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Abstract

The stability of five equilibrium points is invegtated in the
restricted three-body problem under the influencd small
perturbations in theCoriolis and centrifugalforces, in which the
masses of the main bodies vary isotropically in aactance with
the combined Meshcherskii’s law. For the autonomizeystem,
it is found that collinear points remain unstableedpite the
introduction of perturbations, while triangular paitsare stable
with respect to a constaff of a particular integral of the
Gylden-Meshcherskii problem. It is further observeid the
triangular case that the presence of this constamiake the
Coriolis and the centrifugalforces possess both stabilizing and
destabilizing behaviors. The region of stability afiangular

points depend off , and does not exist fo’fSO-71453:,

K =1.33333ndk 29.952 The equilibrium points of the
non autonomous dynamical system are found to be gaily
unstable using the Lyapunov Characteristic Numbers.

Keyword celestial mechanics; mass variation

1.0 Introduction

The restricted three-body problem describes rtiotion of an infinitesimal mass moving under the
gravitational effects of the two finite massesJedhlprimaries, which move in circular orbits arouheir
center of mass on account of their mutual attractind the infinitesimal mass not influencing thetiom
of the primaries. The approximate circular motidrtte planets around the sun, and the small masfses
the asteroids and the satellites of the planetspaoed to the planet's masses, originally suggetted
formulation of the above restricted problem.

Poincare [18] introduced the idea of quaMatunderstanding of motion in the three body pnobley
investigating the flow associated with the govegnidifferential equations. He in particular tried to
characterize the stability of motion of three miuljuagravitationally attracted bodies. He quickly
discovered the notable fact that a small variaiionnitial conditions could cause drastically diat
dynamical behaviors.

Routh [19] established the condition for linearbdtey of the triangular libration points. When shi
condition is satisfied, all the roots of the chaesstic equation are pure imaginary, which leagipure
oscillatory solution.

The first investigation of the existence oé tlibration points for variable masses in the abseof
reactive forces was performed by [17], in which Hane problem of three bodies with finite variable
masses was considered, and the existence of falegous particular solutions was established. Winte
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[27] showed that the stability of the triangularimis is due to the existence of the Coriolis teimshe
equations of motion when they are written in a tiotpcoordinate system. The absence of the Coriolis
force renders the triangular solution unstable ating to Wintner, so that the oscillatory solutiohthe
linearized equations of motion is replaced by expdial terms with real characteristic exponents.

The effect of a small perturbation of the iGlis force on the stability of the equilibrium s,
keeping the centrifugal force constant, was stuthef15]. He maintained that the collinear poirgsnain
unstable and obtained for the stability of thengialar points a relation between the critical vaddiehe

mass parametet/, and the chang@ in the Coriolis force:
He = H, +16—D
C 0 3\/6—9
He concluded that the Coriolis force is a stahiligiforce. This work was also extended by [5], by

considering the effect of perturbati({);\sand O in the Coriolis and centrifugal forces, respedtivand
found that collinear points remain unstable; fa thiangular points they obtained the relation
_ ., A(360-197)
He = Hy 27\@ '

They inferred that the range of stability increaseslecreases depending on whether the p(@mg) lies

in one or the other of the two parts in which {ier7) plane is divided by the ind6J-190= 0 [20] and

[21], later investigated the effect of small pepations in the Coriolis and centrifugal forces het
restricted three-body problem with variable massleunthe assumption that the infinitesimal mass is
variable and the primaries are spherical with cmsimasses. The combined effect of perturbations,
radiation and oblateness on the stability of ebriilim points in the restricted three-body problemsw
studied by [1]. They found that the collinear psimemain unstable, while the triangular are stébte

O<u<y, and unstable fqy <#<l. They observed further that the Coriolis force has a stafglizi
¢ T2

tendency, while the centrifugal force, radiation and oblaterfef®e qrimaries have destabilizing effects;
consequently the overall effect is that the range of stabflitige triangular points decreases.

