )0 0,ξ η . In a computation of these derivatives, we will substitute, 1ϕ = + ∈  , 1q ′= − ∈ , 

where and ′∈ ∈ are very small positive quantities, and neglect their second and higher order terms and also 
their products. Then we have,                     

                    
( )3 4 6

4
ο
ξξ

κ υΩ = + ∈ − ∈
                                                          (3.8)                                           

                             
( )9 4 6

4
ο
ηη

κ υΩ = − ∈ + ∈
                                                                         (3.9) 
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    ( )
1

29 4
3 6 2 2

4 3
ο
ξη

κ υ υ − ∈ Ω = − + ∈ − ∈  
 

                                                (3.10)                                       

Substituting equations (3.8), (3.9) and (3.10) in the characteristic equation (16), yields 

                          ( ) ( ) ( )4 2 23
3 4 8 9 2 1 0

4
λ κ λ κ υ υ′− − − ∈ + + ∈ − =                                 (3.11) 

The roots of (3.11), are given by 

                          2
1,2 2

P Dλ − ±=                                                                                         (3.12) 

  

 

 where                4 3 8P κ ′= − + ∈ ,    
2 4D P Q= −  

                          ( ) ( )
23

9 2 1 0
4

Q
κ υ υ= + ∈ − >                                                                   (3.13)                                                                                                                                                                                                    

Hence, the roots of the characteristic equation depend, on the mass parameterυ , the radiation parameter∈  , 

perturbation in the Coriolis force′∈ . So the nature of these roots is controlled by′∈ , κ  and the sign of the 
discriminantD , given by                                  

                 
( ) ( ) ( )2 2 2 23 9 2 3 9 2 9 24 16 16 4 3D κ υ κ υ κ κ κ′= + ∈ − + ∈ + − + + ∈ −

 
Since D  is a monotonous function of υ  in the interval 1

2(0, ]  and has values opposite in signs at 

endpoints ( ) 0
D υ= and( ) 1

2
D υ=

, there are several values ofυ , say cκ
υ  in the interval 

1
0

2
υ< ≤ for 

which the discriminant vanishes. Since the nature of the roots depend on the nature of the discriminant, 
three cases are possible: 

1. When0 , 0c D
κ

υ υ< < > , 0P >  always as 1κ ≤ , in this case, all ( )1,2,3,4i iλ = are pure 

imaginary and given as            

                           1,2,3,4 niλ = ± Λ
           

( )1,2n =
                                                       

where  

                            ( )1

1

2
P DΛ = − +  and ( )2

1

2
P DΛ = − −                                     (3.14) 

Consequently, the triangular point is stable in this case. 
The general solution is written [24], as 

                  

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

cos sin cos sin

cos sin cos sin

u A C A C

v A C A C

τ τ τ τ
τ τ τ τ

= Λ + Λ + Λ + Λ
= Λ + Λ + Λ + Λ

                           (3.15) 

where, , ,i i i iA A C and C  ( 1,2i = ) are constants. 

2. When
1

,
2cκ

υ υ< ≤ 0D < with 0P = or 0P > , the discriminant is negative. The real parts of two of 

the values of  are positive and equal. Therefore, the triangular point is unstable.  

3. When cκ
υ υ= , D  is zero. The double roots give secular terms in the solutions of the variational 

equations of motion. Therefore, the triangular point is unstable. 
 
3.1 Critical Mass Ratio 
         The critical value of the mass parameter is the value of the mass ratio υ  when the discriminant 
vanishes. In our problem there are several values of the critical mass parameters and are given by 
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                                     c r pκ κ κ κου υ υ υ= + +                                                               (3.16) 

where           

21 1
96 9 64

2 6 3κου κ κ
κ

= − − −
,      

( )2

2

2 24 9 16

27 3 96 9 64
rκ

κ κ
υ

κ κ κ
− −

= ∈
− − ,                

                         

( )
2

4 144 108

27 3 96 9 64
pκ

κ
υ

κ κ κ
−

= ∈
− −                                                          

Clearly, cκ
υ  represents the effects of the constant ( )κ of a particular integral of the Gylden-Mescherskii 

problem, perturbations and radiation, on the critical mass value of the restricted problem. However, for 
1κ = , the value of  

  
 

1ου  coincides with the classical Routhian value 0.038521οµ =  In addition in the absence of radiation of 

the smaller primary and perturbation in Coriolis force i.e. 0′∈=∈ = and 1κ = , the value cκ
υ will fully 

coincide with the classical case given by [24]. When the smaller primary is non radiating (i.e. 0rκ
υ = ) and 

1κ =   the critical mass value verifies the results of [25]. For any  0.714532 1κ≤ ≤  

The critical mass values,Cκ
υ , for the values ofκ in the interval 0.714532 1κ≤ ≤  are 

                      

0.714532

0.720000

0.750000

0.999900

1

2

2

2

2

2

0.498889 24.9788500 322.9320

0.409910 0.29832496 11.67358

0.280104 0.10188998 4.1920451

0.038553 0.00892522 0.6465822

0.038520 0.00891747 0.64

C

C

C

C

C

υ
υ
υ
υ
υ

= − ∈ + ∈

= − ∈ + ∈

= − ∈ + ∈

= − ∈ + ∈

= − ∈ + 20578∈
                                       (3.17) 

It is seen form the system of equations above that the Coriolis force has stronger stabilizing behavior that 
can counter the destabilizing tendency of the radiation pressure of the less massive primary. So that the 
overall effect is that the region of stability in this case is always increasing. We conclude that the triangular 

point is stable for 0 cκ
υ υ< < and unstable for

1

2cκ
υ υ≤ ≤ due to the constant of a particular integral of 

the Gylden-Meshcherskii problem..                     
  
4.0   Discussion 
    The positions of the triangular points of the autonomized system different from that as worked out by 
[25] due to the introduction of the radiation pressure of the smaller primary. If this is ignored the points will 
fully coincide. These positions are different from that of [6] due to the radiating effects of the less massive 
primary and absence of the centrifugal force. We observe that the constant of a particular integral κ of the 
Gylden-Meshcherskii problem does not enter into the location of the triangular points, a reason of which is 
due to keeping the centrifugal force constant.                                  

    Equation (3.17) gives the critical values cκ
υ  of the mass parameter. It shows the effects of perturbation in 

the Coriolis force and radiation pressure force of the less massive primary on the critical mass value. Putting 

1κ = and ignoring the radiation coefficient of the less massive primary i.e. 0rκ
υ = in equation (3.17) 

gives the critical value obtained by [25]. If further we ignore the effects of the Coriolis force, 
1c

υ will fully 

coincide with the classical Routhian value given by [24].  
It was further seen that radiation coefficient has strong destabilizing tendencies in the presence of the 
parameterκ . The overall effect is that the range of stability of the triangular points decreases.   
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5.0    Concluding remarks 
  The stability of triangular equilibrium points of the autonomous equations of motion under the influence of 
a constant κ  of a particular integral of the motion of the variable primary bodies, together with the effects 
of the luminous less massive primary and perturbation in Coriolis, is seen to be stable for all mass ratio 

when 0 cκ
υ υ< <  and unstable when 1

2cκ
υ υ≤ ≤ , where cκ

υ   are the critical mass value, which depends 

on the joint effect of the parameters. 
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