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Abstract 
 

The stability of five equilibrium points is investigated in the 
restricted three-body problem under the influence of  small 
perturbations in the Coriolis and centrifugal forces, in which the 
masses of the main bodies vary isotropically in accordance with 
the combined Meshcherskii’s law. For the autonomized system, 
it is found that collinear points remain unstable despite the 
introduction of perturbations, while triangular points are stable 
with respect to a constantκ  of a particular integral of the 
Gylden-Meshcherskii problem. It is further observed in the 
triangular case that the presence of this constant make the 
Coriolis and the centrifugal forces possess both stabilizing and 
destabilizing behaviors. The region of stability of triangular 

points depend onκ , and does not exist for 0.714531κ ≤ , 
1.333333κ = and 9.952κ ≥ . The equilibrium points of the 

non autonomous dynamical system are found to be generally 
unstable using the Lyapunov Characteristic Numbers. 

 
Keyword: celestial mechanics; mass variation  

 
1.0 Introduction 
     The restricted three-body problem describes the motion of an infinitesimal mass moving under the 
gravitational effects of the two finite masses, called primaries, which move in circular orbits around their 
center of mass on account of their mutual attraction and the infinitesimal mass not influencing the motion 
of the primaries. The approximate circular motion of the planets around the sun, and the small masses of 
the asteroids and the satellites of the planets compared to the planet’s masses, originally suggested the 
formulation of the above restricted problem.  
     Poincare [18] introduced the idea of qualitative understanding of motion in the three body problem by 
investigating the flow associated with the governing differential equations. He in particular tried to 
characterize the stability of motion of three mutually gravitationally attracted bodies. He quickly 
discovered the notable fact that a small variation in initial conditions could cause drastically different 
dynamical behaviors.  
Routh [19] established the condition for linear stability of the triangular libration points. When this 
condition is satisfied, all the roots of the characteristic equation are pure imaginary, which leads to pure 
oscillatory solution. 
     The first investigation of the existence of the libration points for variable masses in the absence of 
reactive forces was performed by [17], in which the plane problem of three bodies with finite variable 
masses was considered, and the existence of five analogous particular solutions was established. Winter 
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[27] showed that the stability of the triangular points is due to the existence of the Coriolis terms in the 
equations of motion when they are written in a rotating coordinate system. The absence of the Coriolis 
force renders the triangular solution unstable according to Wintner, so that the oscillatory solution of the 
linearized equations of motion is replaced by exponential terms with real characteristic exponents. 
 
      The effect of a small perturbation of the Coriolis force on the stability of the equilibrium points, 
keeping the centrifugal force constant, was studied by [15]. He maintained that the collinear points remain 
unstable and obtained for the stability of the triangular points a relation between the critical value of the 

mass parameter cµ and the change ∈  in the Coriolis force: 

                                                  
0

16

3 69
cµ µ ∈= +

. 
He concluded that the Coriolis force is a stabilizing force. This work was also extended by [5], by 

considering the effect of perturbations∈  and ′∈  in the Coriolis and centrifugal forces, respectively and 
found that collinear points remain unstable; for the triangular points they obtained the relation 

                                                  

( )
0

4 36 19

27 69
cµ µ

′∈ − ∈
= +

. 
They inferred that the range of stability increases or decreases depending on whether the points ( ), ′∈ ∈ lies 

in one or the other of the two parts in which the ( ), ′∈ ∈ plane is divided by the line 36 19 0′∈− ∈ =  . [20] and 

[21], later investigated the effect of small perturbations in the Coriolis and centrifugal forces in the 
restricted three-body problem with variable mass under the assumption that the infinitesimal mass is 
variable and the primaries are spherical with constant masses. The combined effect of perturbations, 
radiation and oblateness on the stability of equilibrium points in the restricted three-body problem was 
studied by [1]. They found that the collinear points remain unstable, while the triangular are stable for 

0 cµ µ< ≤  and unstable for 1

2cµ µ< ≤ . They observed further that the Coriolis force has a stabilizing 

tendency, while the centrifugal force, radiation and oblateness of the primaries have destabilizing effects; 
consequently the overall effect is that the range of stability of the triangular points decreases. 
     Gasanov [7] investigated the libration points and the general case in the problem of the motion of a star 
inside a layered inhomogeneous elliptical galaxy with variable mass and established seven liberation points 
of the autonomized equations, located (except for one) outside the gravitating galaxy. He examined the 
stability of these points using the Lyapunov Characteristic Number (L.C.N), and concluded that solutions 
with negative exponents are stable. [22] examined the effects of perturbations on the nonlinear stability of 
triangular points in the restricted three-body problem with variable mass.  [23] studied the stability of seven 
equilibrium points in the photogravitational restricted three-body problem with variable masses. They 
found that the collinear and coplanar points of the autonomized system are unstable and the triangular 
points conditionally stable while the stability of these solutions for the non autonomous dynamical system 
were studied based on the concept of the Lyapunov Characteristic Numbers (LCN) and they found that 
solutions with negative exponents consequently having positive LCN are stable, those with positive 
exponents having negative LCN are unstable, while the stability or instability of constant solutions and 
solutions with pure imaginary exponents, with zero LCN’s cannot be determined. They concluded in 
general that motion around the equilibrium points ( )1, 2...7iL i =  for the restricted three-body problem with 