Gasanov [7] investigated the libration points andytireeral case in the problem of the motion of a star
inside a layered inhomogeneous elliptical galaxy with végiaiass and established seven liberation points
of the autonomized equations, located (except for one) outsdgrélvitating galaxy. He examined the
stability of these points using the Lyapunov Characteristimber (L.C.N), and concluded that solutions
with negative exponents are stable. [22] examined the effégisrturbations on the nonlinear stability of
triangular points in the restricted three-body problem wadthiable mass. [23] studied the stability of seven
equilibrium points in the photogravitational restrictedetdibody problem with variable masses. They
found that the collinear and coplanar points of the autononsygsttém are unstable and the triangular
points conditionally stable while the stability of thesé&utons for the non autonomous dynamical system
were studied based on the concept of the Lyapunov Characteristibdds (LCN) and they found that
solutions with negative exponents consequently havingtipwsiCN are stable, those with positive
exponents having negative LCN are unstable, while the syabiliinstability of constant solutions and
solutions with pure imaginary exponents, with zero LCK&not be determined. They concluded in
general that motion around the equilibrium poinit§i :1,2,__7) for the restricted three-body problem with

variable masses is unstable.

A study of the motion and the existence of librapoimts in the restricted problem, under the condition
that the motion of the variable-mass main bodies is withenframework of the Gylden-Meshcherskii
problem([9] and [11]) with isotropic mass variation of thrimaries varying in proportion to each other in
accordance with the combined Meshcherskii law, have been stydig],|§3], [4], [6], [7], [8] and [16].

Our aim in this paper is to stuthe effects of perturbations in the Coridisd centrifugal forces on the
locations and stabilitgf five equilibrium points, when the masses of thienpries vary according to the
unified law [11].
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2.0 Equations Of Motion

Let (X, Y, Z) be the coordinates of the infinitesimal body in the orbitahe.
The equations of mation of the infinitesimal md¥&n the gravitational field of the luminous primary of
variable massedY} and M, in a barycentric coordinate system Oxyz, rotating withaagular velocity

aw(t) about the z-axis perpendicular to the plane of motioheptimaries, while the x-axis always passes
through these points have the form [2] and [8]

& 208 = WPX+wy- 14 (Xr_sxl) o (X;3X2) |
1 2
, y y
208 = WY — WX — U, = — I,
et yomoXTH r2 He I3 2.1)
oz z
&__ﬂlE_ﬂZTS’
with rlzz(x_xl)2+y2+22' r22:(X—X2)"')/2+Z2
r r
% =-—H2 = —H

ot iy ot
where [l and I,are distances of the infinitesimal mass from these primariestiopes at
(x,0,0)and(xX,,0,0). t4and (4, are the product of the masses of the primaries and grawihti

constantf and a dot denotes differentiation with respect to time t.

Next, we introduce small perturbations in the Coriolis eemtrifugal forces with the help of the parameters
@ and Y respectively such that

¢ =1+ =1, 7] =1+[; 1=1
Hence, equations of motion of the infinitesimal m&3# the perturbed gravitational field of the variable
primaries in a coordinate systém, y) has the form:

&—2a&¢—(wy:af)q,[/—’ul(x3_xl)_IUZ(X_Xz)

r.1 r23
2.2)
B 2080 + @px = o yy ~ L £
1 2
where ri2=(x—xi)2+y2, ¢g=1+0 w=1+01, i=12

Here[J,[T represent the perturbation in the Coriolis and centrifugab®. The third expression of system
(2.2) does not appear has we consider motion ixyheplane only.

3.0 Autonomization of the Equations of Motion

The equations of motion of system (2.2) are non-integrdifferential equations with variable coefficients.
We transform fron( X, y,t) to (f,/], T) with the help of a Meshcherskii’'s transformation
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x=¢R(), y=nR(), ‘Rz(t) (3.1)

r=pR(1),0=12),r _plZR(t) )
the particular solutions of the Gylden-Meshcherskii pnoble

a(t) = R2 o X =§R(1), % =&R(Y), C=p5w, (3:2)
and the unified Meshcherskii's law (1902),

ult)= ”") w(t)= ””) 1 (8) = L2 1a(t) = 44, (£) + 45, (t)

R(t R(t R(t)
where R(t) =Jat?+2pt+y a,B,V .U, My, and L, are constants, (3.3)

