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Abstract

In [3] real-valued convex functions of single variable were
characterized using the geometric chord property. It centred
on the first order condition, integral and monotonicity of the
derivative of convex functions. In this work we major on
extending this characterization to the second derivative and
the epigraph of these functions which is the link between
convex sets and convex functions.
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1.0 Introduction
Linear functions are very appealing because theyasy to manipulate and their graphs are especiall
simple (lines in the plane for one independentalde, planes in space for two independent varizdotes
so on). In this work we will consider a class afdtions called convex functions which includes ¢heess
of linear functions but which has a much wider o applications than that of linear functions.
Convex functions have been characterized usinghthe derivative, the integral and the epigraph. |
particular [3] gives a characterization which conds the first order condition, monotonicity and the
integral of the derivative of convex functions. \8hall flavour this characterization with the second
derivative and the epigraph of convex functionektension. We will begin with the definition of cax
functions.
Definition 1.1  Let! € E be a nonempty closed and bounded interval. A fan¢fi:I — E is said to be
convex or if for anyx,.x; € [ and allz £ [0.1], we have that

flaxg+ 1 —alx;) < af(x)+ (1 —a)f(x1) (1.1)
If strict inequality holds in (1) for alk-; = x., thenf is called a strictly convex function.
If the above definition holds with the inequaligversed theli is concave. Thus the negative of a convex
function is concave, and vice versa.
Geometrically this means that the values of a ceffivaction are below the corresponding chord, ihat
the values of a convex function at points on the Begmentx, + (1 — a)x, are less or equal to the

height of the chord joining the poirig;. f{x;)) and(x. f{x:]}).

2.0 Jensen’s Inequality
Theorem 2.1  Let f be a convex function defined on aninterval /. If x,.x5.....x, € [ and

oy, @ ety = 0WithEE . a; = 1, then
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FOL; ax ) < BL, af (x;). (2.1)
Proof: We shall prove this by induction. Far= 1 the theorem is trivially true. Further, by conugxi
hypotheses
flayx+azx;) € ayf(x) + axf(x;) (2.2)
Thus the statement is true foi= 2.

Suppose that the theorem is truesfcr k — 1,

ZE‘i=: a; f(x;)= (1 —a) E-':‘f

&

o fx) + apf(xg)

=1 —a)f {E;‘;f f—;] + a f(x;) (By inductive hypothesis)

> (1 - a) B o x, + aaxy (by (2.2))
= F(Ei  aux, + apxy)
= f{sﬁ;. “'.x'..-|
Observation 2.2 Clearly, Jensen’s Inequality is an extension af)beyond two points which is

a generalization of the notion of convexity to uté the linear combination of the points. It playsentral
role in many aspects of mathematics. A very impurégpplication of the above result is that the gewit
mean of a set positive numbers does not exceeddtittimetic mean.
3. The Epigraph of a Convex Function
Definition 3.1 Let! = K be a nonempty closed and bounded intervalféatid— R. The epigraph of
is given by

epif ={lx.t):flx) =t xel, teRL (3.1)
The link between convex sets and convex functisribriough the epigrapl function is convex if, and
only if, its epigraph is a convex set.
Definition 3.2 Afunction is concave if and only if its hypograph, defined as

hypf ={lx.t):f(x) =t. x5, teR} 3.2)
isa convex set.
4. Convexity, Differentiability and the Geometric Chord Property
We now consider some results from [1, 4, 5, 6which will be very useful in the proof of the ma@sult.
Lemma 4.1 Let f be a convex function defined on some inteival K, and let
I, = [x,.v;] andi; = [x;.¥-] be nondegenerate subintervald.ofhat is,x, =< y; andx; = y.. Assume
that!, lies to the left of;. Thatis,x, = x; andw; = w; Then the slope of the chord overis greater than
the slope of the chord ov&r. In particular,

Flygd=Frzy] flyad—fixzs}y _ Fiyad—fixa]

T i =
Ya-¥a T ¥i-E P ) (4.1)
Proof. Sincex, = v, = y=we writey; as a convex combination &f andy, namely
y, = Fz—F1 1 J'1-»‘-’1}_,

Yr=xy T ¥amE©o
By convexity
F2—¥ - & g —& - »
) < TG + 20 f ).
Ya=¥y P

Subtractingf (x,) from both sides gives ‘

¥p=Xy

Fo) = FG) < R FG) + 152 1 ).

Dividing by v, — x, gives

Fiyei=flaes) -1 1 ) F (e X

d LR i i - I-.~|I___ I-,_1]:-.--.- H .

Sy (30 Eamny £6 -0 R (4.2)
Similarly
Ya=Xy Xz=
Xz = T + - ¥

o)
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flx;) < ]+‘fU}
—f(x_J_ url}
foj—f(xj_. f(l }‘_= ()
ff..‘-';::;::n"" — = f02) % (4.3)

Combining (4.2) and (4.3) completes the proof.
This lemma has a number of consequences as wessksdilh the remaining sections.