variable masses is unstable. 
     A study of the motion and the existence of libration points in the restricted problem, under the condition 
that the motion of the variable-mass main bodies is within the framework of the Gylden-Meshcherskii 
problem([9] and [11]) with isotropic mass variation of the primaries varying in proportion to each other in 
accordance with the combined Meshcherskii law, have been studied by  [2], [3], [4], [6], [7], [8] and [16].  
   Our aim in this paper is to study the effects of perturbations in the Coriolis and centrifugal forces on the 
locations and stability of five equilibrium points, when the masses of the primaries vary according to the 
unified law [11].  
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2.0  Equations Of Motion 
 

  Let ( ), ,x y z be the coordinates of the infinitesimal body in the orbital plane. 

The equations of motion of the infinitesimal mass m in the gravitational field of the luminous primary of 

variable masses 1m and 2m  in a barycentric coordinate system Oxyz, rotating with an angular velocity 

( )tω  about the z-axis perpendicular to the plane of motion of the primaries, while the x-axis always passes 

through these points have the form [2] and [8]  

                                          

.
1 22

1 23 3
1 2

.
2

1 23 3
1 2

1 23 3
1 2

( ) ( )
2 ,

2 ,

,

x x x x
x y x y

r r

y y
y x y x

r r

z z
z

r r

ω ω ω µ µ

ω ω ω µ µ

µ µ

− −− = + − −

+ = − − −

= − −

&& &

&& &

&&

             (2.1)  

with                                  2 2 2 2
1 1( )r x x y z= − + + ,  2 2 2

2 2( )r x x y z= − + +                                                           

                                          2
1

1 2

r
x

µ
µ µ

= −
+

 , 1
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1 2

r
x

µ
µ µ

=
+

                                                     

where  1r and 2r are distances of the infinitesimal mass from these primaries positioned at 

1( ,0,0)x and 2( ,0,0)x . 1µ and 2µ are the product of the masses of the primaries and gravitational 

constantf and a dot denotes differentiation with respect to time t. 

Next, we introduce small perturbations in the Coriolis and centrifugal forces with the help of the parameters 
ϕ and ψ  respectively such that 

                              1 ;ϕ = + ∈   1∈= ,  1 ;ψ ′= + ∈    1′∈=  

Hence, equations of motion of the infinitesimal mass m in the perturbed gravitational field of the variable 

primaries in a coordinate system( ),x y  has the form: 

                              

( ) ( )1 1 2 22
3 3

1 2

1 22
3 3

1 2

2

2

x x x x
x y y x

r r

y y
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r r

µ µ
ω ϕ ωϕ ω ψ

µ µω ϕ ωϕ ω ψ

− −
− − = − −

+ + = − −

&&& &

&&& &

                          (2.2)                         

where                   ( )22 2,i ir x x y= − +  1ϕ = + ∈    1ψ ′= + ∈ ,  1,2i =                                      

Here , ′∈ ∈ represent the perturbation in the Coriolis and centrifugal forces .The third expression of system 

(2.2) does not appear has we consider motion in thexy − plane only. 

                                     
 3.0  Autonomization of the Equations of Motion 
 
The equations of motion of system (2.2) are non-integrable differential equations with variable coefficients. 

We transform from ( ), ,x y t  to ( ), ,ξ η τ with the help of a Meshcherskii’s transformation 
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         ( ),x R tξ=  ( ),y R tη=  2( )
dt

R t
dτ

= ,                                                         (3.1) 

                            ( ), ( 1,2)i ir R t iρ= = , 12 ( )r R tρ= ,                                                                                  

the particular solutions of the Gylden-Meshcherskii problem 

                             0

2
( ) ,

( )
t

R t

ωω =    1 1 ( ),x R tξ=   2 2 ( )x R tξ= ,  2
12 0C ρ ω=                            (3.2)                             

 and the unified Meshcherskii’s law (1902), 

       ( ) ( )
0t

R t

µµ = , ( ) ( )
10

1 t
R t

µµ = , ( ) ( )
20

2 t
R t

µµ = , ( ) ( ) ( )1 2t t tµ µ µ= +  

where       ( ) 2
0 102 :, , , , ,R t t tα β γ α β γ µ µ= + +  and 20µ are constants,                           (3.3)                        

The system (2.2) in the autonomized form becomes 

                                      02ξ ω ϕη
ξ

∂Ω′′ ′− =
∂

,     02η ω ϕξ
η

∂Ω′′ ′+ =
∂

                                      (3.4) 

 where                           
( )( )2 2 2

0 10 20

1 22

ξ η ω ψ µ µ
ρ ρ

+ + ∆
Ω = + +                                 

            ( )22 2
i iρ ξ ξ η= − + ,   20

1 12
0

µξ ρ
µ

−= ,   10
2 12

0

µξ ρ
µ

= , 2β αγ∆ = − ,   1,2i =                         

and dashes denote differentiation with respect toτ . 