The system (2.2) in the autonomized form becomes

0Q 0Q
"_2 !:_' "+2 !:_ 34
&' —2w0n % n'"+2w¢é on (3.4)

oo (EXm) @YD) | o,
2 o P,
2 — 2ipn2 THxn Hio 2 _ -
P _({_5) tn® &= I —= P § = I =2 p, A=p-ay, 1=12

0 0
and dashes denote differentiation with respett.to

We make choices of units at initial tinlg such that

W=1,0,=1 wy=1 A=k-1,

where

2
where K = ('B ag %2) is a constant of integration of a particular integral [8]
ru=kC2, (3.5)
of the Gylden-Meshcherskii problefd.# Ois a constant of the area integral, from which we have
Mo =K

The ranges of variation of the parame#eare; i. IfA =0, we would havex =1
i. If A >0, this impliesl< kK < oo and iii. IfA <0, this implied < k <1.

Introducing the mass paramet&rexpressed as

Fo —q_ U, @—U WhereO<US£.
Ho Ho 2

wherel, is the ratio of the mass of the smaller primary to thed toaiss of the primaries.

With the choice of these constants, system (3.4) takesrtine fo

" ] aQ " , OQ
$'=2¢n :6_5’ n"+2¢$ =% (3.6)
where Q= (&2+n?)( +x-1) + x(1-v) Ch
2 P P
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plz,/({+u)2+/72 X :\/(f+u—1)2 +17%2, 0<K <o

4.0 Locations Of Equilibrium Points

It is well known that the infinitesimal mass can beeat in a rotating coordinate frame, at five libration
points (three coIIineaL1‘2‘3and two trianguIaL4‘5), where the gravitational and centrifugal forces just

balance each other. The particular solutions of the restrictee-tiady problem for the isotropic case of
mass variation have been considered in different respects B4][38], [13], and [23].

4.1 Locations of Triangular Points

The triangular points are the solutions of the equations

a_Q - 0’ a_Q - 0
o0& on
1- + +u-1
T R S S M ST
pr P
1_
and ((,0+/(—1—K(—3U)—K—Z]/7=O, nz0 4.2)
P P
Hence the exact coordinate of triangular points correspondibg and L5 are
1
2 _ A2 _ 2 2
Pl S, pfw%_(pf péj _1 42)
2 2 2 2 4

from (4.1), we have

kK )3 K )3
P :(l/I+K—lj and o, :(l/I+K—1j
Substituting expressions above in (4.2), the coordinatgeedfiangular points are;
K7 1 %
G
where the positive sign correspondsl.tgpand the negative t(h.5 .These points form simple triangles with

the line joining the primaries, different from the claakmroblem where these points make equilateral
triangles. It is obvious that the positions of thartgular pointsL4 and L5 are affected by the factors

E:%[l— ], /7:1{ (4.3)

which appear due to perturbation in the centrifugal forcéidfis ignored, i.e¢/ =1 the pointsL4 and

L5 of the autonomized system will be fully analogous tocthssical case.

4.2 Locations of Collinear Points

The collinear points are the solutions of the equations

Q,=0,7=0

Journal of the Nigerian Association of Mathematic&hysics Volumel6 (May, 2010)413 — 426
On The Stability Of Equilibrium Points Oni Leke, Umar Aishetu And Jagadish Singh J of NAMP



That is, the collinear points lie on the line joining the primaries. To obtain the abscissa, we denote the

expressior(Qg)r]:Z:0 by f ({) . There are only three root§, , £,and &, of the equation f ({) =0,

with one lying in each of the intervél—u -1, —U) ,(—U,l— U) and(l—U, 2—U) . These three roots
correspond to the three collinear poibjs L, and L. Their respective abscissae are

=-v-¢g, &=1-v-¢, E=1l-v+g, (4.4)
where & > 0,1 =1, 2, Zare roots of the equatioff (f) = (Qf)m(:o =0.