Lemma 4.2 Suppose f:I — R isconvex. Then x = int (I]implies f.{x) and f.(x) exist and
fLix) = fi(x). Proof:
Note that Lemma 4.1 implies thé-f:i;:-'f— is nondecreasing in; and x5 for x, = x;. Therefore
31

for all xy < x; < x5, we have
Flegd—Frx - Flasd—Frxs)

fle) = lim =202 = 0 (4.9
and
SR s .”.1’: =FiXs) o -_1
filzx)= xl‘—rﬂ; Er— fiix,) (4.5)
Lemma 4.3 (a) f:I — K is convex if and only if for alk, € int I and allx,,x; € I with

xy < ¥, < x5, We have
flald—flxd= £ ':x:}(-rz — x7)

and
o) — ) = fGg)(x — =)

(b) f is strictly convex if and only if the inequalitiese strict forr,. x5 * x,

Proof. Supposef is convex. The statement is trivialif = x5, so suppose that. # x5, then Lemma 4.1

implies

filx) = limg, ..

Multiplying through by(x; — x. ] then yields the result.
If f is strictly convex, then Lemma 4.1 implies that thequalities are strict.
Lemma 4.4 If f:1 = R is convex and differentiable, the#i" is continuous otl.

Proof. If [x — &, x + &] = (&, b), then for0 = h = &, we have that
Fle+fl—frz+h)

f{x]*—‘:f{x+l"]=: -

Leth — 0, thend — 0., and we have thaft is continuous from the right. By similarly argunen is
continuous from the left.

flesd-Fizmy _

legl—fixy) ey d—fixyd .
fles ....:._P_f 7 "1'?-_?I[mx,_

= = folx,)
Xy —Xs X3—Xs 2 X3 —Xy

=P

Lemma 4.5 If fis convex on an open interviad, ], then
F) - fla) = [ i (. (4.6)
Proof. If & = xy < xy < - x_ = b is a partition, then

f f.mm =31, r*‘ fj'l:t"ldr
=% S fileiy)d
=3In f_,_{.‘l ) = x )+ i) xy = xg)
= ET- (FGrioy) — Flxio2)) + o Cegday — xg).
Taking the limits agix; — 0, we getJ= filx)dx = f(b) — fla). By a similar

argumenf:' filx)dx = f(b) — fla) which completes the proof.
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5. Characterizations of Convex Functions

We now present some characterizations of convestifums showing how they can be recognized.
Theorem 5.1 First Order Characterization of Convexunctions

Let I = R beanopeninterval and let f:I — K then

() f isconvexif and only if for any x;.x, £ [

fle)z Fla )l —x,)+ flx,) (5.1)
(i) [ isstrictly convex if and only if for any x;.x5 € I, x: = x4

fle)= il Wx, —x 0+ Fix,) (5.2)

Theorem 5.2 Second Order Characterization of Convekunctions
Let I © K bean openinterval. Suppose thaf:I — K is a twice differentiable function thefis convex if,
and only if,

fix) =0 =xel (5.3) See [2].

The next result shows that derived function of avex function is a monotone increasing.
Theorem 5.3 Characterization of Convex Function with the Monotonicit of the
Derivative

Let f:I — B be differentiable over the openinterval I = R then f isconvex if and only if

Flx)=flx) vx, <x; €1 (5.4)
Proof: Letx,.x.x; el with x;, < x. = x5 By the geometrical chord property
Flagt—Fixy) . xgd—JF (X oy xgd—Jlxg (5.5)

Xy—Xy T xp-xy T x3-xy
Considering the first inequality; as— x, from the right the slopes decrease. This implias the Newton
quotients %

used to computef. (x; ) are increasing. Also the second inequality res/éadt the

ratios representing the slopes increas2 as x; from the left.

. " o flegd=fixg)
Now atx;, these inequalities show that for aiwy < x . the ratlos%

are bounded above by

Flxg X

—f
—, .. Which does not depend cx;.
Thus the Newton quotients used to compute thehkefid derivative at - are increasing and bounded
above implying thatf_ (x .} exists. By similar argumelfi (x,] also exists.
Furthermore, it follows that )

iz = fix - = o fem) = fl(xq) (5.6)

X=Xy T3—Xy

so that

)= flx) = f(xz)= f(xs) (5.7)
Thusf. and f. are non-decreasing.
Theorem 5.4 Derivative and Integral Characterization of Convex FunctiorJsing the

Geometric Chord Property
Let f:I — B be differentiable over the openinterval I = & then the following statements are equival ent.

0] Fl) = ifx,)+Q -f(x.), iel01], x.x,x 1 (5.8)
(i) fllx) s filx,) va, <x; €l (5.9
(i)  fO)-fl) =1, f(Ddr xx el (5.10)
(iv)  FQ) = )l —x) + flxg) xxp€l (5.11)

This shows that a presentation with any of theegtant above without a pre-information on the natdire
the function does not only imply that the functisrtonvex but also a presentation with all the &ig].