We make choices of units at initial time 0t   such that       

                                      0 fµ = , 12 01, 1, 1ρ ω κ= = ∆ = − ,  

where 
( )2 2

0

2
0

β αγ ω
κ

ω
− +

=  is a constant of integration of a particular integral [8] 

                                       2r Cµ κ= ,                                                                                      (3.5)                                            

of the Gylden-Meshcherskii problem. 0C ≠ is a constant of the area integral, from which we have 

                                      0µ κ=  

The ranges of variation of the parameter κ are; i. If 0∆ = , we would have 1κ =   

 ii. If 0∆ > , this implies 1 κ< < ∞ and iii. If 0∆ < , this implies0 1κ< < . 
 
Introducing the mass parameterυ , expressed as  

                                     10

0

1
µ υ
µ

= − , 20

0

µ υ
µ

= ,     where 
1

0
2

υ< ≤ . 

whereυ , is the ratio of the mass of the smaller primary to the total mass of the primaries.  
With the choice of these constants, system (3.4) takes the form                     
                              

                              2ξ ϕη
ξ

∂Ω′′ ′− =
∂

,      2η ϕξ
η

∂Ω′′ ′+ =
∂

                                                     (3.6)                                                              

where                     
( )( ) ( )2 2

1 2

1 1

2

ξ η ψ κ κ υ κυ
ρ ρ

+ + − −
Ω = + +  
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                               ( )2 2
1ρ ξ υ η= + + , ( )2 2

2 1ρ ξ υ η= + − + , 0 κ< < ∞  

 
4.0       Locations Of Equilibrium Points 
 
    It is well known that the infinitesimal mass can be at rest in a rotating coordinate frame, at five libration 

points (three collinear 1,2,3L and two triangular 4,5L ), where the gravitational and centrifugal forces just 

balance each other. The particular solutions of the restricted three-body problem for the isotropic case of 
mass variation have been considered in different respects by [2], [4], [8], [13], and [23].  
 
4.1  Locations of Triangular Points 
 
The triangular points are the solutions of the equations 

0
ξ

∂Ω =
∂

,  0
η

∂Ω =
∂

                                                                                       

i.e.                         ( ) ( )( ) ( )
3 3
1 2

1 1
1 0

κ υ ξ υ κυ ξ υ
ψ κ ξ

ρ ρ
− + + −

+ − − − =                   

  and                        
( )

3 3
1 2

1
1 0, 0

κ υ κυψ κ η η
ρ ρ
− 

+ − − − = ≠ 
 

                                             (4.1)                                    

Hence the exact coordinate of triangular points corresponding to 4L and 5L are 

                
2 2
1 2 1

2 2

ρ ρξ υ−= − + ,  

1
2 22 2 2 2

1 2 1 2 1

2 2 4

ρ ρ ρ ρη
 + −   = ± − −  

   
                  (4.2)                       

from (4.1), we have  

                               

1
3

1 1

κρ
ψ κ
 =  + − 

 and 

1
3

2 1

κρ
ψ κ
 =  + − 

                                                                                    

Substituting expressions above in (4.2), the coordinates of the triangular points are;                 

                  [ ]1
1 2

2
ξ υ= − ,      

2
3

2
3

1

21

( 1) 4

κη
ψ κ

 
= ± − + − 

                                           (4.3)                             

where the positive sign corresponds to 4L and the negative to 5L .These points form simple triangles with 

the line joining the primaries, different from the classical problem where these points make equilateral 

triangles. It is obvious that the positions of the triangular points 4L  and 5L are affected by the factors 

which appear due to perturbation in the centrifugal force. If this is ignored, i.e., 1ψ =  the points 4L and 

5L of the autonomized system will be fully analogous to the classical case. 

 
 
 
 
 

4.2     Locations of Collinear Points 
 
The collinear points are the solutions of the equations 

                                                0,ξΩ =  0η =   
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That is, the collinear points lie on the line joining the two primaries. To obtain the abscissa, we denote the 

expression ( )
0ξ η ζ= =

Ω by ( )f ξ . There are only three roots, 1ε , 2ε and 3ε   of the equation  ( ) 0f ξ = , 

with one lying in each of the interval ( ) ( )1, , ,1υ υ υ υ− − − − − and( )1 ,2υ υ− − . These three roots 

correspond to the three collinear points1L , 2L  and 3L . Their respective abscissae are 

                                   1 1ξ υ ε= − − ,    2
21ξ υ ε= − − ,   3

31ξ υ ε= − + ,                             (4.4)                       

where 0, 1,2,3i iε > = are roots of the equation ( ) ( )
0

0f ξ η ζ
ξ

= =
= Ω = . 