For the system of equations with variable coefficightsequilibrium points are determined from the
transformation (3.1) in the form [14]

x0) ={(i)R(t) ,yl) =/7(i)R(t), i=4,5 (4.5)
Whereg((i) (T) ,/7(i) (T) and ((i) (T) , (i =1,2, 3 are the libration points of the system with constant
coefficients. Consequently, the triangular points of sygt&.2), have the form

1
y 1
(49 = [%—U} R(t), y(49 = i{K— 1}2 R(t) 4.6)

@+k-1y 4
and collinear points are represented as
X (t) = (-u-¢)R(t)
X2 (1) =(1-v-&,) R(t) @.7)
X3 (1) =(1-v+&)R(t)
The libration points of the system of equations (2.2 wariable coefficients and those of the
autonomized systems (3.6) differ only by the t&l(rt) .

5.0 Stability Of Equilibrium Points Of The Autonomized System

The stability of constant coefficients linear systems of rangi differential equations is determined

completely by the Eigen values of the coefficient matrixe Buthe small perturbations in the Coriolis and
centrifugal forces of the primaries and the paramatedue to variation in masses of the primaries, the
position of the infinitesimal body would be displacedtelifrom the equilibrium point

We denote thexquilibrium points and thepositions at. (fo,ﬂo) .Let a small displacemeint
(50,170) be(u,v) . Then we write
E=&+u, N=n,+v (5.1)

Substituting these valueseanuations of system (8) we obt#ie variational equations,

u'—2¢v = (Q?,{)u +(Q§,7)v,

(5.2)
V' + 29U’ = (Qg,])u + (Q,‘;”)v,
The characteristic equation corresponding to (17), is
A -(Q% +QP, -49?)12+000 —(Q2) =0 (5.3)

Where the superscripd indicates that thepartial derivatives are evaluateat the equilibrium
points(fo,ﬂo). In computation of these derivatives, we substitgdes 1+ 0,/ =1+, i =1,2 and
neglect the second and higher order termis,io and their products.

Journal of the Nigerian Association of Mathematic&hysics Volumel6 (May, 2010)413 — 426
On The Stability Of Equilibrium Points Oni Leke, Umar Aishetu And Jagadish Singh J of NAMP



5.1 The Triangular Points

In the case of triangular points, these partial derivativegiaen by

1
% =7 (3 +50) (5.4)
1
7 =59k +70) (55)
o _(3k-6ku+50 -1 % - 81"
an = (5.6)
4 K
Substituting equations (5.4), (5.5) and (5.6) in theratieristic equation (18), we have
)I4—(3K—4+3D’—8D))|2+%K(9(+ 227)v( Fv) = ¢ (57)

The roots of (5.7) are given by

Afz:T (5.8)
where P=4-%+80-30, D=P2-4Q
Q=2 (9 +227)0(1-0) 2= (5.9

Consequently, the roots of the characteristic equation depend,the mass parametér
perturbation&],[T and the parametar. So the nature of these roots is controlledibyand the sign of the

discriminantD , which is given by
D =3k (% +220)0° - & ( &+ 22T +)u+ 8- 24+ 16( 4 A( I6- [®)

Since D is a monotonous function d@f in the interval(0, %] and has values opposite in signs at

1
endpoints, there @nly one value of/, sayUcK in the interval0< v < E for which the discriminant
vanishes. Since the nature of the roots depend on the nathesdi$criminant, the following cases are
possible:
1. WhenO<u< U, D >0 and P >0, in this case all (i =1,2,3, 4) are pure imaginary and
given as

Arpga=HiA (n=1,2)

n

1 %
where A, :{E(—Pm\/ﬁ)} , 1=1,2 (5.10)

Consequently, the triangulpoint is stable in this case.
The general solution is written [24], as

u=ACcosA7T+C,siNT+A, cod\ 7+C, SiA J
v=Acos\7+C, si\7+A, cod 7+C, Si J
where, A,A,C and C (i =1,2)are constants.

2. For P<0, O<u<uy,, the discriminanD >0, in this case the roots of the characteristic
equation (5.7) are real and distinct and written as

(5.11)
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A,=2Up,A,,=2U,

where U, =(%(Pi\/5)j (5.12)

The positive root induces instability at the triangulanfsoi
The general solution for real roots with the conditler< 0,D > Ois written as

u=Ae" + Aeg V" + Agl7 + AgV7

V=CAEY +C AR +C AL +C ALY
whereC;,C,, A and A, are constants.