Theorem 5.5 Epigraph Characterization of Convex Function
Let! £ R be an openinterval arfd] — K. Thenf is convex if, and only if, the epigraph fis convex
set [2].
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Remark 5.6 Many results for convex functions can be provedr{terpreted) geometrically using
epigraphs, and applying results for convex setsam\example, consider the First Order Condition for
convexity (as given in [1]):
fG)= eI+ flx)x—xy)
wheref is convex ancy.x- € 5. We can interpret this basic inequality geomeliyda terms of epf: If
{x.t) € epif, then
t= fladz fla)+ Fx) e, —x ) (5.12)

6. Sufficient Conditions for the Convexity of Twice Differentiabé Real-valued Single
Variable Functions

Theorem 6.1  Let f:I — R betwice differentiable over the open interval I = K then the following

statements are equivalent.

(i) fl) <af(x)+ (1 —a)fix.). ae(0.1), x,.x,€l. (6.1)

(i) {ax, +(1 —alx., a8, +(1 —alB,) € epif (6.2)
for x,. x; =land (x..8,), (x,.6.) € epif.

(iii) fllx) < filxy), vx, <x; el (6.3)

V) f&) - fl) =], f(Hdt xxsel (6.4)

v) fldz fla)+ (x; = x)f (xy) xpx5€l qp

M)  fx) =0 xel. (6.6)

Proof. We shall show thai)=(ii)=(iii))=(iv)= (V)= (vi)=(i).
(i)=(ii). Assuming thaf is convex and let,.x, € I and{x,.8,). (x..8,) € ewif, then for any
a £ (0.1) we have

flax, +(1—a)x) < af(x, )+ (1 —alflx.) < ab, + (1 — a)b, (6.7)
Sincex = ax, + (1 — a)x, £ I, we have that
(ax,+(1 —a)x;.ab, + 1 —a)8,) € epif (6.8)
(il)=(iii). Sinceepif is convex(ax, + (1 —alx,, af(x-)+ (1 —alf(x.)) € epif
= flex,+ 1 —alx,) = af(x;)+ 0 —alf(x,) (6.9)
Similarly
Flex, + (1 —alx) = af (x,) + 0 —al f(x:) (6.10)

Rearranging we have
Floxy = (L=alyy b=l )

+flx) = flxg) (6.11)

and _ _
Floxy = (t=alys b=l )

- ) = filxy) (6.12)

Summing (6.11) and (6.12) and lettirg— 0 we have

frlegdx,—x) < fla x; —x,)

= (f' () — flx Nz —x,)= 0
Sincex, # x, it follows thatx; — x;, > 0 = =x, = x,. Thus

Flx)zfix,) (6.13)

(iii)=(iv): Since a function which is non-decreasing onrd@rval is integrable on that interval, it follows
that f- and f, are Riemann integrable
Supposex < x £ I (the argument forr < x, is similar and omitted). For any partition
X< x, = = x, =x, by(5.6)and (5.7)

Flloa ) < flle ) < BT om0y < £1(xy) (6.14)

Tp—Xy—y

Since
SE_[fle) — flxg )] = Do Pl v )= fG) - fx,)  (6.15)

=Lk -y
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= [ f®dt= [, ft)dt = fFG) - fx,) (6.16)

(iv)=(v): From (6.14), (6.15) and (6.16), we observe that

Flg) < 2L i 2y < (6.17)
and _

J‘_r[xr._] > I rr:{x: if X > x (618)
In either case
fG&) = fxo) = f1(xo)(x — xo).
(V)=(vi): By the mean value theorem

Fl)=fla )4 (g — x ) () + %{x: —x, P f"x) (6.19)

x=ax,+ (1 —alx, 1l

Since
foadz )+ (rp = x)f'xy) (6.20)
It follows that
frix)z0 (Since, = x)
(vi)=(i): The Taylor-series expansion fbout the point is
F&) = flao)+ & — xdflag) + 2 (x — 200 () (6.21)

If f7(x) = 0 then the last term is non-negative.
Letxy =ax, + (1 —alx. and letxr = x,. Then
Fle) = Fled)+ £l — a)lx, — x,)l. (6.22)
Now letx = x. and get
flad = flxg) + £ Malxy — x50l (6.23)
Multiplying (6.22) by« and (6.23) byl — « and adding gives)

7. Concluding Remarks

Theorem 6.1 gives the relationship between therskderivative and the epigraph of a convex function
and Theorem 7.1 of [3], suggesting that any ofpitoperties in [3] and these leading to this extemss
equivalent to all the properties in both resulisparticular Theorem 6.1.

Thus if a given mathematical concern cannot incaf@oa given property or definition of convexity wen
resort to another as shown by result above. Hdns&ktension to the second derivative and therapiy
which leads to this result gives a wider definitmfrconvexity.

Although these properties abound in optimizatiotemals, a characterization which gives the refatiop
in Theorem 6.1 above has not been achieved.
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