      For the system of equations with variable coefficients, the equilibrium points are determined from the 
transformation (3.1) in the form [14] 

                                        ( ) ( ) ( )i ix R tξ= , ( ) ( ) ( )i iy R tη= , 4,5i =                                        (4.5)                         

where ( ) ( ) ( ) ( ),i iξ τ η τ and ( ) ( ) ( ), 1,2,...5i iζ τ =  are the libration points of the system with constant 

coefficients. Consequently, the triangular points of system (2.2), have the form 

          ( ) ( )4,5 1

2
x R tυ = −  

,  ( ) ( )
2

3

2
3

1

2
4,5 1

( 1) 4
y R t

κ
ψ κ

 
= ± − + − 

                                      (4.6)                                                                                                       

and collinear points are represented as 

                                      ( ) ( ) ( ) ( )1
1x t R tυ ε= − −  

                                      ( ) ( ) ( ) ( )2
21x t R tυ ε= − −                                                             (4.7)                                                                                                                     

                                      ( ) ( ) ( ) ( )3
31x t R tυ ε= − +  

The libration points of the system of equations (2.2) with variable coefficients and those of the 

autonomized systems (3.6) differ only by the term( )R t .  

                                
5.0     Stability Of Equilibrium Points Of The Autonomized System 

 
The stability of constant coefficients linear systems of ordinary differential equations is determined 
completely by the Eigen values of the coefficient matrix. Due to the small perturbations in the Coriolis and 
centrifugal forces of the primaries and the parameter κ  due to variation in masses of the primaries, the 
position of the infinitesimal body would be displaced a little from the equilibrium point 

       We denote the equilibrium points and their positions as L ( )0 0,ξ η .Let a small displacement in 

( )0 0,ξ η  be( ),u v . Then we write  

                                      0 uξ ξ= + ,  0 vη η= +                                                                  (5.1)                             
 Substituting these values in equations of system (8) we obtain the variational equations,  

                                    
( ) ( )
( ) ( )

0 0

0 0

2 ,

2 ,

u v u v

v u u v

ξξ ξη

ξη ηη

ϕ

ϕ

′′ ′− = Ω + Ω

′′ ′+ = Ω + Ω
                                                        (5.2)                       

The characteristic equation corresponding to (17), is 

                    ( ) ( )2
4 0 0 2 2 0 0 04 0ξξ ηη ξξ ηη ξηλ ϕ λ− Ω + Ω − + Ω Ω − Ω =                                          (5.3)     

                                         
 Where the superscript 0 indicates that the partial derivatives are evaluated at the equilibrium 

points( )0 0,ξ η . In computation of these derivatives, we substitute, 1ϕ = + ∈ , 1ψ ′= + ∈ , 1,2i =  and 

neglect the second and higher order terms in , ′∈ ∈ and their products. 
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5.1     The Triangular Points 
 
 In the case of triangular points, these partial derivatives are given by                     

                 ( )1
3 5

4
ο
ξξ κ ′Ω = + ∈                                                                   (5.4)                                          

                       ( )1
9 7

4
ο
ηη κ ′Ω = + ∈                                                                                    (5.5) 

                    

1
23 6 5 10 9 8

4 3
ο
ξη

κ κυ υ κ
κ

′ ′ ′− + ∈ − ∈ − ∈  Ω =   
  

                                           (5.6)                                                            

 Substituting equations (5.4), (5.5) and (5.6) in the characteristic equation (18), we have 

         ( ) ( ) ( )4 2 3
3 4 3 8 9 22 1 0

4
λ κ λ κ κ υ υ′ ′− − + ∈ − ∈ + + ∈ − =                      (5.7)                            

The roots of (5.7) are given by 

                     2
1,2 2

P Dλ − ±=                                                                         (5.8)                        

 where          4 3 8 3P κ ′= − + ∈− ∈ ,    2 4D P Q= −  

                         ( ) ( )3
9 22 1 , 1

4
Q a

κ κ υ υ′= + ∈ − =                                   (5.9)                                                                                   

Consequently, the roots of the characteristic equation depend, on the mass parameterυ , 
perturbations , ′∈ ∈ and the parameterκ . So the nature of these roots is controlled by κ  and the sign of the 

discriminantD , which is given by                                                

( ) ( ) ( )( )2 23 9 22 3 9 22 9 24 16 4 3 16 6D κ κ υ κ κ υ κ κ κ′ ′ ′= + ∈ − + ∈ + + − + + − ∈− ∈          

Since D  is a monotonous function of υ  in the interval 1
2(0, ] and has values opposite in signs at 

endpoints, there is only one value ofυ , say cκ
υ  in the interval 

1
0

2
υ< ≤ for which the discriminant 

vanishes. Since the nature of the roots depend on the nature of the discriminant, the following cases are 
possible: 

1. When0 cκ
υ υ< < , 0D >  and 0P > , in this case all ( )1,2,3,4i iλ = are pure imaginary and 

given as                    

                                          1,2,3,4 niλ = ± Λ            ( )1,2n =                                                        

where                    ( )
1

21

2i P D
 Λ = −  

m ,  1,2i =                              (5.10)                     

Consequently, the triangular point is stable in this case. 
The general solution is written [24], as 

                             
1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2

cos sin cos sin

cos sin cos sin

u A C A C

v A C A C

τ τ τ τ
τ τ τ τ

= Λ + Λ + Λ + Λ
= Λ + Λ + Λ + Λ

                            (5.11)                      

 where,         , ,i i i iA A C and C  ( 1,2i = ) are constants. 