N

(5.13)

3. Whery <ypy< l D < 0, hence eitheP < 0,P = 0, orP > 0. Thereal parts of twof the values
Cy 2

of A are positive andqual. Therefore, the triangulasint is unstable.
4. WherV = U, .,D=0. The following cases are possible.

(i) 1P <0 ,two roots are real and equal, while the other two are negaiivalso
equal. In this case, the triangular poirésuastable.
(i) If P =0, here all the roots are zero, and the triangular point isesita)

5.1.1 Critical Mass

The critical values of the mass parameter are the value® ahdlks ratioV when the discriminant
vanishes. This is different from the restricted problem withstant masses in which there exists only one
value of the mass parameter for which the discriminant & lzetause in our problem these values depend

on the parameter . The values of the critical mass paramé@gare given by

UCK =0, tU, tU, (5.14)
16( 4- 3
Where U, =1 — =V - K*-64, U, = ( )2 O
2 K\/_ © 3k/3V 96— % - 64
4(78& - X2 - 89

(5.15)

U
Pox 27/(2\/_3\/96( %2 - 4

Clearly, UCK represents the effects of the constém) of a particular integral of the Gylden-Meshcherskii

problem and perturbations ahe critical mass valuef the restricted problem. Thougk take values
between zero and infinity, we consider only values in thee@nfl1453X x < 9.953, for values of

K outside this are not physically meaningful. Wier 1, 2 the value ofU, coincides with the classical
Routhian value/, = 0.038527 but differs fork > 2and does not exist faf >9.9532. If there iso
perturbation in theentrifugal force, i.d1=0,

16( 4- )

U, =y, + l (5.16)
% 3k/3/96- %2 - 64

4
From (5.16), wéind thatUcK > UoK . Thus, keeping theentrifugal force constant, afk kK < g the
Coriolisforce remains a stabilizirfgrce, which agrees with the result of Szebehely [25], butrhes@

4 -
destabilizing force, oncg < k <10 and does not exist féf >9.9532.
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If there is no perturbation in ti@&oriolis force, equation (5.14), becomes
. AM78&-9¢ -89
© 2723/ 96¢— %2 - 64

(5.17)

4 4
Here, wefind that, <U, , for O<k< 5 So keeping the Coriolis foraeonstant ané <§ , the
centrifugal force islways a destabilizing force, but becomes stabilizing gnézin the range

4
— < K <7, and again becomes destabilizing whés kK < 10and these effects are (stabilizing or

.- . - 4 o
destabilizing) void fox >9.953Z. We note that, the value= 5 corresponds to ignoring the effects of

4
the Coriolis and centrifugal forces and the Routhian \lat;;e: 0. Consequently, fox = 5 , the critical
3

value of the mass paramew{:K is zero. Fox =1, 2, the critical mass ratio (5.14) is respectively

4| 360-197
U, = 0.03852:|:I-g (5.18)
27\ 69
41401 -180
and U, = O.OBSSZBQ (5.19)

27./69

Equation (5.18) is same as that worked out by [5Sfulfher we keep the centrifugal force constant (
i.e.J=0), the relation fully coincides with that of [25] Ignoginperturbations in the Coriolis and
centrifugal forces of the primaries, in either equations abbweecritical mass corresponds to the classical
case of [24].

Hence, the region of stability increases, decreases or doessiatepeénds on the constatiof a
particular integral of the Glyden-Mescherskii problem, wectiade that the triangular point of the

1
autonomized system is stable 0 U < U, , and unstable far, < U < 5 due to the constar of a

particular integral of the Gylden-Meshcherskii problem.