    2. For 0P < , 0 ,cκ
υ υ< <  the discriminant 0D > ,  in this case the roots of the characteristic 

equation (5.7) are real and distinct and written as              
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                               1,2 1 34 2,U Uλ λ= ± = ±                                          

where                     ( )
1

2

1,2

1

2
U P D

 = ± 
 

                                                                         (5.12)                          

The positive root induces instability at the triangular points. 
The general solution for real roots with the condition 0, 0P D< > is written as  

                                    
1 1 2 2

1 1 2 2

1 2 3 4

1 1 1 2 2 3 2 4

U U U U

U U U U

u Ae A e A e A e

v c Ae c A e c A e c A e

τ τ τ τ

τ τ τ τ

− −

− −

= + + +
= + + +

                                 (5.13)                     

where 1 2 1, ,c c A  and 2A are constants.                                                                                                                             

3. When 1
,

2cκ
υ υ< ≤ 0D < , hence either 0, 0P P< = , or 0P > . The real parts of two of the values 

of  are positive and equal. Therefore, the triangular point is unstable.  

4. When Cκ
υ υ= , 0D = . The following cases are possible. 

    (i)   If 0P < , two roots are real and equal, while the other two are negative and also   

              equal. In this case, the triangular points are unstable. 
    (ii) If 0P = , here all the roots are zero, and the triangular point is stable [16] 

 
5.1.1     Critical Mass 

    The critical values of the mass parameter are the values of the mass ratio υ  when the discriminant 
vanishes. This is different from the restricted problem with constant masses in which there exists only one 
value of the mass parameter for which the discriminant is zero because in our problem these values depend 

on the parameterκ . The values of the critical mass parametercκ
υ are given by 

    
1 20C p pκ κ κ κ

υ υ υ υ= + +                                                                     (5.14)                                                       

Where 2
0

1 1
96 9 64

2 6 3κ
υ κ κ

κ
= − − − ,  

( )
1 2

16 4 3

3 3 96 9 64
p κ

κ
υ

κ κ κ
−

= ∈
− −

         

                       
( )

2

2

2 2

4 78 9 88

27 3 96 9 64
p κ

κ κ
υ

κ κ κ
− −

′= ∈
− −

                                                         (5.15) 

Clearly, cκ
υ  represents the effects of the constant ( )κ of a particular integral of the Gylden-Meshcherskii 

problem and perturbations on the critical mass value of the restricted problem. Though κ take values 
between zero and infinity, we consider only values in the range0.714532 9.9532κ≤ ≤ , for values of 

κ outside this are not physically meaningful. When 1,2κ =  the value of ου  coincides with the classical 

Routhian value 
1,2

0.038521οµ =  but differs for 2κ > and does not exist for 9.9532κ > .  If there is no 

perturbation in the centrifugal force, i.e. 0′∈ = , 
 

                                    
( )

0 2

16 4 3

3 3 96 9 64
cκ κ

κ
υ υ

κ κ
−

= + ∈
− −

                                               (5.16)                                                                                                                                                         

From (5.16), we find that 0cκ κ
υ υ> . Thus, keeping the centrifugal force constant, and

4
0

3
κ< < , the 

Coriolis force remains a stabilizing force, which agrees with the result of Szebehely [25], but becomes a 

destabilizing force, once
4

10
3

κ< <  and does not exist for 9.9532κ > .  
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If there is no perturbation in the Coriolis force, equation (5.14), becomes 

                                        
( )2

0 2 2

4 78 9 88

27 3 96 9 64
cκ κ

κ κ
υ υ

κ κ κ
− −

′= + ∈
− −

                                  (5.17) 

Here, we find that 0cκ κ
υ υ< , for 

4
0

3
κ< < . So, keeping the Coriolis force constant and

4

3
κ < , the 

centrifugal force is always a destabilizing force, but becomes stabilizing once κ is in the range 
4

7
3

κ< ≤ , and again becomes destabilizing when 7 10κ< < and these effects are (stabilizing or 

destabilizing) void for 9.9532κ > . We note that, the value
4

3
κ = , corresponds to ignoring the effects of 

the Coriolis and centrifugal forces and the Routhian value
4

3
0 0υ = . Consequently, for

4

3
κ = , the critical 

value of the mass parameter Cκ
υ is zero. For 1,2κ = , the critical mass ratio (5.14) is respectively 

                               
[ ]

1

4 36 19
0.038521

27 69
cυ

′∈− ∈
= +                                                        (5.18)                                                

and                           
[ ]

2

4 4 18
0.038521

27 69
cυ

′∈ − ∈
= +                                                       (5.19)                

  Equation (5.18) is same as that worked out by [5]. If further we keep the centrifugal force constant ( 
i.e. 0′∈ = ), the relation fully coincides with that of [25] Ignoring perturbations in the Coriolis and 
centrifugal forces of the primaries, in either equations above, the critical mass corresponds to the classical 
case of [24].  
Hence, the region of stability increases, decreases or does not exist depends on the constant κ of a 
particular integral of the Glyden-Mescherskii problem, we conclude that the triangular point of the 

autonomized system is stable for 0 cκ
υ υ< < , and unstable for

1

2cυ υ≤ ≤  due to the constant κ of a 

particular integral of the Gylden-Meshcherskii problem. 
 