5.2  Stability of Collinear Points
In order to study the stability of the collinear ditlon points, we first compute the partial derivatives at

the collinear libration points of the poinis;, L, andL;. Let us consider the point correspondingltp

with coordinate( -U—¢, O) )

Using p=&<land p,=1+g>1 (5.20)
We get QY =¢+Kk-1+2f,, (5.21)
Now, £1>0,,O<US£andforaIIK,Q?{>O

2
Similarly, Qb =y -1+ k(1= f,)and Q) <o0. (5.22)

where f, = (1_3U) + Y 3
£ (1+g)
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Finally Qf =Q,=0 (5.23)
Substituting (5.21), (5.22) and (5.23) in characteristiaégn (5.3), we get
A4+ 2%(4+80-2k - 20~k )+, O ( 2+ f) +K2 (B f,— F2) = ( (5.24)
Becauseﬂi’({Qf]’,7 <0, the discriminant ipositive, and the founots of equation (5.25) cée written as
A=0,A,=-0, A =i0,, A, =-i0, (5.25)
The general solution is
u= A-ealr + Aze—alr + A3é‘72T + A4e—i02r

v=Be" +Be " +Bg% +B g7
Here, A, and B, (j =1,2,3, 4) are constant.

) ( p r} ) (-p_ﬁf
O =% —+—F| /03,7t —

(5.26)

2 2 2 2
P=(4+80-2-20-«f), Q= ( 2+ f)+x?( 1 f ~ X2)

where /1i 1 =1,2,3, Zare realOur investigations show that not all the roots of the cheriatit equation

are pure imaginary numbers, so the solutionnistable. The same procedsteows that, andL; are
unstable. Thereforgye can conclude théte stability behavior dhe collinear points doe®t change due
to perturbations in the Corioliand centrifugal forces and the constanbf a particular integral of the
motion of the variable primaries. Hentlegey remain unstable.

6.0 Stability of Equilibrium Points of Equations with V ariable Coefficients

Stability of non-autonomous solutions is related to tly@apunov Characteristic Numbers which
governs the long-time asymptotic exponential behaviorslafiens.
The investigation of stability for system (2.2yhwariable coefficients is difficult to establish foraw
reasons; first we must know a particular solution to #histem of equations and second, it contains an

unknown function-the angular velociw(t). However the functiona)(t) is determined using the
particular solutions (4) of the Gylden-Meshcherskii probl@ime analysis of the stability of the libration
points L, (i =1,2,...3 of the equations of motion with coefficients varying witime would solely

depend on the methods applied, since these libration pomthemselves time dependent, which means
that a change in time would result in a change in the losatbthe libration points. For example, using
the definition of a Lyapunov stable solution [10], we hiawthe triangular case

lim x(*9 = I|m [1-20]R(t

to o tﬂoo

Hence, lim x(t) =

) N
This at once proves the instability of the solutimﬁt), and similarly fory(t), according to the

Lyapunov theorem and verifies the result of [10].

The system of equations (3.6) with constant coefftsi and the reducible systems are regular. By
regular we mean that, there exists a generalized Lyapunovamaiasion carrying the system to another
system with constant matrix [26]. The system (2.2eqfiations with variable coefficients is reducible
systems due to the transformation (3.1). The reduciblersgstare regular because the characteristic
numbers are invariant with respect to transformation, caesgly we can apply the theorem of Lyapunov,
using the Lyapunov Characteristic Number (LCN) on the stahifithe perturbed motion to the particular
steady-state solutions of the system (2.2). The calculadiothe Lyapunov characteristic numbers here are
limited to finding the maximum LCN. This produces an gasiimputed value that can be used as a metric

Journal of the Nigerian Association of Mathematic&hysics Volumel6 (May, 2010)413 — 426
On The Stability Of Equilibrium Points Oni Leke, Umar Aishetu And Jagadish Singh J of NAMP



to give qualitative indication of how stability varies ovke tsolutions. The Calculation of the Lyapunov
characteristic numbers as defined by [6] and [[15] is useal her

6.1 Stability of Triangular Points

Calculating the LCN of the triangular solutions (4.6)yirag with time with the consideration that as
t — oo, Tis approaching a finite value, we have,

L,s| X(t ]——Ilm—ln

too

1 20+1) R(t)‘ =0

similarly, L,s[ y(t)]=0 (6.1)

Thus, the Lyapunov characteristic number is zero for triangedéutions, therefore, the stability or
instability of the perturbed motion cannot be determined djréctim the triangular equilibrium solutions.