 5.2      Stability of Collinear Points 
    In order to study the stability of the collinear libration points, we first compute the  partial derivatives at 

the collinear libration points of the points 1 2,L L  and 3L . Let us consider the point corresponding to 1L  

with coordinate( ),0υ ε− − . 

Using                    1 1 1ρ ε= <   and      2 11 1ρ ε= + >                                                       (5.20)                               

We get                  0
11 2 fξξ ψ κ κΩ = + − + ,                                                                       (5.21)                                                                 

Now,    1 0,ε >  , 
1

0
2

υ< ≤ and for allκ , 0 0ξξΩ >  

 Similarly,       0
11 (1 )fηη ψ κΩ = − + − and 0

ηηΩ <0.                                                   (5.22) 

where      
( )

( )1 33
1 1

1

1
f

υ υ
ε ε
−

= +
+
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 Finally        0 0ξη ηξΩ = Ω =                                                                          (5.23)                    

Substituting (5.21), (5.22) and (5.23) in characteristic equation (5.3), we get 

       ( ) ( ) ( )4 2 2 2
1 1 1 14 8 2 2 2 1 2 0f f f fλ λ κ κ κ κ′ ′+ + ∈− − ∈ − + ∈ + + + − =                    (5.24)     

Because 0 0 0ξξ ηηΩ Ω < , the discriminant is positive, and the four roots of equation (5.25) can be written as  

                                   1 1λ σ= , 2 1λ σ= − , 3 2iλ σ= , 4 2iλ σ= −                                            (5.25)                                                                                       

The general solution is 

                                 
1 1 2 2

1 2 2

1 2 3 4

1 2 3 4

i i

i i

u A e A e A e A e

v B e B e B e B e

σ τ σ τ σ τ σ τ

σ τ σ τ σ τ σ τ

− −

− −

= + + +
= + + +

                     (5.26)                                  

Here, 'j sA  and 'j sB  ( )1,2,3,4,j =  are constant.         

                          

1 1

2 2

1,2 3,4,
2 2 2 2

P D P Dσ σ
   − −= ± + = ± −      
   

 

               ( ) ( ) ( )2 2
1 1 1 14 8 2 2 , 2 1 2P f Q f f fκ κ κ κ′ ′= + ∈− − ∈ − = ∈ + + + −                                                      

where , 1,2,3,4i iλ = are real. Our investigations show that not all the roots of the characteristic equation 

are pure imaginary numbers, so the solution is unstable. The same procedure shows that L2 and L3 are 
unstable. Therefore, we can conclude that the stability behavior of the collinear points does not change due 
to perturbations in the Coriolis and centrifugal forces and the constant κ of a particular integral of the 
motion of the variable primaries. Hence, they remain unstable. 
 
6.0     Stability of Equilibrium Points of Equations with V ariable Coefficients 
 
        Stability of non-autonomous solutions is related to the Lyapunov Characteristic Numbers which 
governs the long-time asymptotic exponential behaviors of solutions. 
     The investigation of stability for system (2.2) with variable coefficients is difficult to establish for two 
reasons; first we must know a particular solution to this system of equations and second, it contains an 

unknown function-the angular velocity( )tω . However the function ( )tω  is determined using the 

particular solutions (4) of the Gylden-Meshcherskii problem. The analysis of the stability of the libration 

points ( )1,2,...5iL i =  of the equations of motion with coefficients varying with time would solely 

depend on the methods applied, since these libration points are themselves time dependent, which means 
that a change in time would result in a change in the locations of the libration points. For example, using 
the definition of a Lyapunov stable solution [10], we have in the triangular case  
                                  

       ( ) [ ] ( )4,5 1
lim lim 1 2

2t t
x R tυ

→∞ →∞
= −  

 Hence,                          ( )lim
t

x t
→∞

= ∞                                                                                                                                                                                                                   

This at once proves the instability of the solutions( ) ,x t  and similarly for ( )y t , according to the 

Lyapunov theorem and verifies the result of [10]. 
      The system of equations (3.6) with constant coefficients and the reducible systems are regular. By 
regular we mean that, there exists a generalized Lyapunov transformation carrying the system to another 
system with constant matrix [26]. The system (2.2) of equations with variable coefficients is reducible 
systems due to the transformation (3.1). The reducible systems are regular because the characteristic 
numbers are invariant with respect to transformation, consequently we can apply the theorem of Lyapunov, 
using the Lyapunov Characteristic Number (LCN) on the stability of the perturbed motion to the particular 
steady-state solutions of the system (2.2). The calculations of the Lyapunov characteristic numbers here are 
limited to finding the maximum LCN. This produces an easily computed value that can be used as a metric 
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to give qualitative indication of how stability varies over the solutions. The Calculation of the Lyapunov 
characteristic numbers as defined by [6] and [[15] is used here. 
 