Using equation (5.1), the particular solutions ofdhstem of equations with variable coefficients (2.2)
can be represented, given transformation (3.1) and solybahk) as

= AcosATR(t), x, =C;sinA7R(t)
X, = A,cosA,TR(t), X, =C,sinATR(t), % =&R(t)
y, = AcosA7R(t), y,=CsinAzR(t), y,=A,cosAIR(t)  (6.2)
Y, =C,sinA7R(t), ys =17,R(t)
where &,,7], are coordinates of the infinitesimal mass.
These solutions correspond to the region wi2rev < U ,P>0ie 0<k< g O +§D.

Using equation (4.6), the particular solutions to theesysdf equations with variable coefficients (1) can
be represented, given transformation (3.1) and solutioh8)(&s

x, = €UrR(t), x; = eV R(t), X, = &R(t)
Yo = GER(t), v5 = C£YTR(t). Yo =7 R(1)
The solutions of system (6.3) correspond to the regighere0<u < UCK , butP <0, ie.

4 8 . . . . . .
5 <K(1+ D’) —:—3D< o .we have chosen these regions, since it contains regierevthe triangular

(6.3)

points for

the autonomized equations are stable, as well as region whegr¢haystable. These regions are
determined by the

constant of integratior{x) of the Glyden-Mescherskii problem, the Coriolis and cirgsl forces. Since
in both case®@ <U <y, , (D >O)

For the solutions (43), thelr LCN'’s are

L(xl)——llm—ln‘cos/\rR )=0
L) =L00)=L0) L)L) LI =0 @4

@ (t)

271t p(t)

and new independent variablesand T given as

By [18] angular velocity representatiOr< <1, we found [23] a relationship between the old
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Iim£: Mr<s? (6.5)

t o0 ‘t

where S= 277(,00 is finite and 7 always tends to a finite value &ds always approaching infinity.
So that in view of the particular solutions (6.3) and @ering (6.5), the LCN are

W&F‘MﬁM€WNW:mU

Thus

L(x,)=m, L(x)=nU,l L(x)=0 (6.6)
Similarly

L(y,)=nU, L(ys)=nU,r L(ys)=0 (6.7)

Hence the LCN are positive for solutions with negative e&pts) negative for solutions with positive
exponents and, zero for solutions with imaginary exptsnand constant solutions. We conclude that

solutions with negative exponent, consequently havibgN >Qare stable; solutions with positive
exponents are unstable according to the Lyapunov theorem, whidtand solutions and solution with
imaginary exponents give no information about the stghilitinstability of the solutions

We make the following remarks;

1. If roots of characteristic equation corresponding to trilmgsolutions of the autonomized equations are
positive, then the LCN of the solutions varying wittméi is negative, and consequently the solutions are
unstable according to the Lyapunov theorem.

2. If roots of characteristic equation corresponding to trilmgsolutions of the autonomized equations are
pure imaginary numbers, then the LCN of the corresponslihgiion varying with time is zero, in this
case the stability or instability of the solutions can rotietermined.

3. If roots of characteristic equation corresponding to tritamgsolutions of the autonomized equations are
negative, then the LCN of corresponding solutions varyiith time is positive and consequently the
solutions are stable.

The same stability analysis done for the triangulartisois, shows for the collinear that, solutions with
positive exponents are unstable, those for negative exparenssable, while the stability or instability of
oscillatory and constant solutions can not be determined.

7.0 Discussion

The equations of perturbed motion (2.2) are different filzath obtained by [14] due to the presence of
perturbations in the Coriolis and centrifugal forces. Haweéfthis are ignored, the equation (2.2) will
fully coincide with those obtained by [2], [8], [13], aiid}].