6.1     Stability of Triangular Points  
 
 Calculating the LCN of the triangular solutions (4.6) varying with time with the consideration that as 

,t → ∞ τ is approaching a finite value, we have, 

                             ( ) ( ) ( )4,5

1 1
lim ln 2 1 0

2t
L x t R t

t
υ

→∞
= − − + =    

similarly,              ( )4,5 0L y t =                                                                              (6.1)                  

Thus, the Lyapunov characteristic number is zero for triangular solutions, therefore, the stability or 
instability of the perturbed motion cannot be determined directly from the triangular equilibrium solutions.  
    Using equation (5.1), the particular solutions of the system of equations with variable coefficients (2.2) 
can be represented, given transformation (3.1) and solutions (5.11) as 

                    ( )1 1 1cosx A R tτ= Λ ,   ( )2 1 1sinx C R tτ= Λ       

                    ( )3 2 2cosx A R tτ= Λ ,   ( )4 2 2sinx C R tτ= Λ ,  ( )5 0x R tξ=     

                     ( )1 1 1cosy A R tτ= Λ ,   ( )2 1 1sin ,y C R tτ= Λ  ( )3 2 2cosy A R tτ= Λ         (6.2) 

                     ( )4 2 2siny C R tτ= Λ ,    ( )5 0y R tη=                                                                                   

where 0 0,ξ η  are coordinates of the infinitesimal mass. 

These solutions correspond to the region where 0 , 0c P
κ

υ υ< < >  i.e. 
4 8

0
3 3

κ ′< < ∈ + ∈ . 

Using equation (4.6), the particular solutions to the system of equations with variable coefficients (1) can 
be represented, given transformation (3.1) and solutions (5.13) as 

                        
( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

4 5 6 0

4 1 5 2 6 0

, ,

, ,

U U

U U

x e R t x e R t x R t

y c e R t y c e R t y R t

τ τ

τ τ

ξ
η

± ±

± ±

= = =

= = =
                                       (6.3)                                     

The solutions of system (6.3) correspond to the region where0 cκ
υ υ< < , but 0P < , i.e. 

( )4 8
1

3 3
κ ′< + ∈ − ∈< ∞  .we have chosen these regions, since it contains region where the triangular 

points for  
 

the autonomized equations are stable, as well as region where they are unstable. These regions are 
determined by the  

constant of integration ( )κ of the Glyden-Mescherskii problem, the Coriolis and centrifugal forces. Since 

in both cases0 cκ
υ υ< < , ( )0D >  

For the solutions (43), their LCN’s are  

                                       ( ) ( )1 1

1
lim ln cos 0
t

L x R t
t

τ
→∞

= − Λ =  

 Hence                           ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 0L x L x L x L y L y L y= = = = = =                  (6.4)   

By [18] angular velocity representation
( )2

0 1
2 ( )

t

f t

ω
π ρ

< < , we found [23] a relationship between the old 

and new independent variables t  and τ  given as 
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                                        2lim
t

S
t

τ
→∞

= Γ <                                                                             (6.5) 

where     02S πκρ= is finite and τ always tends to a finite value as t  is always approaching infinity.              

So that in view of the particular solutions (6.3) and considering (6.5), the LCN are                                                                                  

    ( ) ( )1
4 1

1
lim ln U

t
L x e R t U

t
τ±

→∞
= − = Γm  

 Thus 

                                ( )4 1L x U= Γm ,   ( )5 2L x U= Γm      ( )6 0L x =                                   (6.6)                                 

Similarly                      

                                ( )4 1L y U= Γm     ( )5 2L y U= Γm     ( )6 0L y =                                   (6.7)                       

Hence the LCN are positive for solutions with negative exponents, negative for solutions with positive 
exponents and, zero for solutions with imaginary exponents and constant solutions. We conclude that 
solutions with negative exponent, consequently having 0LCN > are stable; solutions with positive 
exponents are unstable according to the Lyapunov theorem, while constant solutions and solution with 
imaginary exponents give no information about the stability or instability of the solutions 
We make the following remarks;  

1. If roots of characteristic equation corresponding to triangular solutions of the autonomized equations are 
positive, then the LCN of the solutions varying with time is negative, and consequently the solutions are 
unstable according to the Lyapunov theorem.  

2. If roots of characteristic equation corresponding to triangular solutions of the autonomized equations are 
pure imaginary numbers, then the LCN of the corresponding solution varying with time is zero, in this 
case the stability or instability of the solutions can not be determined. 

3. If roots of characteristic equation corresponding to triangular solutions of the autonomized equations are 
negative, then the LCN of corresponding solutions varying with time is positive and consequently the 
solutions are stable. 

   The same stability analysis done for the triangular solutions, shows for the collinear that, solutions with 
positive exponents are unstable, those for negative exponents are stable, while the stability or instability of 
oscillatory and constant solutions can not be determined.                                                                                                                                   
 
7.0     Discussion 
The equations of perturbed motion (2.2) are different from that obtained by [14] due to the presence of 
perturbations in the Coriolis and centrifugal forces. However if this are ignored, the equation (2.2) will 
fully coincide with those obtained by [2], [8], [13], and [14].  

    Equation (5.14) gives the critical value cκ
υ  of the mass parameter. It shows the effects of, perturbations 

in the  
Coriolis and centrifugal forces and the constant of a particular integral κ  on the critical mass value. The 

critical  
mass value (5.18) verifies the results of [5]. By keeping the centrifugal force constant, equation (5.16) gives 

the relationship of the critical mass value, to the change ∈  in the Coriolis force. Here for 
4

0
3

κ< < the 

Coriolis force remains a stabilizing force, but becomes destabilizing for 
4

9.952
3

κ< ≤ , and does not 

exist for 10κ ≥ .   
    Also, if the Coriolis force is kept constant, equation (5.17) provides the relationship of the critical mass 

value to the change ′∈  in the centrifugal force. So, keeping the Coriolis force constant and
4

0
3

κ< < , 

leads to the fact that the centrifugal force is always a destabilizing force, but becomes stabilizing and again 
destabilizing due to the constantκ . The overall effect is that the increase, decrease or non existence in the 
range of stability of the triangular points would solely depend on the constant κ of a particular integral of 
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the Glyden-Mescherskii problem. The collinear points of the autonomized system are different from those 
of the classical problem due to the introduction of perturbation in the centrifugal force and the parameter 
due to mass variation. However, despite the introduction of these parameters, the collinear libration points 
remain unstable. 
For the stability of the non autonomous system, system (6.4) coincides with the case when the mass ratio of 

the autonomous system is in the range 0 cκ
υ υ< < but

4 8

3 3
κ ′< − ∈ + ∈. In this case the all LCN’s are 

zero, and so the region of stability does not exist. This confirms the result of [12] that the region of stability 
of the triangular points does not exist when the restricted problem with constant masses evolves into one 

with variable mass. For the case when0 cκ
υ υ< < but   

4 8

3 3
κ ′> − ∈ + ∈ , the LCN are positive for 

negative roots and negative for positive roots. Here the region of stability or instability depends solely on 
the constantκ . Our generalization of the stability of the non autonomous system is in agreement with [14] 
and [23]. 
 
7.0      Concluding  Remarks 
 
       The system of equations (2.2) derived are non-integrable differential equations with variable 
coefficients, and since functional differential equations of motion for classical field theory are generally 
difficult, often impossible, to express in a form that is amenable to analysis. Thus, in order to obtain useful 
dynamical predictions from realistic models, it is frequently required to replace the functional differential 
equations of motion by approximations that are ordinary or partial differential equations. Thus, using the 
particular solutions of the Gylden-Meshcherskii problem, unified Meshcherskii’s law and a Meshcherskii 
transformation, the system (2.2) is reduced to a system (3.6) of perturbed equations with constant 
coefficients in a coordinate system rotating with a constant angular velocity, then the search for the 
particular solutions of the system with variable coefficients comes down to the search for triangular steady-
state solutions of (3.6). Analogous particular steady-state solutions (libration points) for the system of 
equations with variable coefficients are obtained with the help of the equilibrium solutions of the 
autonomized system (3.6) and the transformation (3.1). 
    The stability of collinear equilibrium points of the autonomized system under the influence of a constant 
κ  of a particular integral of the motion of the variable primary bodies, together with the effects of the 
perturbations in Coriolis and centrifugal, does not change despite the introduction of perturbations. Hence, 

they remain unstable. The stability of triangular equilibrium points of the autonomized system is stable is 

seen to be stable for 0 cκ
υ υ< < , and unstable for

1

2cκ
υ υ≤ ≤  due to the constant κ of a particular 

integral of the Gylden-Meshcherskii problem, wherecκ
υ   is the critical mass value, which depends on the 

joint effects of the parameters.  The range of stability increases, decreases, remains unchanged or does not 
exist according to the constant κ of a particular integral of the Glyden-Meshcherskii problem. 

 
 
    The stability of libration points varying with time, for some initial conditions, we find according to the 
Lyapunov theorem, that solutions with negative exponents consequently having positive LCN are stable, 
those with positive exponents  having negative LCN are unstable, while the stability or instability of 
constant and pure oscillatory solutions having zero LCN’s, cannot be determined. 
     The range of stability or instability depends on the overall on the parameter( )κ , since its choice 

determines the stabilizing or destabilizing ability of the presence of the Coriolis and centrifugal forces. 
Hence as κ increases, the LCN of solutions with negative exponents increases. On the other hand, for 
solutions with positive exponents the range of instability of these solutions increases. 
 We conclude that since the stability of the triangular equilibrium solutions of the non autonomous system 

cannot be determined when0 cκ
υ υ< < , 

4 8
0

3 3
κ ′< < ∈ + ∈ , but has unstable solutions in the same 

range but with change in the range of the constant. We conclude that motion around the equilibrium points 
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for the perturbed restricted three-body problem with variable masses is in general unstable according to the 
theorem of Lyapunov. 
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