Equation (5.14) gives the criticalue U, of themass parameter. It shotte effects ofperturbations

in the

Coriolisand centrifugal forces and the constant of a particular intégrahthe critical mass value. The
critical

mass value (5.18) verifiglse results of [5]. By keeping tleentrifugal force constant, equation (5.16) gives

4
the relationship ahe critical mass value, to the charigein the Coriolis forceHere for 0 < K < —the

4
Coriolisforce remains a stabilizirfgrce, but becomes destabilizing f%r< Kk £9.952, and does not

exist for K 210.
Also, if the Coriolidorce is kept constargguation (5.17) provides the relationsbighe critical mass

4
value to the change! in the centrifugalorce. Sokeeping the Coriolis foroeonstant an@ < x < 5

leads to the fact that the centrifugal forcaligays a destabilizing force, but becomes stabilizing and again
destabilizing due to the constant The overall effeds that the increase, decrease or non existence in the
rangeof stability of thetriangular points would solely depend on the constanof a particular integral of

Journal of the Nigerian Association of Mathematic&hysics Volumel6 (May, 2010)413 — 426
On The Stability Of Equilibrium Points Oni Leke, Umar Aishetu And Jagadish Singh J of NAMP



the Glyden-Mescherskii problem. The collinear points efabtonomized system are different from those
of the classical problem due to the introduction of pertiohan the centrifugal force and the parameter
due to mass variation. However, despite the introductidneske parameters, the collinear libration points
remain unstable.

For the stability of the non autonomous system, sy§tef) coincides with the case when the mass ratio of

4 8
the autonomous system is in the rafyg U < UCK butx < 5— O +§D. In this case the all LCN's are

zero, and so the region of stability does not exist. @trigirms the result of [12] that the region of stability
of the triangular points does not exist when the restrigtedlem with constant masses evolves into one

4 8
with variable mass. For the case whkR U < U, but k> g— i +§D , the LCN are positive for

negative roots and negative for positive roots. Here therregistability or instability depends solely on
the constamt . Our generalization of the stability of the non autononsyssem is in agreement with [14]
and [23].

7.0 Concluding Remarks

The system of equations (2.2) derived are nonsamitdg differential equations with variable
coefficients, and since functional differential equationsnotion for classical field theory are generally
difficult, often impossible, to express in a form tisamenable to analysis. Thus, in order to obtain useful
dynamical predictions from realistic models, it is frequengiguired to replace the functional differential
equations of motion by approximations that are ordinargastial differential equations. Thus, using the
particular solutions of the Gylden-Meshcherskii problemified Meshcherskii’'s law and a Meshcherskii
transformation, the system (2.2) is reduced to a systef)) (8 perturbed equations with constant
coefficients in a coordinate system rotating with a constagtilan velocity, then the search for the
particular solutions of the system with variable coefficiemt:ies down to the search for triangular steady-
state solutions of (3.6). Analogous particular steady-sw@ltgtiens (libration points) for the system of
equations with variable coefficients are obtained with the hélph@ equilibrium solutions of the
autonomized system (3.6) and the transformation (3.1).

The stabilityof collinear equilibrium points dhe autonomized system undee influence of a constant
K of a particular integral of the motion of the variable pryraodies, together witihe effects of the
perturbations in Coriolis and centrifugdbesnot change despite tirgroduction of perturbations. Hence,
they remain unstable. The stabilitftriangular equilibrium points of the autonomized syste stable is

1 ,
seen to be stabfer 0<v < U, ,and unstable fa/, <U< 5 due to the constamt of a particular

integral of the Gylden-Meshcherskii problem, ere&e is the critical masgalue, which depends ¢ime

joint effects othe parameters. The range of stability increases, decreasesigemztianged or does not
exist according to the constatof a particular integral of the Glyden-Meshcherskii problem

The stability of libration points varying with timr some initial conditions, we find according to the
Lyapunov theorem, that solutions with negative exponemtsequently having positive LCN are stable,
those with positive exponents having negative LCN areablestwhile the stability or instability of
constant and pure oscillatory solutions having zero LC®anot be determined.

The range of stability or instability depends on tkerall on the parameték), since itschoice
determines the stabilizing or destabilizialility of the presencef the Coriolis and centrifugal forces.
Hence ask increases, the LCN of solutions with negative exponertiedses. On the other hand, for
solutions with positive exponents the range of instagtilitthese solutions increases.

We conclude that since the stability of the triangular eqidlibisolutions of the non autonomous system

4 8
cannot be determined whBr< U < U O<k< 5 O +§D, but has unstable solutions in the same
range but with change in the range of the constant. We centttatimotion around the equilibrium points
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for the perturbed restricted three-body problem with vagiatdsses is in general unstable according to the
theorem of Lyapunov.
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